
Abstract
The AMD Vitis™ Networking P4 tool (VNP4) is a high-level design environment used to simplify
the design of packet-processing data planes that target FPGAs and adaptive SoCs. It converts
designs coded in P4—the ubiquitous network programming language—into device-ready RTL
code for optimal hardware implementation. By using this tool, you can significantly reduce
engineering effort required to develop device-based packet-processing systems, while still
achieving high quality results in terms of performance per LUT or performance per RAM. The
benefits of designing with VNP4 are outlined in this document.

White Paper

Simplify Packet Processing Design
with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024

AMD Adaptive Computing is creating an environment where employees, customers, and partners feel welcome and included. To that end, we’re
removing non-inclusive language from our products and related collateral. We’ve launched an internal initiative to remove language that could
exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and align with evolving industry standards. Follow this link for more
information.

WP555 (v1.0) January 24, 2024
White Paper 1Send Feedback

https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=1

Introduction
The benefits of VNP4 fall broadly into two categories; reduced engineering effort and high
quality, performant results.

Figure 1: VNP4 Benefits

Productivity

Rapid Prototyping and Time to Market

Features

Migration

Expansion

Domain
Specificity

FPGA Expertise for Packet Processing

Performance

Reduced Engineering Effort High Quality, Performant Results

X28922-120423

• Productivity: The solution reduces development effort.

• Rapid Prototyping and Time to Market: Getting your product to market is faster with the
accelerated design cycle. Iterating through multiple design options is simple and quick.

• Features: Extensive features differentiate your product, including options in User Metadata
and User Externs.

• Migration: The design intent can be migrated from one FPGA or SoC to another.

• Expansion: Packet-processing blocks generated by VNP4 can be deployed in parallel or
serially to support capabilities such as multi-level parsing and multi-data-pipeline systems.

• Domain Specificity: This high-level abstraction solution is domain specific, allowing you to
take advantage of abstraction without sacrificing performance.

• FPGA Expertise for Packet Processing: The solution and quality of hardware implementation
reflects years of experience in high-speed FPGA design and memory subsystems for high
throughput packet processing.

• Performance: The system has been engineered from the ground up to ensure high throughput,
low latency, and minimized resource utilization.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 2Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=2

Programming Protocol-independent Packet Processing
An industry standard, domain specific language, programming protocol-independent packet
processors (P4), is used for requirements capture. VNP4 converts the P4 design intent into an
AMD FPGA or adaptive SoC design solution and allows programmers to build new data planes by
explicitly specifying the header and packet processing requirements. To implement a P4 design,
the compiler maps the intended functionality onto a custom data plane architecture of VNP4 RTL
engines and software drivers. This mapping chooses appropriate engine types and customizes
each of them based on the P4-specified processing. The specialized engines used to achieve this
goal include parsing engines, match-action engines, and deparsing engines, each generated
according to an application-specific requirement.

The generated RTL is integrated in a packaged IP in the AMD Vivado™ Design Suite where it can
immediately be combined with other standard IPs, such as media access controllers, to create a
complete device design. The design is then synthesized and a bit-file is generated for the
targeted device. Even before synthesis design data is generated, critical design metrics are
available, such as required latency and memory resources.

The current AMD solution was designed based upon feedback from hundreds of customers and
information gathered from earlier iterations. The three key elements that differentiate this latest
generation of the tool are:

• Native support for the P416 language

• Algorithmic content addressable memory technology

• Dedication to efficient resource utilization and robust timing closure

Productivity
A major advantage of designing with VNP4 is the savings in development time and effort. This
applies to the actual generation of the RTL, but also might be more significant during the RTL
verification. To highlight where the savings exist, the following figure compares the different
phases of a typical RTL development flow against the approach using VNP4.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 3Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=3

Figure 2: Conceptual Breakdown of Project Effort

RTL Development Flow P4 Development Flow

Project Effort

System Verification

System Integration

Verification Phase

Implementation Phase

Design Phase

Definition Phase

X28923-120423

The definition phase includes defining the scope of a project and capturing the important details
in a requirements specification document. When it comes to packet processing, the requirements
can be specified more efficiently and effectively with the use of P4 code compared to a
requirements specification document. The P4 code is concise and less ambiguous, which helps to
avoid misinterpretation later in the project. This consequently saves effort and time in those later
stages. Many examples within the industry highlight the benefits of P4 as a specification
language [4][5][6].

The definition phase also includes test planning, which involves decisions about the design of a
test bench, the nature of the stimulus that is needed to test the design, and the nature of the
checking mechanisms. VNP4 provides an example design including a SystemVerilog test bench
with automated self-checking against the P4 behavioral model, allowing you to focus more on
the stimulus side. The verification can be run using the P4 behavioral model, which has much
faster runtimes. The P4's higher level of abstraction makes debug work much easier, where the
model outputs a detailed log of each step through the P4 program as a packet is processed. RTL
simulation is still recommended when integrating into a larger system design.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 4Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=4

Figure 3: VNP4 Example Design Test Bench

Input
Packet

Data File

Input
Packet

Data File

.json file

cli
commands

txt file

Golden
Packet

Data File

Golden
Meta

Data File

Behavioral
Model

CheckerControl

Stimulus

DUT
wrapper

Packet Data In

Meta Data In

AXI

Init Complete

Packet Data Out

Meta Data Out

X28937-012224

The design phase, which would otherwise involve the detailed inner workings and interface
connection specifications of the RTL modules, can be simplified to a few top-level VNP4
parameters and clocking decisions. The use of standard interfaces (AXI4-Stream and AXI4-Lite)
simplifies the connection to other parts of the system. The user metadata structure also provides
customization for custom side-band signals that are needed for interconnection by the user
application.

One of the biggest savings when using VNP4 is the reduction in RTL and driver coding in the
implementation phase. If the functionality can be described in P4 without user externs, then no
RTL coding is required. The engineering effort saved in RTL coding is magnified for more complex
P4 designs. This savings is further multiplied in cases of changing requirements, scope creep, and
new features.

Similarly, the verification phase is also much shorter where there is little or no RTL test bench
coding involved. The P4 code can be verified using the behavioral model. The runtime and
iteration cycles are faster here compared to an RTL test bench. Detailed log information is
provided by the model to indicate how each packet is processed by the P4 code step by step,
allowing for easier debug compared to reviewing RTL waveforms.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 5Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=5

Both flows require a system integration stage in either RTL or IP integrator. However, timing
closure can be a significantly lower risk with the P4 flow. In the context of a hardware debug
iteration cycle, this becomes even more pronounced. The P4 code can be quickly simplified (for
example, reduced table size) to generate test bitstreams with a quicker, more reliable turnaround
time, before later switching back to the full P4 functionality.

Ease of Use
Technology parameters can be customized via a graphical user interface (GUI), which provides
visual feedback, such as memory utilization for tables. The GUI displays the specific features and
allowable parameter values tailored to the P4 program.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 6Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=6

Figure 4: VNP4 Customization GUI

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 7Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=7

IP integrator can be used for connectivity between IPs, because VNP4 uses standard interfaces
(AXI4-Stream and AXI4-Lite). These IPs can easily be connected in IP integrator, along with
straightforward address mapping for AXI4-Lite.

Figure 5: VNP4 within Vivado IP Integrator

Typical configurations of the IP are supplied in the form of Example Designs. This allows you to
see IP features operating in simulation and synthesis.

Robust Designs
The use of correct-by-design code generation reduces the effort required for verification. Once
the P4 code functionality has been verified using the P4 behavioral model, you can have
confidence that the design intent in the form of P4 is properly converted into a working design
ready for deployment in the FPGA or adaptive SoC.

Rapid Prototyping and Time to Market
Getting your product to market is faster with the accelerated design cycle. Once the P4 is
created, detailed information on the latency of the design and the memory requirements of the
system are available. This aids in high-level design decisions such as device selection. Different
options can be trialed. After initial decisions are made, the design can then be synthesized and
brought through the back-end flow in the Vivado tools to assess the feasibility of the design in
terms of resource allocation and timing closure. The P4 code can be verified much quicker than
an RTL alternative approach, which provides earlier confidence in the design sizing information
from the Vivado tools.

Features
P4 provides extensive features to differentiate your product. These include options in user
metadata and user externs.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 8Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?isLatest=true&url=ug1308-vitis-p4-user-guide&resourceid=dav1538643265668.html&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=8

User Metadata
User metadata, inferred in the P4 code, provides side-band signaling alongside the packet data at
the input to VNP4. It can be processed within the parser and the match-action pipeline, then it is
output again alongside the packet data. One common use provides ingress and egress port
number information to indicate where each packet is coming from and going to.

Targeting an FPGA or adaptive SoC means that VNP4 has the benefit of being able to scale the
side-band signaling to any width to suit each application. The user metadata structure can be
broken down into further struct definitions for convenient grouping of fields. It can be defined to
align with other standard architectures (such as Portable NIC Architecture), but it is not restricted
to any one of these definitions.

User Externs
User externs provide an interface between the match-action control block and your own RTL
module that resides outside of the VNP4. You can implement whatever function is useful for
your design, such as a custom checksum calculation or a hash function.

Migration
VNP4 allows for easy migration in several ways. Migrating to a different line rate is
straightforward (for example, 100 Gb/s to 200 Gb/s), by scaling clock frequencies and bus widths
in the GUI. No changes are required to the P4 code, and confidence can be maintained that the
original implementation of the requirements remains faithful to the design intent. This can be
very effective if developing a family of products with each family member targeting a specific line
rate. The same P4 code generates the packet processing RTL in each family member, saving time.

Prototyping with smaller table implementations before moving to a larger number of table entries
is also trivial to enable even more rapid prototyping through to hardware implementation. This
can include starting off with on-chip SRAM before later increasing the size of the same P4 table
to target off-chip DRAM. In a pure RTL design flow, this can be time consuming and introduce
new risks. Any impact to the latency or performance of one table can have consequential impact
on other parts of the P4 pipeline, for the whole design to remain in sync. However, VNP4
automatically manages all these latency and alignment challenges. More extensive changes in
design are also enabled in cases where evolving functionality and requirements are supported
through small P4 updates.

Expansion
Designs can be deployed with multiple instances in parallel and multiple instances in series to
support capabilities such as multi-level parsing and multi-data-pipeline systems. The flexible user
metadata structure allows information to be passed between P4 instances to support this. There
are several reasons to do this:

• To achieve higher total line rate processing or total packet rate

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 9Send Feedback

https://staging.p4.org/p4-spec/docs/pna-working-draft-html-version.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=9

• To optimize more complex parts of the design that do not require high data rates or increased
packet rates

• To create a more modular system, restricting the size of each P4 program. Modularity is also a
re-use benefit.

Figure 6: Multi-stage Ingress and Egress Pipelines

100G
MAC

Ingress_stage1.p4 Ingress_stage2.p4

Switch PCIe

Egress_stage2.p4 Egress_stage1.p4

X28929-012224

Figure 7: 4x100G Pipelines

1:4

Split

100g_pipeline.p4

100g_pipeline.p4

100g_pipeline.p4

100g_pipeline.p4

400G

MAC

X28928-012224

Domain Specificity
This high-level abstraction solution is domain specific, allowing you to take advantage of
abstraction without sacrificing performance. The number of degrees of freedom in the packet
processing design space is orders of magnitude less than in a general-purpose data processing
solution. This means the solution can be optimized for a more efficient implementation while
maintaining the flexibility to implement arbitrary packet processing functions.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 10Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=10

Performance
The pipelined nature of the P4 designs allows VNP4 to process one packet every clock cycle. The
only exception to this is for HBM/DDR binary CAM (BCAM) table look-ups, where the DRAM
bandwidth might become a limiting factor. All elements of the design can scale in complexity
without reducing the performance. This includes a complex header parsing tree, many different
table look-ups and actions, and many packet editing operations. VNP4 does not set limitations
on these complexities, for example:

• There is no fixed limit to the number of parsing states or header extracts

• There is no fixed limit to the number of headers that can be modified, removed, or inserted

• There is no fixed limit to the number of tables in the match-action block

• There is no fixed limit on the size of the user metadata

All elements can scale up to a large value without impacting the performance. Ultimately, designs
reach a natural limit in terms of the device resource utilization (for example, if all block RAMs and
UltraRAMs are exhausted). The performance is also not impacted by how deep the parsing goes
into a packet.

The packet bus width and the clock frequency can be chosen to achieve the desired
performance. The packet rate can also be configured to allow for further optimizations. Some
common examples are shown in the following table.

Table 1: Examples of Parameter Settings for Different Throughputs

Throughput
(Gb/s)

Packet Rate
Mp/s

Data Bus Width
(Bytes)

Clock Frequency
(MHz)

200 300 128 336

100 150 64 300

50 75 32 300

10 15 4 312.5

Note: Higher clock frequencies and packet rates can also be achieved; a trade-off is then needed between
function complexity and timing closure.

Resource Utilization
Very complex parsers can be supported in VNP4, while still operating at 200 Gb/s line rate and
300 million packets per second. To illustrate this point, a consolidated switch P4 example
was taken and ported to the VNP4 XSA target, with the match-action section removed to focus
on the parser. This example has 130,000 unique paths through the P4 parser (including error
conditions), and it uses 31k LUTs. The example showcases the level of complexity in terms of
parsing that can be enabled by VNP4. While a robust example, it is not the limit of the parsing
complexity that can be supported in VNP4.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 11Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=11

Figure 8: Parse Graph for consolidated_switch_xsa.p4
start

parse_ethernet_contd

parse_llc_header

parse_arp_rarp

parse_fabric_header

parse_ipv4 parse_ipv6 parse_mpls

parse_qinq

parse_set_prio_high

parse_vlan

parse_set_prio_med

parse_snap_header

parse_all_int_meta_value_heders

parse_int_val

parse_inner_ethernet

parse_int_val_1

null

parse_eompls

parse_inner_ipv4 parse_inner_ipv6

parse_erspan_t3

parse_fabric_header_cpu

parse_fabric_header_mirror parse_fabric_header_multicast

parse_fabric_header_unicast

parse_gre

parse_icmp parse_ipv4_in_ip parse_ipv6_in_ipparse_tcp parse_udp

parse_mpls_1

parse_mpls_bos

parse_qinq_vlan

parse_fabric_payload_header

parse_fabric_sflow_header

parse_fabric_payload_header_contd

parse_geneve

parse_inner_icmpparse_inner_tcp parse_inner_udp

parse_gpe_int_header

parse_gre_ipv4 parse_gre_ipv6

parse_nvgre

parse_int_val_2

parse_int_val_3

parse_int_val_4

parse_int_val_5

parse_int_val_6

parse_int_val_7

parse_int_val_8

parse_int_val_9

parse_int_val_10

parse_int_val_11

parse_int_val_12

parse_int_val_13

parse_int_val_14

parse_int_val_15

parse_int_val_16

parse_int_val_17

parse_int_val_18

parse_int_val_19

parse_int_val_20

parse_int_val_21

parse_int_val_22

parse_int_val_23

parse_sflow

parse_vxlan

parse_vxlan_gpe

parse_mpls_2

parse_mpls_inner_ipv4 parse_mpls_inner_ipv6

X28925-120523

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 12Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=12

For comparison, the parse graph of the less complicated FiveTuple example design available
within the tool.

Figure 9: Parse Graph for FiveTuple.p4

start

parse_ipv4

parse_vlan

parse_tcp parse_udp

null

X28932-120623

Typically, the CAMs have a much larger utilization than the packet parsing and editing functions,
along with other parts of the logic design outside VNP4, therefore designers can focus their
efforts on system level trade-offs such as table entry numbers. Some other examples of resource
utilization are given in the following section.

P4 Examples
P4 Language Tutorials
The P4 language tutorials [2] provide a set of 12 P4 programs that were created independently
from VNP4. They target the BMv2 simple switch (v1model architecture). With a few updates, the
programs can be modified to retarget the VNP4 pipeline architecture (XSA). The following table
provides a summary of the designs along with device resource utilization numbers for those that
are currently supported in VNP4. These designs were configured for a 100 Gb/s setup. The last

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 13Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=13

column demonstrates that for the larger designs, it is typically the P4 tables that dominate the
logic utilization, rather than the packet parsing and editing. To put these utilization numbers in
context, a 10G Ethernet MAC and PCS/PMA IP use approximately 10k LUTs [7]. Three of these
P4 programs include language or extern features that are not yet supported in VNP4 (for
example, the register extern).

Note: Utilization numbers are based on 100 Gb/s setup, where TDATA_NUM_BYTES = 64 and the
PKT_RATE = 150.

Table 2: P4 Design Examples

P4 Program Name Supported
with VNP4 LUTs Total Flip-Flops Block RAMs UltraRAMs Latency

(Cycles)
Tables as % of

LUTs
Basic Forwarding Yes 28339 43929 138 0 53 91%

Basic Tunnel Yes 30993 48291 146 0 54 88%

P4 Runtime Yes 35825 56894 158 32 83 77%

Explicit Congestion
Notification

Yes 28346 44070 138 0 53 90%

Multi-hop Route
Inspection

Yes 29715 46448 138 0 60 86%

Source Routing Yes 2675 5472 2 0 30 0%

Calculator Yes 2382 5208 3 0 24 5%

Load Balancing No

Quality of Service Yes 28341 44000 138 0 53 90%

Firewall Support for register Extern underway

Link Monitoring Support for register Extern underway

MultiCast Yes 3154 5554 10 0 37 69%

Notes:
1. Testing and analysis by AMD as of 11/24/23, using AMD Vivado™ Design Suite 2023.2 and an AMD Virtex™ UltraScale+™ device (xcvu37p-

fsvh2892-2L-e), with out-of-context synthesis and implementation, and utilization numbers from a post-place utilization report. Actual
results can vary. VIV-009.

VNP4 Example Designs
The following table provides a summary of the device resource utilization numbers for the
example designs that are released with VNP4. These example designs are primarily to showcase
the various features of the P4 language that are supported in VNP4, rather than complete
applications, but the resource numbers still highlight the efficiency of implementing various
features.

Note: Utilization numbers are based on 100 Gb/s setup, where TDATA_NUM_BYTES = 64 and the PKT_RATE =
150.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 14Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=14

Table 3: VNP4 Example Designs

P4 Program Name LUTs (Total) Flip-Flops Block RAMs UltraRAMs Latency
(Cycles)

Tables as % of
LUTs

Echo 3106 6784 2 0 26 0%

FiveTuple 8807 15702 6 16 49 33%

FiveTuple_tinycam 8605 15215 6 4 30 38%

Forward 65251 85615 250 0 68 93%

Forward_tinycam 11923 18680 2 0 32 65%

Calculator 2542 5149 2 0 26 5%

Advanced Calculator 2969 5814 3 0 59 4%

Notes:
1. Testing and analysis by AMD as of 11/24/23, using AMD Vivado™ Design Suite 2023.2 and an AMD Virtex™ UltraScale+™ device (xcvu37p-

fsvh2892-2L-e), with out-of-context synthesis and implementation, and utilization numbers from a post-place utilization report. Actual
results can vary. VIV-009.

Conclusion
Designing for high-speed packet processing in programmable logic can be challenging. VNP4
simplifies the process by using higher-level abstraction with the P4 language, without
compromising on efficiency of resource utilization. For further information, download the Vivado
Design Suite and select install Vitis Networking P4. Evaluation licenses are available from the
product page, along with further documentation. You can also learn more about the P4 language
at p4.org.

References
These documents provide supplemental material useful with this guide:

1. P4 Language Specification https://p4.org/p4-spec/docs/p4-16-working-draft.html

2. P4 Language Tutorials https://github.com/p4lang/tutorials

3. GitHub, Consolidated switch repository (API, SAI, and Nettlink) p4lang/switch

4. Parveen Patel, Google, P4 Workshop 2023 Keynote: P4 HAL for Network Virtualization
YouTube

5. Nick McKeown Fireside Chat, 2023 P4 Workshop (YouTube)

6. Keynote: The Power of Fully-Specified Data Planes, Rob Sherwood (Intel), YouTube

7. Resource Utilization for 10G/25G Ethernet Subsystem v4.1

8. Vitis Networking P4 User Guide (UG1308)

Revision History
The following table shows the revision history for this document.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 15Send Feedback

https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/products/intellectual-property/ef-di-vitisnetp4.html
https://p4.org/
https://p4.org/p4-spec/docs/p4-16-working-draft.html
https://github.com/p4lang/tutorials
https://github.com/p4lang/switch
https://www.youtube.com/watch?v=bk2i1Y42wls
https://youtu.be/x-Mdi3lcZ7s
https://www.youtube.com/watch?v=MPESVsy1Ejo
https://download.amd.com/docnav/documents/ip_attachments/xxv-ethernet.html
https://docs.xilinx.com/access/sources/dita/map?isLatest=true&url=ug1308-vitis-p4-user-guide&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=15

Section Revision Summary
1/24/2024 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein is
subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED "AS
IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2024 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, UltraScale+, Virtex,
Vitis, Vivado, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCI,
PCIe, and PCI Express are trademarks of PCI-SIG and used under license. Other product names
used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Simplify Packet Processing Design with P4 and Vivado Tools

WP555 (v1.0) January 24, 2024
White Paper 16Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP555&Title=Simplify%20Packet%20Processing%20Design%20with%20P4%20and%20Vivado%20Tools&releaseVersion=1.0&docPage=16

	Simplify Packet Processing Design with P4 and Vivado Tools
	Abstract
	Introduction
	Programming Protocol-independent Packet Processing

	Productivity
	Ease of Use
	Robust Designs

	Rapid Prototyping and Time to Market
	Features
	User Metadata
	User Externs

	Migration
	Expansion
	Domain Specificity
	Performance
	Resource Utilization

	P4 Examples
	P4 Language Tutorials
	VNP4 Example Designs

	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

