
Abstract
The increasing complexity of algorithms used in domains such as AI, wireless communication, and
image processing poses challenges for efficient hardware implementation. AMD Vitis™ High-
Level Synthesis (HLS) addresses these challenges by enabling accelerated IP creation through the
synthesis of C/C++ code into RTL code for AMD’s FPGA and adaptive System-on-Chip (SoC).

White Paper

Vitis HLS: High-Performance Design
Using Task-level Parallelism

WP554 (v1.0) August 23, 2023

AMD Adaptive Computing is creating an environment where employees, customers, and partners feel welcome and included. To that end, we’re
removing non-inclusive language from our products and related collateral. We’ve launched an internal initiative to remove language that could
exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and align with evolving industry standards. Follow this link for more
information.

WP554 (v1.0) August 23, 2023
White Paper 1Send Feedback

https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=1

Introduction
Vitis HLS leverages the unique benefits and characteristics offered by AMD FPGAs to optimize
the C/C++ code for high-performance designs. The tool supports various parallel programming
constructs to model a desired implementation. Extracting task-level parallelism (TLP) is crucial for
designing efficient C-based IP and kernels.

Why Use Task-level Parallelism?
Generic C/C++ code written for CPUs typically executes the tasks sequentially, which can be
inefficient when dealing with tasks composed of multiple subtasks as shown in the following
figure. To maximize the performance on parallel architectures such as FPGAs, the C/C++ code
needs to incorporate parallelism. Task level parallelism is one such technique to achieve different
forms of parallel execution, breaking down tasks into subtasks that can execute concurrently or
in a pipeline manner.

Figure 1: Sequential vs Task Parallelism

C/C++ code targeted for Vitis HLS must be designed with TLP architecture to:

• Maximize performance and efficiency.

• Enhance synthesizability and simplify timing closure by breaking tasks into smaller,
manageable units rather than large monolithic tasks.

Tasks and Channels
The TLP regions in Vitis HLS (as shown in the following figure) consists of two building blocks:

• Computational units known as tasks.

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 2Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=2

• Channels that handle data transfer between tasks.

Figure 2: Tasks and Channels

Tasks: Types of Task-Level Parallelism
There are two types of task-level parallelism (TLP).

• Control driven

• Data driven

Control-Driven TLP
• Tasks are identified based on the control structures in the code when the dataflow pragma is

added.

• Execution of tasks is determined by the control signals defined in the code.

• Control signals preserve sequential semantics, allowing tasks to synchronize and start/stop
accordingly.

• Control signals are necessary for external memory interface access.

The following code example shows the concept of control-driven parallelism. Without the
pragmas, the sequential control flow dictates that task A executes first followed by the other
tasks B, C, and D. The next iteration of the task begins after all the subtasks have completed.
There is an opportunity to use TLP by adding the dataflow pragma. With the presence of the
dataflow pragma, the tool will infer TLP, and any tasks in that region are separated into subtasks.
In this way, the region is pipelined, and the subtasks can operate on subsequent iterations of data
simultaneously.

void diamond(date_t vecIn[N], data_t vecOut[N]) {
 data_t cl[N], c2[N], c3[N], c4[4];
#pragma HLS dataflow
 funcA(vecIn, c1, c2);
 funcB(c1, c3);
 funcC(c2, c4);
 funcD(c3, c4, vecOut);
}

void funcA(data_t *in, data_t *out1, data_t *out2) {

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 3Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=3

 for (int i=0; i<N; i++) {
 data_t t = in[i] *3;
 out1[i] = t;
 out2[i] = t;

 }
}

Control driven TLP is a powerful optimization, particularly suitable for designs involving
additional control for memory-mapped I/O operations like DDR memory and high-bandwidth
memory (HBM).

Data-Driven TLP
• Users explicitly define task level parallelism using hls::tasks.

• Each task executes independently based on the availability of streaming input data.

void diamond(hls::stream<data_t> &vecIn,
hls::stream<data_t> &vecOut) {

hls::stream<data_t> c1,c2,c3,c4;

 hls_thread_local hls::task taskA(funcA,vecIn, c1, c2);

 hls_thread_local hls::task taskB(funcB,c1,c3);

 hls_thread_local hls::task taskC(funcC,c2,c4);

 hls_thread_local hls::task taskD(funcD,c3,c4,vecOut);

}

 void funcA(hls::stream<data_t> &in,

 hls::stream<data_t> &out1

 hls::stream<data_t> &out2)

 data_t t = in.read();

 out1.write(t);

 out2.write(t);

}

The code example illustrates the concept of data-driven parallelism. As you can see, a key
difference between control-driven and data-driven TLP is that in the latter case, tasks are
explicitly dictated by the user. With the absence of control signals, each task can be thought of as
an infinite loop. Because there are no control signals, the data-driven tasks require streaming
interfaces to indicate when the channel contains data, and thus, when the task can run.

Data-driven TLP is useful for purely streaming designs like video processing or network packet
processing, where tasks can exhibit parallelism and require user control for designs involving
feedback.

It is important to see that control driven and data driven TLP are not mutually exclusive concepts.
They will commonly be used in different parts of the same project.

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 4Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=4

Channels
Vitis HLS provides two libraries to define the channels in the TLP region:

• hls::stream – Enables sequential data transfer.

• hls::stream of blocks – Supports non-sequential data transfer.

FIFO and hls::stream
First-in-first-out (FIFO) channels allow the producer to write data to the channel, which can then
be read by the consumer. FIFO’s only support sequential data transfer, while non-sequential data
requires a different channel type.

Figure 3: First-In-First-Out Channel

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 5Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=5

In C/C++ code, the hls::stream behaves like an infinite-depth FIFO. The class offers accessor
functions to write to and read from the buffer. They are templated to provide support for a wide
variety of data types from simple data types like integers and floating-point types, to complex
data types such as arbitrary precision or even user-defined structures. In addition,
hls::stream provides for the optional capability to define side-channel signals. The following
code example uses hls::stream. During synthesis, Vitis HLS infers a FIFO buffer for the
channel.

void funcA(hls::stream<data_t> &in,
 hls::stream<data_t> &out1
 hls::stream<data_t> &out2 {
 data_t t = in.read();
 out1.write(t);
 out2.write(t);
}

Benefits of hls::stream
• Enables designers to work at a higher-level abstraction.

• Focuses on algorithm aspects rather than hardware implementation.

• Shortens design times with minimal errors.

PIPO and hls::Stream_of_Blocks
In the situations where the data is being transferred is not purely sequential, Parallel-in-parallel-
out (PIPOs) allow data to be passed between a producer and consumer in any order. Two buffers
large enough to store the data are used for the data transfer. The producer obtains access to one
of the buffers, writes to it, then cedes control of the buffer. The consumer then can use the same
process to read the data from the buffer. By swapping control of the two buffers back and forth,
the computation can continue without stalling.

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 6Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=6

Figure 4: Parallel In Parallel Out Channel

The hls::Stream_of_blocks library can be used instead of the hls::stream library for
processing non-sequential data. As seen in the following code example, the stream of blocks
channel is divided into fixed size blocks, which can be accessed through read and write.

void funcB(hls::stream_of_blocks<block_data_t> &in,
 hls::stream_of_blocks<block_data_t> &out) {
for(int i = 0; i <N/NUM_BLOCKS; i++) {
 hls::read_lock<block_data_t> inL(in);
 hls::write_lock<block_data_t> outL(out);
 for (unsigned int j = 0; j <NUM_BLOCKS; j++)
 outL[inL[j]] = j + 25;
 }
}

Benefits of hls::stream_of_blocks
• Offers explicit control and flexibility to customize the channel behavior.

• Provides higher performance Vitis HLS designs.

Conclusion
In this white paper, we introduced the concept of task level parallelism and the two ways of
implementing it in the C/C++ code. Presenting several types of channels and how Vitis HLS
allows users to control the behavior of the channel. By incorporating task level parallelism in the
designs, users can achieve key performance benefits on real world HLS designs. These concepts
allow user of HLS to get even more benefit from the tool, by enabling them to address a larger
subset of their design needs using Vitis HLS and achieving higher performance from that subset.

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 7Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=7

References
These documents provide supplemental material useful with this white paper:

1. Vitis High-Level Synthesis User Guide (UG1399)

2. C/C++ Kernels in the Vitis Unified Software Platform Documentation (UG1416)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
08/23/2023 Version 1.0

Version 1.0 Initial Release.

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein is
subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED "AS
IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 8Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=rjk1519742919747
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=8

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2023 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Vitis, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective
companies.

Vitis HLS: High-Performance Design Using Task-level Parallelism

WP554 (v1.0) August 23, 2023
White Paper 9Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP554&Title=Vitis%20HLS%3A%20High-Performance%20Design%20Using%20Task-level%20Parallelism&releaseVersion=1.0&docPage=9

	Vitis HLS: High-Performance Design Using Task-level Parallelism
	Abstract
	Introduction
	Why Use Task-level Parallelism?
	Tasks and Channels
	Tasks: Types of Task-Level Parallelism
	Control-Driven TLP
	Data-Driven TLP
	Channels
	FIFO and hls::stream
	Benefits of hls::stream
	PIPO and hls::Stream_of_Blocks
	Benefits of hls::stream_of_blocks
	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

