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Chapter 1

Overview
The Vitis™ AI recurrent neural network (RNN) tools are a sub-module of the Vitis AI development
environment focusing on implementing RNN on Xilinx® hardware platforms, including the
Alveo™ accelerator cards. The tools consist of optimized IP cores, tools, libraries, models, and
example designs. They are designed with high efficiency and ease-of-use in mind to unleash the
full potential of AI acceleration on Xilinx FPGAs and on Adaptive Compute Acceleration
Platforms (ACAPs). The RNN tools make it easy to develop RNN inference applications by
abstracting the intricacies of the underlying FPGA and ACAP.

Figure 1: Vitis AI RNN stack
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RNN Tools Overview
Deep-Learning Processor Unit for RNN
Recurrent Neural Networks (RNNs) can process sequential data of variable length and have been
widely used in natural language processing, speech synthesis and recognition, and financial time
series forecasting. However, RNNs are very compute-intensive and have to process input frame
by frame because of their strict sequential dependency. Traditional hardware cannot achieve the
ideal number in latency, especially for financial data processing, in which latency is one of the
most important factors for customers.

The deep-learning processor unit (DPU) for RNN is a customized accelerator built on FPGA or
ACAP devices to achieve acceleration for the RNN. It can support different types of recurrent
neural networks, including RNN, gate recurrent unit (GRU), long-short term memory (LSTM), Bi-
directional LSTM, and their variants. The DPU for RNN has been deployed on the Alveo U25 and
the U50LV data center accelerator cards and the Versal® VCK5000 development card. The
following table summarizes the features of these three RNN accelerators:

Table 1: DPU Features for RNN on Alveo U25, U50LV Cards, and Versal VCK5000
Development Card

Feature DPURADR16L (U25) DPURAHR16L (U50LV) DPURVDRML (VCK5000)
Precision int16 int16 Mix: int8 for GEMM on AI

Engine, int16 for others

Operation Type Matrix-Vector multiplication, element-wise multiplication
and addition, sigmoid and Tanh

GEMM, Element-wise
multiplication and addition,
Sigmoid and Tanh, Relu,
Max, Embedding (in RNN-T)

Multiplication Unit One 32x32 Systolic Array Seven 16x32 Systolic Arrays 40 AI Engine cores

Frequency Freq_DSP = Freq_PL = 310
MHz

Freq_DSP = 540 MHz, Freq_PL
= 270 MHz

Freq_AIE = 1.25 GHz,
Freq_PL = 300 MHz

Resource Utilization LUTs: 187,509 (35.9%)
Regs: 303670 (29.0%)
Block RAM: 659 (67.0%)
URAM: 56 (43.8%)
DSPs: 1092 (55.5%)

LUTs: 488,679 (56.1%)
Regs: 1045016 (60.0%)
Block RAM: 796 (59.2%)
URAM: 512 (80%)
DSPs: 4148 (69.7%)

LUTs: 169,163 (18.8%)
Regs: 241657 (13.4%)
Block RAM: 197 (20.4%)
URAM: 332 (71.7%)
DSPs: 82 (4.2%)
AI Engine: 40 (10.0%)

Example Models IMDB Sentiment Detection, Customer Satisfaction, Open
Information Extraction

RNN-T

Quantization RNN Quantizer v2.0 Manually
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Table 1: DPU Features for RNN on Alveo U25, U50LV Cards, and Versal VCK5000
Development Card (cont'd)

Feature DPURADR16L (U25) DPURAHR16L (U50LV) DPURVDRML (VCK5000)
Compilation RNN Compiler v2.0 Manually

Notes:
1. In the DPURVDRML, UltraRAM resources are mainly used as weights buffer and are shared if multiple kernels are

instantiated.
2. The embedding module is customized to support the RNN-T network. This module does not support any embedding

table update (size, contents).
3. Quantization and compilation for the RNN-T model are completed manually. The tools are not ready now.

DPURADR16L (Alveo U25 Card)

The Xilinx® DPURADR16L IP is a programmable engine optimized for recurrent neural networks,
mainly for low latency applications. This IP is implemented on the Alveo U25 card with a single
thread configuration.

The design is composed of Scheduler, Load, and Save modules for data movement between the
off-chip memory and on-chip caches. It also includes a 32x32 systolic array of DSPs to perform
Matrix-Vector multiplications and some other computation modules for miscellaneous
operations, such as element-wise multiplication and addition and non-linear function. The
scheduler is responsible for instructions fetching from the off-chip memory and distributing them
to different computation units according to dependency constraints. Figure 1: Vitis AI RNN stack
and Figure 2: DPURADR16L Architecture show the architecture of the kernel and the systolic
array module.
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Figure 2: DPURADR16L Architecture
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Figure 3: Systolic Array Architecture
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DPURAHR16L (Alveo U50LV Card)

The DPURAHR16L is the design optimized for the Alveo U50LV data center accelerator card to
utilize the high bandwidth of the HBMs. The DSP arrays are running at a double frequency of
programmable logic, thus making the 16x32 systolic array on U50LV achieve a similar
computation capacity to the U25 version but save half of DSP resources. Batches of seven inputs
are supported on the Alveo U50LV card design as shown in the following figure.

Figure 4: DPURAHR16L Top-Level Block Diagram
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DPURVDRML (Versal VCK5000 Development Card)

The DPURVDRML is a high-performance general RNN processing engine optimized for the
Versal ACAP AI Core series. Versal devices can provide superior performance or wattage over
conventional FPGAs, CPUs, and GPUs. The DPURVDRML is comprised of AI Engines and PL.

The GEMM operation with a precision of int8 is deployed on the 5x8 AI Engine array. Each AI
Core performs matrix-matrix multiplication of size 32x64x32. The 40-core kernel calculates
GEMM of size 32x320x256. The output of GEMM is quantized to int16.

The Misc modules in the following image are composed of different modules to support different
types of operations, including element-wise multiplication, addition, sigmoid, tanh, and max.
Intermediate data should be represented with the precision of int16.
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Figure 5: DPURVDRML Architecture
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Register Space

The DPURADR16L on the Alveo U25 card and the DPURAHR16L on the Alveo U50LV card
share the same register map. The DPURVDRML on the VCK5000 development card introduces
two more registers, input_batch_stride and output_batch_stride, to describe the batching
information about input and output. These kernels implement register space in the
programmable logic. These registers are accessible through the AXI4-Lite interface. The following
tables show these registers.
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AP_CTRL

The ap_ctrl register controls and provides the kernel status. The host uses it to control the
start and acknowledge the end of the kernel process. The host writes a 1 in ap_start and waits
for both ap_start to be deasserted (guaranteeing the input data is fully processed) and
ap_done to be asserted (guaranteeing the output data is fully produced). Definitions of the
control register bits are listed in the following table. The address is 0x0. The kernel can and
should only be restarted after it finishes the current workload and is in the idle state.

Bit Register Address Type Description
0 AP_START 0x0 W Asserted by host when kernel can start processing data.

Cleared by kernel on handshake with ap_ready.

1 AP_DONE R Asserted by kernel when it has finished producing output
data. Cleared on read by host.

2 AP_IDLE R Asserted by kernel when it is idle (deprecated).

3 AP_READY R Asserted by kernel when it has finished processing input
data. Self-cleared immediately.

6:4 reserved Reserved

7 AUTO_RESTA
RT

R/W If asserted, ap_start is held asserted by the kernel. Read/
write access by the host. (Not used)

31:8 reserved Reserved

SOFT_RESET

The soft_reset register controls the reset of the kernel. Asserting 1 to the LSB of the register
resets the entire kernel logic. The reset signal is active-High. The details of the soft_reset register
are shown in the following table.

Bit Register Address R/W Description
0 SOFT_RESET 0x14 W Soft reset signal, active-High.

CONF_FRAME_NUM

The conf_frame_num register indicates the number of input frames. The host configures it. The
details of the conf_frame_num register are shown in the following table.

Bit Register Address R/W Description
31:0 CONF_FRAME

_NUM
0x18 R/W Indicates the sequence length of the input sample.

INSTR_ADDR

The instr_addr register is used to indicate the DDR memory address of instructions for the
DPU for the RNN kernel. The default width of the DDR memory address is 64-bit, so two 32-bit
registers are used to represent the instruction address. The details of the instr_addr register are
shown in the following table.
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Bit Register Address R/W Description
31:0 INSTR_ADDR_H 0x1C R/W The higher 32 bits of instructions address in DDR. It is

shared with model parameter address register.

31:0 INSTR_ADDR_L 0x20 R/W The lower 32 bits of instructions address in DDR.

MODEL_ADDR

The model_addr register is used to indicate the DDR address of the model parameters. The
higher 32-bit address register has the same address 0x1C as register INSTR_ADDR_H.

Bit Register Address R/W Description
31:0 MODEL_ADDR_H 0x1C R/W The higher 32 bits of model parameters address in

DDR. It is shared with the high instructions address
register.

31:0 MODEL_ADDR_L 0x24 R/W The lower 32 bits of model parameters address in
DDR.

INPUT_ADDR

The input_addr register is used to indicate the DDR address of input activations. The details
of the input_addr register are shown in the following table.

Bit Register Address R/W Description
31:0 INPUT_ADDR_H 0x28 R/W The higher 32 bits of input address in DDR. It is

shared with the high output address register.

31:0 INPUT_ADDR_L 0x2C R/W The lower 32 bits of input address in DDR.

OUTPUT_ADDR

The output_addr register is used to indicate the DDR address of output result. The higher 32-
bit address register the same address 0x28 as register INPUT_ADDR_H. The details of
output_adddr register are shown in the following table.

Bit Register Address R/W Description
31:0 INPUT_ADDR_H 0x28 R/W The higher 32 bits of input address in DDR. It is

shared with the high input address register.

31:0 OUTPUT_ADDR_L 0x30 R/W The lower 32 bits of output address in DDR.

INPUT_BATCH_STRIDE

The input_batch_stride register is only used by the DPURVDRML on the VCK5000 Versal
development card. It describes the address step between two adjacent batches in DDR.

Bit Register Address Type Description
31:0 INPUT_BATCH_STRIDE 0x64 R/W The address step between two

adjacent batches in DDR.
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OUTPUT_BATCH_STRIDE

The output_batch_stride register is only used by the DPURVDRML on the VCK5000 Versal
development card. It describes the address step between the output of two adjacent batches
stored in DDR.

Bit Register Address Type Description
31:0 OUTPUT_BATCH_STRIDE 0x68 R/W The address step between the

output of two adjacent batches in
DDR.

Vitis AI RNN Quantizer
Vitis AI RNN quantizer performs fixed-point int16 quantization for model parameters and
activations. Quantizer reduces the computing complexity without losing accuracy. The quantized
model requires less memory bandwidth and provides faster speed and higher power efficiency
than the floating-point model.

Figure 6: Vitis AI RNN Quantizer
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Vitis AI RNN Compiler
The new RNN compiler is a modularized compiler implemented using C++ that provides better
performance and user experience. It also has better abstractions with great flexibility to support
more backends. It uses a unified core tensor IR to bridge the gap between the LSTM model and
our diverse IPs, enabling more optimizations with less overhead, such as DDR/Bank memory
planning and instruction scheduling.
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Figure 7: Vitis AI RNN Compiler
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Chapter 2

Getting Started

Installation and Quick Start
Build Vitis AI RNN Development Kit
The Vitis™ AI RNN is made available through the docker. If the docker is not installed on your
machine, refer to the Vitis AI homepage for building this docker. The docker contains RNN
quantizer, RNN compiler, and RNN runtime for cloud DPU, supporting Alveo™ U25 and U50
boards.

Vitis AI RNN docker container needs to be built from the recipe. Vitis AI RNN docker recipe
depends on the Vitis AI GPU docker (xilinx/vitis-ai-gpu:latest) base docker image. Before building
Vitis AI RNN docker, please follow the instructions here and build the Vitis AI GPU docker first
using ./docker_build_gpu.sh.

Run Vitis AI RNN Tool and Example
Follow these steps to run the docker image, quantize and compile the model, and process the
final inference on board.

1. Run the docker image.

./docker_run_rnn.sh -g xilinx/vitis-ai-rnn:latest

2. Docker image has two conda environments, vitis-ai-rnn-pytorch and vitis-ai-rnn-tensorflow,
in which the RNN quantizers for pytorch and tensorflow are installed. Activate the conda
environment.

• For Pytorch:

conda activate vitis-ai-rnn-pytorch

• For Tensorflow:

conda activate vitis-ai-rnn-tensorflow

conda activate vitis-ai-rnn
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3. Copy the example to the docker environment and run the following relevant steps:

• For Pytorch:

1. Copy example/lstm_quant_pytorch to the docker environment. The contents in
the working directory look like this.

pretrained.pth: pretrained model for sentiment detection.
quantize_lstm.py: python script to run quantization of the model
run_quantizer.sh: test script to run python script

2. Run the test script.

cd example/lstm_quant_pytorch
sh run_quantizer.sh

Two files and one import sub-directory are generated in the output directory ./
quantize_result.

Lstm_StandardLstmCell_layer_0_forward.py: converted format model
quant_info.json: quantization steps of tensors
xmodel: subdirectory that contain deployed model

• For TensorFlow:

1. Copy example/lstm_quant_tensorflow to the docker environment. The
contents in the working directory as follows:

pretrained.h5: pretrained model for sentiment detection.
quantize_lstm.py: python script to run quantization of the model
run_quantizer.sh: test script to run python script

2. Run the test script.

cd example/lstm_quant_tensorflow
sh run_quantizer.sh

Two files and one import sub-directory are generated in the output directory ./
quantize_result.

rnn_cell_0.py: converted format model
quant_info.json: quantization steps of tensors
xmodel: subdirectory that contain deployed model

4. Compile the xmodel.

Compile the xmodel for DPURADR16L(U25) using batch size = 1. It generates the
instructions in the output file (compiled_batch_1.xmodel).

vai_c_rnn -x xmodel/ -t DPURADR16L -b 1 -o output

5. Activate pytorch runtime environment.

conda activate rnn-pytorch-1.7.1

6. Run model on DPURADR16L(U25). For more information, see VART.
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Note: Xilinx provides three prebuilt examples, Customer Satisfaction, IMDB Sentiment Analysis, and
OpenIE. The steps in VART run the prebuilt xmodels. To run the xmodel you compiled, replace data/
compiled_batch_1.xmodel with your output xmodel file after executing the
"TARGET_DEVICE=U25 source ./setup.sh" command.

Run RNN-T Demo on Versal
This section shows one RNN-T model-based ASR solution on Xilinx® Versal® device VCK5000.
Versal is the first adaptive compute acceleration platform (ACAP). It is a fully software-
programmable heterogeneous compute platform that combines Scalar Engines, Adaptable
Engines, and Intelligent Engines to achieve dramatic performance improvements over FPGA and
CPU implementations among different applications. For more information, see Xilinx Versal
website. RNN-T is a sequence-to-sequence model that continuously processes input samples and
streams output symbols. The speech recognition model used here is a modified RNN-T model
and belongs to the MLPerf Inference benchmark suite. For more information, see mlcommons
inference repo.

The hardware kernel is a 40 AIE cores design. INT8 matrix-matrix multiplications are performed
on AIE cores, and other functions are implemented in programmable logic (PL) with INT16
precision. The following table shows the total resource utilization for the kernel and platform.
UltraRAM resources are mainly used as weights buffer and are shared if multiple kernels are
instantiated.

Table 2: Resources

CLB LUTs Registers Block RAM UltraRAM DSP Slices AIE Cores
Available 899712 1799424 967 463 1968 400

Utilized 169163(18.8%) 241657(13.43%) 197(20.37%) 332(71.71%) 82(4.17%) 40(10%)

Note: For RNN-T model, the quantizer and compiler are not ready now. The process of mix-precision
quantization and instruction generation are completed manually and produced for this demo. For more
information, see DPU-for-RNN.
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Chapter 3

Quantizing RNN Models
RNN quantizer supports different RNN networks, including RNN, GRU, LSTM, and bi-directional
LSTM. It performs fixed-point int16 quantization for model parameters and activations. The
compiler generates instructions based on quantized model and hardware architecture.

Note: Currently, RNN compiler only supports standard LSTM, GRU, and OpenIE models, and the generated
instructions can only be deployed in the Alveo™ U25 and U50LV cards.

Running the Toolchain
Vitis™ AI RNN tool provides the simplest APIs to introduce the FPGA-friendly quantization
feature. For a well-defined model, you only need to add a few lines to get a quantized model
object and compile the quantized model to instructions.

Adding Quantizer APIs to Float Models
Suppose there is a trained float model and some Python scripts to evaluate the model's accuracy
before quantization. The Quantizer API replaces the float module with a quantized module. The
normal evaluate function encourages quantized module forwarding. Quantize calibration
determines quantization steps of tensors in the evaluation process if quant_mode flag is set to
calib. After calibration, evaluate the quantized model by setting quant_mode to test.

PyTorch

The example/lstm_quant_pytorch/quantize_lstm.py file contains an example.

1. Import the PyTorch quantizer module.

from pytorch_nndct.apis import torch_quantizer

2. Generate a quantizer with quantization and get the converted model.

quantizer = torch_quantizer(quant_mode=args.quant_mode, 
                            module=model, 
                            bitwidth=16, 
                            lstm=True)
model = quantizer.quant_model
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3. Forward a neural network with the converted model.

acc = test(model, DEVICE, test_loader)

4. Output the quantization result and deploy the model.

if args.quant_mode == 'calib':
    quantizer.export_quant_config()
if args.quant_mode == 'test':
    quantizer.export_xmodel(deploy_check=True)

TensorFlow

The example/lstm_quant_tensorflow/quantize_lstm.py file contains an example.

1. Import the TensorFlow quantizer module.

from tf_nndct.quantization.api import tf_quantizer

2. Generate a quantizer with quantization needed input, and the batch size of input data must
be 1. Get the converted model.

single_batch_data = X_test[:1, ]
input_signature = tf.TensorSpec(single_batch_data.shape[1:], tf.int32)
quantizer = tf_quantizer(model, 
                         input_signature, 
                         quant_mode=args.quant_mode,
                         bitwidth=16)
rebuilt_model = quantizer.quant_model

3. Forward a neural network with the converted model.

output = rebuilt_model(X_test[start: end])

4. Output the quantization result and deploy the model. When dumping the outputs, the batch
size of the input data must be 1.

if args.quant_mode == 'calib':
    quantizer.export_quant_config()
elif args.quant_mode == 'test':
    quantizer.dump_xmodel()
    quantizer.dump_rnn_outputs_by_timestep(X_test[:1])

Running Quantization and Getting the Result
Take the PyTorch version as an example.

1. Run the following command with --quant_mode calib to quantize the model.

python quant_lstm.py --quant_mode calib --subset_len 1000

When calibrating forward, borrow the float evaluation flow to minimize code change from
the float script. If there are loss and accuracy messages displayed in the end, ignore them.
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Note: Check the colorful log messages with the special keyword, "NNDCT." If this quantization
command runs successfully, two important files are generated in the ./quantize_result output
directory.

• Lstm_StandardLstmCell_layer_0_forward.py: Converted format model

• quant_info.json: Quantization steps for tensors. (Keep it to evaluate the quantized model.)

2. To evaluate the quantized model, run the following command:

python quant_lstm.py --quant_mode test --subset_len 1000

3. The accuracy displayed after the command executes successfully is the right accuracy for the
quantized model. The Xmodel file for the compiler is generated in the output directory, ./
quantize_result/xmodel.

Lstm_StandardLstmCell_layer_0_forward_int.xmodel: deployed model

Quantizer APIs
PyTorch APIs
The APIs are located in the nndct/pytorch_binding/pytorch_nndct/apis.py module.

class torch_quantizer(): 
    def __init__(self,
                 quant_mode: str, # ['calib', 'test']
                 module: torch.nn.Module,
                 input_args: Union[torch.Tensor, Sequence[Any]] = None,
                 state_dict_file: Optional[str] = None,
                 output_dir: str = "quantize_result",
                 bitwidth: int = 8,
                 mix_bit: bool = False,
                 device: torch.device = torch.device("cuda"),
                 lstm: bool = False,
                 app_deploy: str = "CV",
                 qat_proc: bool = False,
                 custom_quant_ops: List[str] = None):

Class torch_quantizer creates a quantizer object.

Arguments

• quant_mode: A string that indicates which quantization mode used by the process:

• calib: for calibration of quantization

• test: for evaluation of the quantized model

• module: Float module to be quantized.
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• state_dict_file: Float module pre-trained parameters file. If the float module has read
parameters, there is no need to set the parameter.

• output_dir: Directory for quantization result and intermediate files. quantize_result is the
default.

• bitwidth: Global quantization bit width. 8 is the default.

• device: Run model on GPU or CPU.

• lstm: Flag to control whether this is an LSTM model. False is the default.

• qat_proc: Turn on quantization-aware-training (QAT).

API Functions

• Get the quantized model.

@property
  def quant_model(self)

• Export quantization steps information for tensors to be quantized.

def export_quant_config(self)

• Export XMODEL files for compilation.

def export_xmodel(self, output_dir="quantize_result", deploy_check=False)

• output_dir: Directory to save the XMODEL files. quantize_result is the default.

• deploy_check: Flag to control whether to deploy simulation data.

TensorFlow APIs
The APIs are located in the nndct/tensorflow/tf_nndct/quantization/api.py and
quantizer.py modules.

def tf_quantizer(model,
                    input_signature,
                    quant_mode: str = "calib",
                    output_dir: str = "quantize_result",
                    bitwidth: int = 8)

Quantizes the LSTM model.

Arguments

• model: Float module to be quantized.

• input_signature: Input tensor with the same shape as real input of float module to be
quantized, but the values can be random numbers.
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• quant_mode: A string that indicates which quantization mode the process is using:

• calib: for calibration of quantization

• test: for evaluation of quantized model

• output_dir: Directory for quantization result and intermediate files. The default value is
quantize_result.

• bitwidth: Global quantization bit width. The default value is 8.

API Functions

• Get the quantized model.

@property
  def quant_model(self)

• Export quantization steps information for tensors to be quantized.

def export_quant_config(self)

• Export XMODEL files for compilation.

def dump_xmodel(self)

• Deploy simulation data of the quantized model. Input is the input data that feed in the
quantized model.

def dump_rnn_outputs_by_timestep(self, inputs)
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Chapter 4

Vitis RNN Compiler
As part of the Xilinx® Vitis™ AI ecosystem, the RNN compiler compiles quantized RNN models
and maps these models to highly optimized instruction sequences for RNN DPU IPs. Currently,
the RNN compiler only supports standard LSTM models.

RNN Compilation Flow
RNN compilation flow uses XMODEL format as the unified interface for the quantizer versus the
compiler and the compiler versus run time. The RNN compiler accepts the quantized XMODEL(s)
as input and generates another XMODEL output as the RNN run-time input when compilation is
complete. The core components of the compiler are the RNN compiler frontend and backend:

Figure 8: RNN Compilation Flow
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Core Tensor IR

Backends

Target Factory
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• Frontend: The frontend parses the XMODEL files into JSON files for backend usage.
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• Backend: The backend parses the JSON files into Tensor immediate representation and
performs multiple target-specific optimizations, including off-chip and on-chip memory
planning for aggressive memory reuse and efficient instruction scheduling to achieve better
parallelism. The backend also generates hardware instruction and generates an XMODEL as
ouput. The generated XMODEL contains all the necessary metadata and hardware
instructions. The RNN runtime uses it for on-board inference purposes.

RNN Compiler Usage
VAI_C_RNN Command Tool

Figure 9: RNN Compiler Stack

Python wrapped
command line tool

Compiler Frontend In
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Compiler Backend in c++ 
(dctc_driver)
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Because the front-end and back-end of the RNN compilers are implemented as independent
components using different programming languages, a Python wrapped command-line tool
named vai_c_rnn is provided to enable a unified user interface for the RNN compiler. The
wrapper invokes the front-end and back-end independently for the whole compilation flow, and
so, the internal workings of the compiler implementation are invisible to the end-user.

VAI_C_RNN Options
Table 3: Command Options

Parameters Description Notes
-x, --xmodel_path Quantized XMODEL input path The quantization tool may output

multiple XMODEL files, so for this
option, only the parent path for these
XMODEL files should be provided.
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Table 3: Command Options (cont'd)

Parameters Description Notes
-t, --target Target device name: DPURADR16L,

DPURAHR16L
DPURADR16L (U25) DPURAHR16L
(U50LV)

-b, --batch Batch size, supported range is1-4 For DPURADR16L (U25), only batch =1
is supported, while for DPURAHR16L
(U50LV), only batch=3 and batch=4 is
supported.

-o, --output_dir Output directory of the XMODEL
-v Version

Supported Targets and Operators
For details about the supported targets and operators in RNN compiler, refer to the following
tables.

Table 4: RNN DPU Targets

DPURADR16L (U25) DPURAHR16L (U50LV)
Supported batch size Batch1 Batch3, batch4

Maximum batch size Batch=1 Batch=7

DPURADR16L (U25) only supports batch=1, DPURAHR16L (U50LV) can support batch 3 and 4
at the same time.

Table 5: Operators Support by the RNN DPU

Operator Type Description
Matmul Matrix-vector multiplication

Mul Multiplication; only two operands are supported

Add/Sub Addition and subtraction; only two operands are supported

Tanh/Sigmoid Activation operators; only one operand is support

Compilation Example
To compile a sentiment RNN model for an Alveo™ U50 data center accelerator card with batch=4
engine, follow these steps:

1. Activate the vai_c_rnn conda environment in the docker image:

• For Pytorch:

conda activate vitis-ai-rnn-pytorch
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• For Tensorflow:

conda activate vitis-ai-rnn-tensorflow

2. Compile

Assuming the quantized models for sentiment are prepared in the XMODEL directory, run
the compilation command and get results. The output XMODEL is present in the output
directory.

Figure 10: Compile XMODEL
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Chapter 5

Deploying and Running Models

XRNN Runtime for DPURADR16L (U25) and
DPURAHR16L (U50LV)

XRNN Runtime provides a unified interface API for both DPURADR16L and DPURAHR16L. It
inherits from the interface used by other DPUs in Vitis™ AI. This includes both C++ and Python
API.

The API documentation can be found here. Even though the interface API is the same as that of
other DPUs, some crucial differences are mentioned in the following sections.

Input and Output Tensor Shape
XRNN Runtime expects tensors with the shape = BxNxW, where:

• B is the batch size

• N is the number of frames

• W is the number of 16-bit words in each frame aligned to the tile array of the IP

You can access this information by querying runner->get_input_tensors() and runner-
>get_output_tensors().

However, in RNN applications, the number of frames in each input can vary. So, only the B and
W obtained from the tensor shape are useful to the user while N should be based on the actual
input or output. You must create input and output tensors with aligned dimensions.

Input and Output Tensor Alignment
If the frame size does not match the aligned size (W), you need to zero-pad each frame. Similarly,
the output dimension also has an aligned frame size. You can extract the required data if the
actual frame size is less than the aligned size.
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Input and Output Tensor Datatype
Input and output datatype should be INT16. FLOAT32 data is not supported currently. So, you
need to quantize or dequantize the data accordingly. The shift factors can be accessed from the
XMODEL using XIR API. The following is a Python example:

graph = xir.Graph.deserialize(“rnn.xmodel”)
in_pos = graph.get_root_subgraph().get_attr('input_float2fix')
out_pos = graph.get_root_subgraph().get_attr('output_fix2float')

Creating Runners in DPURAHR16L
DPURAHR16L IP on the Alveo™ U50 card has two CUs. One CU can process a batch-3 input,
while the next CU can process a batch-4 input. These two CUs can work in parallel.

The XRNN compiler generates two different XMODELS for them. Runners created with batch-3
XMODEL are assigned to batch-3 CU only, and runners created with batch-4 XMODEL are
assigned to batch-4 CU only. So, to utilize both the CUs, you need to create a runner with each
XMODEL.

While passing the input, the batch size should match the batch size supported by the
corresponding runner. The batch size of a runner can be accessed from the shape of the tensor
returned by runner->get_input_tensors().

This section describes the important parts of the customer satisfaction application in Python
running on DPURAHR16L. The complete code can be accessed from Vitis-AI/demo/
rnn_u25_u50lv/apps/customer_satisfaction/run_dpu_e2e.py.

1. Import required modules using the following command:

import vart
import xir

2. Load the model on CUs.

There are two available CUs. The first CU processes batch-3 input while the second CU
processes batch-4 input. To utilize both CUs, create two runners, each one with a
corresponding XMODEL.

runners = []
models = ["compiled_batch_3.xmodel", "compiled_batch_4.xmodel"]
for i in range(len(models)):
graph = xir.Graph.deserialize(models[i])
    runners.append(vart.Runner.create_runner(
                graph.get_root_subgraph(), "run"))
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3. Quantize the input data using the following command:

in_pos = graph.get_root_subgraph().get_attr('input_float2fix')
quantized_lstm_input = quanti_convert_float_to_int16(
        lstm_input.reshape(num_records * 25*32), in_pos)
    .reshape((num_records, 25*32))

4. Start the execution. The input data is fed into two runners in an alternating manner. The
dimensions for input and output can be accessed from a runner, like batch size and aligned
dimensions for input or output. Allocate the output array for execute_async()
beforehand.

lstm_output = np.zeros((num_records, 25*100), dtype=np.int16)
i = 0
num_cores = 2
while count < len(quantized_input):
    inputTensors = runners[i].get_input_tensors()
    outputTensors = runners[i].get_output_tensors()
batch_size, num_frames, runner_in_seq_len = tuple(inputTensors[0].dims) 
_, _, runner_out_seq_len = tuple(outputTensors[0].dims)

    input_data = quantized_input[count:count+batch_size]
    batch_size = input_data.shape[0]
    input_data = input_data.reshape(batch_size, 
num_sequences,                            runner_in_seq_len)
    output_data = np.empty((batch_size, num_sequences, 
runner_out_seq_len),                dtype=np.int16)
    job_id = runners[i].execute_async([input_data], 
[output_data],                             True)
    runners[i].wait(job_id)
    out_np[count:count+batch_size, ...] = 
output_data[..., :output_seq_dim]
            .reshape(batch_size, num_sequences*output_seq_dim)
    count += batch_size
    i = (i + 1) % num_cores

To run both the CUs in parallel, invoke the execute_async() call in two different threads.
Refer Vitis-AI/demo/ rnn_u25_u50lv/apps/customer_satisfaction/
run_dpu_e2e_mt.py for example.

5. Dequantize the output using the following command:

out_pos = graph.get_root_subgraph().get_attr('output_fix2float')
lstm_output = quanti_convert_int16_to_float(lstm_output, out_pos)
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Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:
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and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
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related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.
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AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal,
Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. All other trademarks are the property of their respective
owners.
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