
Abstract
This white paper explores how the AI Engine graph programming model is defined based on the
Kahn process network (KPN). The KPN model helps to make the data flow parallel, which
improves the overall performance of the system. Programming the AI Engine array requires a
thorough understanding of the algorithm to be implemented, the capabilities of the AI Engines,
and the overall data flow between individual functional units. AI Engine kernels are functions
that run on an AI Engine and form the fundamental building blocks of a data flow graph
specification. The data flow graph is a KPN with deterministic behavior. This white paper also
includes an example design to illustrate a data flow graph with four AI Engine kernels that form
the fundamental building blocks of a data flow graph specification. This example also
demonstrates a data flow stall in the design and provides a solution.

White Paper

AI Engine Programming: A Kahn
Process Network Evolution

WP552 (v1.0) July 20, 2023

AMD Adaptive Computing is creating an environment where employees, customers, and partners feel welcome and included. To that end, we’re
removing non-inclusive language from our products and related collateral. We’ve launched an internal initiative to remove language that could
exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and align with evolving industry standards. Follow this link for more
information.

WP552 (v1.0) July 20, 2023
White Paper 1Send Feedback

https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=1

Introduction
The KPN is widely used as a distributed programming model to run tasks in parallel whenever
possible. This white paper describes how the AI Engine uses the KPN model for graph
programming. There are various types of computation models based on the target architecture
such as central processing unit (CPU), graphics processing unit (GPU), FPGA, and AI Engine
programming. The following figure shows the models of computation classified as sequential,
concurrent, and functional models.

Figure 1: Models of Computation

Sequential Models

Turing
Machine

Finite State
Machine

Pushdown
Automata

Tasks are executed one by one

Concurrent Models
Kahn

Process
Network

Tasks are executed in parallel
whenever possible

Synchronous
Data Flow

Actor Modle Cellular
Automation

Interaction
Net Petri Nets

Functional Models

Combinatory
Logic

Abstract
Rewriting
System

Tasks execution will be
implementation dependent

Lambda
Calculus

Recursive
Function

X28188-061223

In sequential models, tasks are executed one after another or sequentially. In concurrent models,
tasks are executed in parallel whenever possible. In functional models, tasks are implementation
dependent, such as targeting a specific architecture, such as a GPU or the programmable logic in
FPGAs. The focus of this white paper is the computation model of AI Engine programming. This
model can be used to guide the programmer when writing the program that targets the AI Engine
architecture. The aim is to fully leverage the computing power of the AI Engine by understanding
its programming model. As the complexity of computational tasks have become more
challenging, the standard processor has proven insufficient in performing these tasks efficiently.
In response, various computational architectures have evolved to address this shortcoming such
as CPUs, GPUs, application specific processors, etc.

Kahn Process Network
The KPN is a distributed model of computation proposed by Gilles Kahn in 1974 as a general-
purpose scheme developed for parallel programming, which laid a foundation for the data flow
model. In the KPN, the components represent the functions (or kernels) and the connections
represent the data flow as shown in the following figure.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 2Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=2

Figure 2: Functions and Data Flow

Kernel (Function 1)

Kernel (Function 2)

Kernel (Function 3)

X28189-061223

The kernel (function 3) reads data from two kernels (function 1 and 2). If there are no data
available at any one of the kernels, the read stalls the process, which blocks the kernel (function
3). The process can continue only when sufficient data (tokens) are available. Writing the data
(function 1 and 2) to the process (function 3) is non-blocking, which means it is always successful
while writing and a stall does not occur. Due to these characteristics, the data flow network is
deterministic in nature. This is a deterministic process communication through first in and first
out (FIFO) channels. This model is proven for modeling embedded systems, signal processing
systems, high-performance computing, data flow programming languages, and other
computational tasks.

The signal processing systems are modeled using the KPN where infinite streams of data are
processed by executing in sequential or parallel forms based on the given tasks.

Data Flow Graph
The data flow graph indicates the processing sequence (or precedence), parallelism, and data
dependence. The following figure shows a representation of a data flow graph that has inputs
that are processed to generate outputs. The three inputs are w, x, and y. In the figure, the inputs
w and y are going to separate nodes.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 3Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=3

Figure 3: Data Flow Graph Representation

FORK

+
*

+

w

x

y

z

Edge
Data path between node and port

Port
Entry/exit point for tokens

Node/Actor
Indicates an operation

X28190-071723

Edges indicate the path that the data takes to or from actors or ports. Ports indicate the points at
which tokens enter or leave actors or the graph. The data flow graph shows the processing
sequence, parallelism, and data dependence.

In the following figure, the fork replicates the input token across multiple outputs. The output of
the nodes (edges) is implemented as FIFO buffers.

Figure 4: Fork Replicates the Input Token Across Multiple Outputs

Edges are implemented
as FIFO buffer

FORK

+
*

+

w

x

y

z = (w+x)(x+y)

u = w+x

v = x+y

Copies input
token to
multiple
outputs

X28191-071723

1 2

Nodes (or actors) fire only when a single token is present on every input to the node. If at least
one input is missing a token, the node is blocked. Each token is removed from the edge of each
input after firing the node.

In the following figure, the values for w, x, and y are 3, 5, and 2, respectively. The x value is
passed to the fork. The fork is ready to fire, while the nodes add1, add2, and mult are waiting for
all inputs.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 4Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=4

Figure 5: Input Tokens are Available for Fork (Node/Actor) - Ready to Fire

FORK

+

*

+

w

x

y

z

3

5

2

add1

add2

mult

Ready to
Fire Waiting

Waiting

Waiting

X28192-071923

In the following figure, the x value 5 has been copied to nodes add1 and add2. The w value 3 and
y value 2 are passed to nodes add1 and add2, respectively, from the input nodes. The node mult
waits for its input tokens until add1 and add2 are both ready to fire and provide them. The
output of node add1 is 8 (that is, 3 + 5). The output of node add2 is 7 (that is, 2 + 5). These
output edges are implemented as FIFOs.

Figure 6: Input Tokens are Available for Add1 and Add2 (Node/Actor) - Ready to Fire

FORK

+

*

+

w

x

y

z

add1

add2

mult

Waiting

Ready to
Fire

Ready to
Fire

3

2

5

5

X28193-071923

In the following figure, the output tokens from add1 and add2 arrive at node mult, which then
performs the multiplication and provides the output as 56 (that is, 8×7). This output then goes to
port z.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 5Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=5

Figure 7: Input Tokens are Available for Mult (Node/Actor) - Ready to Fire

FORK

+

*

+

w

x

y

z

8

7

add1

add2

mult

Ready to
Fire

X28194-071923

Data Flow Programming
This section describes how the data flow graph relates to data flow programming. Usually, a
program is modeled as a series of sequential operations.

Data flow programming emphasizes the movement of data, which includes a series of
connections, explicitly defined edges that connect nodes. The node fires as soon as all the input
tokens are valid. Contrast this view to the algorithm representation shown on the right in the
following figure.

Figure 8: Data Flow Programming

FORK

+
*

+

w

x

y

z = (w+x)(x+y)

u = w+x

v = x+y

Algorithm

u = w+x;
v = x+y;
z = (w+x)(x+y);

Data Flow Programming � Focus on Movement of Data Program � Series of Sequential Operations

X28195-071723

Inputs

Fires when
inputs are valid

Outputs

Connections

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 6Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=6

Although both the data flow graph on the left and the algorithmic form on the right represent the
same function, the data flow graph illustrates the parallelism explicitly, while the algorithm form
on the right hides the parallelism and appears sequential. For example, u and v can be computed
in parallel provided inputs w, x, and y are all available. This is clear from the data flow graph but
less so from the algorithm form.

In the figure in the Kahn Process Network section, assume function 1 is faster compared to
function 2. Even though function 1 is faster compared to function 2, function 3 must wait for the
input from both functions. This means there is no improvement to the performance overall by
having a data flow model for these functions. It is important to accelerate the complete system
rather than an individual function to achieve the performance improvement as a whole system.
Data flow languages are inherently parallel, which works well in large decentralized systems.

AI Engine – Adaptive Data Flow Programming
This section describes how data flow programming works for the AI Engine. Nodes (or actors)
indicate some type of operation. Nodes or kernels are implemented in AI Engines, which perform
the operations, but not strictly as a single operator as shown in Figure 8: Data Flow
Programming. An AI Engine can contain multiple kernels that can perform several operations.

KPN edges indicate the path that data takes to or from actors or ports. Edges are implemented as
I/O streams, cascade I/O streams, streams or direct memory access (DMA) FIFOs, and local tile
memory buffers in the AI Engine tile architecture.

The connection between the KPN nodes (AI Engine kernels) in an AI Engine design are made
through the C++ adaptive data flow (ADF) graph program. This code establishes the data flow
graph wiring between KPN nodes (AI Engine kernels), identifies any large memory buffers
required for those nodes and any I/Os to the graph.

The execution schedule is determined by the graph and the availability of input data and output
resources:

• There is no instruction pointer to firing the AI Engines. Each tile fires and executes its kernel
function once all input data is available, like in a KPN.

• There are many execution units available—10s to 100s of AI Engines based on the device.
Some, none, or all of these engines might execute in parallel depending on the nature of the
data flow graph that interconnects them together.

• All AI Engines are either computing or waiting for their input data, like in a KPN.

○ The AI Engine compiler takes inputs (data flow graph and kernels) and produces executable
applications for running on an AI Engine device. The AI Engine compiler allocates the
necessary resources such as locks, memory buffers, and DMA channels and descriptors,
and generates routing information for mapping the graph onto the AI Engine array. It
synthesizes a main program for each core that schedules all the kernels on the cores and
implements the necessary locking mechanism and data copy among buffers.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 7Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=7

In the following figure, function 1 generates two A’s for every B. On average, function 2
consumes twice as many A’s than B’s. It might not always be A and B. It can be A for some time
and B for another time. To handle this scenario, the data/token need to be accumulated to
process later. In some cases, if this accumulation is for longer cycles, this might stall the system
and affect performance. Based on the design requirements, the difficulties can vary. A few ways
to overcome some of these challenges are by adding FIFOs to accumulate the data, program the
kernel in such a way to improve the performance by using the multiple AI Engines, and other
optimization techniques. It is important to understand the deadlock problem and use the proper
techniques to solve it.

Figure 9: Data Need to Be Accumulated

Kernel (Function 1) Kernel (Function 2)

A

B

Produces two A' s for every B Alternates between
receiving one A and one B

X28196-061223

The following table lists the comparisons between the KPN and AI Engine terminologies.

Table 1: KPN and AI Engine Terminology

Terminology KPN AI Engine
Node/actor Represents the processes (functions). AI Engine kernel: the processes (node/actor) are

implemented as kernels in the AI Engine.

Tokens/inputs Input data to the node/actor. Input data to the AI Engine kernel.

Edge Edges indicate the path that the data takes to or
from actors or ports. The output of the nodes
(edges) is implemented as FIFO buffers.

Edges are implemented as I/O streams, cascade
I/O streams, streams or DMA FIFOs, and local
tile memory buffers in the AI Engine tile
architecture.

Firing Nodes (or actors) fire only when a single token is
present on every input to the node.

The AI Engine compiler manages the firing
based on the availability of the input token
(input window size) and the availability of the
buffers.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 8Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=8

Table 1: KPN and AI Engine Terminology (cont'd)

Terminology KPN AI Engine
Blocking Reading is blocked if a node/actor (process) tries

to read from an empty input.
For memory communication, kernels are stalled
if the kernel is waiting for the buffer to be filled.
With stream or cascade communication, the sink
kernel can stall if the source is not producing the
samples. This is taken care of by the AI Engine
compiler.
Locks:
The AI Engine compiler allocates the necessary
locks, memory buffers, and DMA channels and
descriptors, and generates routing information
for mapping the graph onto the AI Engine array.
It synthesizes a main program for each core that
schedules all the kernels on the cores and
implements the necessary locking mechanism
and data copy among buffers.
The C program for each core is compiled using
the Synopsys Single Core Compiler to produce
loadable ELF files.
The buffer structure is responsible for managing
buffer locks tracking buffer type (ping/pong).
The input and output buffers for the AI Engine
kernel are ensured to be ready by the locks
associated with the buffers.

In some scenarios, the data flow programming can be challenging for certain algorithms because
scheduling can lead to stalling the process.

AI Engine Architecture
AI Engines provide multiple levels of parallelism including instruction-level and data-level
parallelism. Instruction-level parallelism includes a scalar operation, up to two moves, two vector
reads (loads), one vector write (store), and one vector instruction that can be executed. In total, a
7-way very long instruction word (VLIW) instruction per clock cycle. Data-level parallelism is
achieved via vector-level operations where multiple sets of data can be operated on a per-clock-
cycle basis. Each AI Engine contains both a vector and scalar processor, dedicated program
memory, local 32 KB data memory, and access to local memory in any of three neighboring
directions. It also has access to DMA engines and AXI4 interconnect switches to communicate
via streams to other AI Engines, the programmable logic (PL), or the DMA.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 9Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=9

Figure 10: Overview of AI Engine Architecture

M
em

or
y

AI Engine
Array

Versal Adaptive SoC

Interconnect

AI Engine (Including ISA
based Vector Processor)

Memory
Module

Application-specific
Vector Extensions

(Example: ML and
5G Wireless)DMA

Memory
Interface
Stream
Interface
Cascade
Interface

AI Engine
Tile

Memory Interface

Scalar Unit

Scalar
Register

File

Scalar ALU

Non-linear
Functions

Vector
Register

File

Fixed Point
Vector Unit

Floating Point
Vector Unit

Vector Unit

Instruction Fetch
& Decode Unit

AGU AGU AGU

Load Unit A Load Unit B Store Unit

Stream Interface

AI Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

AI
Engine

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

X28197-071823

AI Engine Kernel and Graph Programming
The kernels/functions needed to accelerate are programmed using C++ with AI Engine APIs that
target the VLIW scalar and vector processors of the AI Engine. The AI Engine kernel code is
compiled using the AI Engine compiler (aiecompiler) that is included in the AMD Vitis™
development kit. The AI Engine compiler compiles the kernels to produce executable and linkable
format (ELF) files that are run on the AI Engine processors. The kernels can be mapped to the
independent AI Engines based on the algorithm to perform the parallel computation.

Figure 11: Graph and Kernel Programming

AI Engine

Data Flow Graph

Kernel 1 Kernel 2

Kernel 3

Kernel 4 AIE Kernels

· C/C++ computation function with AIE
APIs

· Declared as void C/C++ functions
· Window or stream arguments for graph

connectivity
· Compiled for an AIE

Data Flow Graph
· Written in C++
· Consists of nodes and edges

{</>}
C/C++

AIE Tiles

X28198-061223

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 10Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=10

The data flow concept should be applied to the design specification to obtain the benefit of
parallel execution whenever possible. It is also important to make sure the AI Engine kernels are
running faster to obtain the benefit of the data flow programming. See Data Flow Programming.

AI Engine Design Example
This example design uses four AI Engine kernels:

• Vector addition (vadd)

• Add constant value (addConstant)

• Copy the add constant to the output (copy_in_out)

• FIR filter (fir_32)

This example uses two versions of the FIR filter (fir_32), one scalar code, and another vector
code. This helps to showcase the importance of the kernel performance and the benefit of using
the data flow programming in the design (parallel computation).

Figure 12: AI Engine Kernels

vadd addConstant

copy_in_out

fir_32

X28210-061223

The following figure shows the actual implementation of the AI Engine ADF in the Vitis analyzer
tool. In this figure, the boxes with the lightning symbols represent the kernels. The buffers are
represented as bufx and bufxd (ping and pong buffers), for example, buf0 (ping) and buf0d (pong).
The input and output ports are represented as PLIO_In1, PLIO_In2, PLIO_Out1, and PLIO_Out2,
respectively.

Figure 13: Graph View in Vitis Analyzer Tool

X28209-061223

The next sections illustrate how the design is executed based on the KPN concept.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 11Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=11

Frame 1
The first set of data started writing to the buffers (ping buffer – buf0/buf1) and the vadd kernel (node/actor) is waiting for the input
token to be ready.

Figure 14: Frame 1

Fr
am

e
1

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

Waiting

Waiting

0 0001 Frame processed

Input Tokens - vadd Input Tokens - addConstant

Waiting

Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Waiting

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

X28200-061223

Table 2: Sending the Frame 1 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 12Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=12

Frame 2
The second set of data started writing to the buffers (pong buffer – buf0d/buf1d) and the vadd kernel (node/actor) started processing
frame 1 as the input token is ready.

Figure 15: Frame 2

Fr
am

e
2

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

Waiting

Waiting

0 0012 Frame processed

Input Tokens - vadd Input Tokens - addConstant

Waiting

Input Token –copy_in_out

Input Token –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

X28201-061223

Table 3: Sending the Frame 2 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 13Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=13

Frame 3
The third set of data started writing to the buffers (ping buffer – buf0/buf1) and the vadd kernel (node/actor) started processing frame
2. The addConstant kernel (node/actor) started processing frame 1 as the input token is ready.

Figure 16: Frame 3

Fr
am

e
3

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

Waiting

Waiting

0 0123 Frame processed

Input Tokens - vadd Input Tokens - addConstant
Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

Ready
to Fire

X28202-061223

Table 4: Sending the Frame 3 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

Frame 3 Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Fill - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 14Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=14

Frame 4
The fourth set of data started writing to the buffers (pong buffer – buf0d/buf1d) and the vadd kernel (node/actor) started processing
frame 3. The addConstant kernel (node/actor) started processing frame 2. The fir_32 kernel (node/actor) and copy_in_out kernel
(node/actor) started processing frame 1 as the input token is ready.

Note: The fir_32 and copy_in_out kernels are running parallel as the data flow graph is made in such a way to obtain the benefit of parallelism.

Figure 17: Frame 4

Fr
am

e
4

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

1 1234 Frame processed

Input Tokens - vadd Input Tokens - addConstant
Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

Ready
to Fire

Ready
to Fire

Ready
to Fire

X28203-061223

Table 5: Sending the Frame 4 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 15Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=15

Table 5: Sending the Frame 4 – Tokens/Kernels Status (cont'd)

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

Frame 3 Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Fill - Waiting - - Waiting - -

Frame 4 Token
ready

Frame 3

Fill Processing
(Frame 3)

Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Token
ready

for
Frame

1

Fill Processing
(Frame 1)

Fill - Processing
(Frame 1)

Fill -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 16Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=16

Frame 5
The fifth set of data started writing to the buffers (ping buffer – buf0/buf1) and the vadd kernel (node/actor) started processing frame
4. The addConstant kernel (node/actor) must wait to process frame 2 because it cannot write to the buffer that is used by the fir_32
kernel (node/actor) for processing frame 1. This generates the memory lock for the input tokens. The copy_in_out kernel starts
processing frame 2 as the token is ready.

Figure 18: Frame 5

Fr
am

e
5

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

2 1345 Frame processed

Input Tokens - vadd Input Tokens - addConstant
Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

Ready
to Fire

Ready
to Fire

Lo
ck

ed

W
ai

t

Lo
ck

ed

X28204-061223

Table 6: Sending the Frame 5 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

Frame 3 Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Fill - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 17Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=17

Table 6: Sending the Frame 5 – Tokens/Kernels Status (cont'd)

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

Frame 4 Token
ready

Frame 3

Fill Processing
(Frame 3)

Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Token
ready

for
Frame

1

Fill Processing
(Frame 1)

Fill - Processing
(Frame 1)

Fill -

Frame 5 Fill Token
ready

Frame 4

Processing
(Frame 4)

- Locked Waiting Locked Token
ready

Frame 2

Locked Token
ready
Frame

2

Processing
(Frame 2)

- Fill Processing
(Frame 1)

Fill -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 18Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=18

Frame 6
The sixth set of data started writing to the buffers (pong buffer – buf0d/buf1d) and the vadd kernel (node/actor) must wait to process
frame 4 because the buffers are locked due to the addConstant kernel (node/actor), which must wait to process frame 3. The fir_32
kernel (node/actor) is still processing frame 1. The copy_in_out kernel must wait to process frame 3 because the fir_32 kernel (node/
actor) is still processing frame 1, which locks the buffers (buf3 and buf4). Even though the copy_in_out kernel can run parallel, but the
fir_32 is running slow, which generated the lock to the buffers (buf3/buf4).

Figure 19: Frame 6

Fr
am

e
6

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

3 1346 Frame processed

Input Tokens - vadd Input Tokens - addConstant
Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

Lo
ck

ed

W
ai

t

Lo
ck

ed

W
ai

t

Lo
ck

ed
Lo

ck
ed

X28205-061223

Table 7: Sending the Frame 6 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 19Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=19

Table 7: Sending the Frame 6 – Tokens/Kernels Status (cont'd)

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

Frame 3 Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Fill - Waiting - - Waiting - -

Frame 4 Token
ready

Frame 3

Fill Processing
(Frame 3)

Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Token
ready

for
Frame

1

Fill Processing
(Frame 1)

Fill - Processing
(Frame 1)

Fill -

Frame 5 Fill Token
ready

Frame 4

Processing
(Frame 4)

- Locked Waiting Locked Token
ready

Frame 2

Locked Token
ready
Frame

2

Processing
(Frame 2)

- Fill Processing
(Frame 1)

Fill -

Frame 6 Locked Fill Waiting Locked Locked Waiting Locked Token
ready

Frame 2

Locked Locked Waiting Fill - Processing
(Frame 1)

Fill -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 20Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=20

Frame 7
The seventh set of data cannot be written to the buffer due to the lock. This is because the vadd is waiting to process frame 4. The
fir_32 kernel (node/actor) is still processing frame 1.

Figure 20: Frame 7

Fr
am

e
7

buf0

buf0d

buf1

buf1d

Input

Input

vadd addConstant
buf2

buf2d

buf4

buf4d

buf3

buf3d

buf6

buf6d

buf5

buf5d

copy_in_out

fir_32_scaler

3 1347 Frame processed

Input Tokens - vadd Input Tokens - addConstant
Input Tokens –copy_in_out

Input Tokens –fir_32_scaler

Input token � not ready

Input token � ready

Node/Actor (AIE Kernel) � Waiting

Node/Actor (AIE Kernel) � Processing

Locked

Ready
to Fire

Lo
ck

ed

W
ai

t

Lo
ck

ed

W
ai

t

Lo
ck

ed
Lo

ck
ed

W
ai

t
W

ai
t

X28206-061223

Table 8: Sending the Frame 7 – Tokens/Kernels Status

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

AI Engine Buffer (ping/pong) Vadd Buffer (ping/pong) addConstant Buffer (ping/pong) Buffer (ping/
pong)

copy_in_out Buffer (ping/
pong)

fir_32 Buffer (ping/
pong)

buf0/
buf1

buf0d/
buf1d

buf2 buf2d buf3 buf3d Buf4 buf4d buf6 buf6d buf5 buf5d

Frame 1 Fill - Waiting - - Waiting - - - - Waiting - - Waiting - -

Frame 2 Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Waiting - - - - Waiting - - Waiting - -

Frame 3 Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Processing
(Frame 1)

Fill - Fill - Waiting - - Waiting - -

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 21Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=21

Table 8: Sending the Frame 7 – Tokens/Kernels Status (cont'd)

KPN
Terminology Input Token for Vadd Node/Actor Input Token for

addConstant Node/Actor Input Token for fir_32 Input Token for
copy_in_out

Node/
Actor Port Node/

Actor Port

Frame 4 Token
ready

Frame 3

Fill Processing
(Frame 3)

Fill Token
ready

Frame 2

Processing
(Frame 2)

Token
ready

Frame 1

Fill Token
ready

for
Frame

1

Fill Processing
(Frame 1)

Fill - Processing
(Frame 1)

Fill -

Frame 5 Fill Token
ready

Frame 4

Processing
(Frame 4)

- Locked Waiting Locked Token
ready

Frame 2

Locked Token
ready
Frame

2

Processing
(Frame 2)

- Fill Processing
(Frame 1)

Fill -

Frame 6 Locked Fill Waiting Locked Locked Waiting Locked Token
ready

Frame 2

Locked Locked Waiting Fill - Processing
(Frame 1)

Fill -

Frame 7
(Wait)

Locked Locked Waiting Locked Locked Waiting Locked Token
ready

Frame 2

Locked Locked Waiting Fill - Processing
(Frame 1)

Fill -

In this case, the fir_32 is implemented using the scalar processor, which is very slow to execute. Implementing the fir_32 using the
vector processor solves this issue and works much faster. The key takeaway is not only that the proper data flow improves the
performance, but the kernel performance has an impact on the overall system.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 22Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=22

The following figures show the event trace view of the scalar code and vector code designs.

In the following figure, the kernel addConstant performs two frames but the kernel fir (fir_32t_scalar) is still processing frame 1. This
causes the locks to be generated respectively to the previous buffers and also leads to a kernel stall.

Figure 21: Event Trace – Scalar Code Design

Input token not ready

Input token not ready Token Ready

FIR32 is in progress | Slow due to scalar code

Input token not ready Input token
not ready Locked

Token Ready LockedToken ReadyToken ReadyToken ReadyInput token not
ready

Input token not ready Input token not
ready Locked

X28207-061223

As explained in the paragraph following Table 8, the kernel fir has been replaced with the vector version (fir_32t_vector), which
performs faster compare to the scalar version. As a result, the locks are prevented.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 23Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=23

Figure 22: Event Trace – Vector Code Design

Input token
not ready Token Ready Token Ready Token Ready Token Ready Token Ready Token Ready Token Ready Token Ready

FIR32 runs faster | Due to vector code

X28208-061223

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 24Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=24

Performance Benchmark
This section provides a performance benchmark for ultrafast ultrasonic imaging.

The performance benchmark results are presented in frames per second (fps). There are two
application results shown in the following tables, one for small parts imaging and the other for
abdominal imaging. The software environment used for the AMD Versal™ adaptive SoC is Vitis
software platform 2021.1 and the compute unified device architecture (CUDA) for the GPU. The
linear and matched filter interpolation results are presented for both floating point 32 and for
integer 16. As these numbers show, the Versal adaptive SoC significantly outperforms the GPU
by 44X for linear interpolation for integer and 27X for floating point. For the spline interpolation,
the performance is a staggering 91X over the GPU.

Table 9: Small Parts Ultrasound Imaging

Versal Adaptive SoC
VCK190 GPU-RTX 2070 PC i7

Linear interpolation 1101 fps ~40 fps ~1 fps

Matched filter Catmull-Rom
Spline interpolation

365 fps ~4 fps ~0.006 fps

Linear interpolation (int16) 4406 fps ~100 fps ~1 fps

Matched filter interpolation
(int16)

1461 fps ~15 fps ~0.006 fps

Table 10: Abdominal Imaging

Versal Adaptive SoC
VCK190 GPU-RTX 2070 PC i7

Linear interpolation 482 fps ~20 fps ~0.25 fps

Matched filter Catmull-Rom
Spline interpolation

160 fps ~1 fps ~0.0015 fps

Linear interpolation (int16) 1920 fps ~90 fps ~0.25 fps

Matched filter interpolation
(int16)

640 fps ~10 fps ~0.0015 fps

Conclusion
Graph programming can be seen as the same as defining the KPN model while AI Engine kernel
programming is purely based on the C++ vector programming with AI Engine APIs. The benefits
of data flow programming help to program the graph to use the multiple AI Engines to perform
parallel computation efficiently to achieve the maximum benefit from the architecture.

References
These documents provide supplemental material useful with this guide:

1. Kahn Process Networks: https://en.wikipedia.org/wiki/Kahn_process_networks

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 25Send Feedback

https://en.wikipedia.org/wiki/Kahn_process_networks
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=25

2. Model of Computation:

• https://en.wikipedia.org/wiki/Model_of_computation

• https://cs.brown.edu/people/jsavage/book/pdfs/ModelsOfComputation.pdf

3. Communication-aware_mapping_of_KPN_applications_onto_heterogeneous_MPSoCs:
https://ieeexplore.ieee.org/document/6241671

4. Versal Adaptive SoC AI Engine Architecture Manual (AM009)

5. AI Engine Kernel and Graph Programming Guide (UG1079)

6. AI Engine Tools and Flows User Guide (UG1076)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
07/20/2023 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein is
subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED "AS
IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 26Send Feedback

https://en.wikipedia.org/wiki/Model_of_computation
https://cs.brown.edu/people/jsavage/book/pdfs/ModelsOfComputation.pdf
https://ieeexplore.ieee.org/document/6241671
https://docs.xilinx.com/access/sources/dita/map?url=am009-versal-ai-engine&ft:locale=en-US
https://docs.xilinx.com/r/en-US/ug1079-ai-engine-kernel-coding
https://docs.xilinx.com/access/sources/dita/map?url=ug1076-ai-engine-environment
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=26

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2023 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Versal, Vitis, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective
companies.

AI Engine Programming: A Kahn Process Network Evolution

WP552 (v1.0) July 20, 2023
White Paper 27Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP552&Title=AI%20Engine%20Programming%3A%20A%20Kahn%20Process%20Network%20Evolution&releaseVersion=1.0&docPage=27

	AI Engine Programming: A Kahn Process Network Evolution
	Abstract
	Introduction
	Kahn Process Network
	Data Flow Graph
	Data Flow Programming

	AI Engine – Adaptive Data Flow Programming
	AI Engine Architecture
	AI Engine Kernel and Graph Programming
	AI Engine Design Example
	Frame 1
	Frame 2
	Frame 3
	Frame 4
	Frame 5
	Frame 6
	Frame 7

	Performance Benchmark
	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

