
Summary
This application note is an extension to the PID Controller Design with Model Composer
(XAPP1341), which targets the Versal® Adaptive Compute and Acceleration Platform (ACAP).
With the introduction of the Versal AI Core series, Xilinx® customers have the option to perform
native single precision floating-point (SPFP) operations in either the programmable logic (PL) or
the AI Engines. This update demonstrates the Vitis™ Model Composer’s (VMC) flexibility to
implement a floating point digital signal processing (DSP) algorithm targeting either a PL or an AI
Engine implementation. A known golden reference Simulink® PID model demonstrates an
independent method to validate and debug results for the two different PL implementations:
VMC HLS blockset or C++ Based Math Sequencer and a single channel AI Engine
implementation as shown in the following figure.
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Figure 1: Multiple Approaches to Modeling an SPFP, Closed-Loop Control System
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Download the reference design files for this application note from the Xilinx website. For detailed
information about the design files, see Reference Design.

Introduction
The Versal AI Core DSP58s provide SPFP operations more efficiently than the earlier 16 nm
devices, as shown in the following figure and table (see Versal AI Core Series Data Sheet: DC and
AC Switching Characteristics (DS957)).
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Figure 2: DSP58 Single Precision Floating Point Support
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Table 1: Direct Instantiation of Floating Point Functions 

Symbol Description

Performance as a Function of Speed Grade and Operating
Voltage (VCCINT)

Units0.88V (H) 0.80V (M) 0.70V (L)
-3 -2 -2 -1 -2 -1

Floating Point Arithmetic

FMAX_FP Floating-point
operations

805 805 750 700 532 476 MHz

Prior DSP48-based devices used the integer unit and a combination of DSP48 and PL to build
single, double, or custom precision floating point operators (FPO). The new DSP58 is backwards
compatible with the DSP48 but adds a hard macro, an SPFP (aka FP32) multiplier, and an adder.
The FP32 multiplier and adder have the following features:

• Support for cascading

• A, B, C, and D inputs 32-bit SPFP

• Adder and multiplier output 32 bits

• Both outputs available simultaneously

The SPFP multiplier and adder are IEEE-754 and OpenCL™ compliant and have the following
inherent characteristics:

• Multiply-Add, Multiply-Subtract, Multiply-Acc

• Multiplication

• Addition
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• Subtraction

• Round-towards-nearest-even

• Overflow, underflow, and invalid flags

• Instantiation and FPO IP core

• Four times more efficient SPFP implementation vs 16 nm DSP48 with no additional PL
support logic required

Further, the addition of AI Engines gives the software a programmable, deterministic, and
dedicated SPFP processing data path as demonstrated in the following figure. The vector
processor has a dedicated floating point data path the following capabilities:

• Single precision

• Eight multiply-accumulate per cycle

• Sign change (FPSGN) is on per-lane basis

Figure 3: AI Engine Single Precision Floating Point Support Unit
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Whether combined or independent, the DSP58 and the AI Engine high performance compute
engines enhance any DSP-centric design. But implementing, debugging, and validating a Versal
ACAP design can be challenging with multiple design entry approaches such as RTL, C/C++ for
PL, AI Engine, and intrinsics or AI Engine APIs for AI Engine. The VMC simplifies the AI Core DSP
development by assisting in the following tasks:

• DSP test bench development through pre-built Simulink toolboxes or MATLAB® source code
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• DSP verification and validation by taking advantage of the many Simulink visualization and
debug methodologies

• Node by node in situ comparison of a golden reference model to the algorithm in
development

• Co-simulation and development of the mixed language model designs using C++ for PL or AI
Engines, LogiCORE™ IP, RTL, and intrinsics or AI Engine APIs for AI Engines

• Functional debugging for reduced development cycles and cycle approximate AI Engine
simulations

• Evaluation and exportation of a C++ design and test bench as a Vitis HLS project for resource
and timing optimization

• Creation of an automated Adaptive Dataflow Graph for AI Engine designs

• AI Engine hardware validation targeting a VCK190

To demonstrate DSP development using VMC, this application note provides three examples of
methodologies to implement the same SPFP PID algorithm. All models discussed in this
application note use fast bit accurate C++ models for functional verification and debug for the
Versal AI Core designs. It also provides a node for node comparison to a Simulink golden
reference model.

HLS Toolbox Based PID Functional Simulation
The following figure is an SPFP PID implemented in PL using the VMC HLS toolbox.
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Figure 4: Single Precision Floating Point PID Using Native VMC Blocksets
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This allows the ability to compare and contrast the Simulink golden reference model to the VMC
SPFP HLS toolbox implementation using Simulink tools such as scopes, display, signal logging,
and more. The following figure demonstrates how to log, visualize, and compare signals in the
design using:

• Simulation data inspector

• Scope
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• Display

• To workspace

• Signal logging

• Port value displays

Simulink and PL Simulation Comparison
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In the following figure, a simple Simulink subtract is used to show zero differences between the
golden reference and HLS toolbox implementation.
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Figure 5: Simulink and PL Simulation Comparison
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HLS Toolbox Based PID Implementation
The create and run test bench option in the HLS Toolbox PL implementation VMC auto
generates all files necessary to create a Vitis™ HLS project. The following figure is a screen
capture from a Vitis HLS PID_project that includes a pass/fail test bench using the Simulink
source stimulus.
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Figure 6: Generate a Vitis HLS HLS PID_PL Project

VMC auto generates the following Vitis HLS files:

• A C++ based PID model

• A test bench

• A Vitis HLS run_hls.tcl file that creates a project and runs through csim and cosim

Executing the Tcl script from a Vitis HLS command prompt creates a Vitis HLS project. For GUI-
based exploration and optimization, the Vitis GUI can be opened. Otherwise, continue with the
Tcl script. The resource, achievable clock rate, and latency information for the HLS Toolbox
implementation is demonstrated in the following figures where Clock Rate = 1/2.118e–8 = 472
MHz and Sample Rate = 1/(69 × 2.118e–9) = 6.8 MSPS.
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Figure 7: Export Report

Figure 8: HLS Toolbox PID Single Precision Floating Point HLS Implementation Results

VMC PL Math Sequencer Design
It is possible to use C or C++ to describe a control algorithm while concurrently changing the
algorithm on the fly. For example, PID, PI, or lead-lag type controllers can be described using C
and C++. Control algorithms are simply a series of arithmetic operations such as multiplication,
addition, subtraction, saturation, and division. C and C++ easily describe a state machine that has
memory (for intermediate data and instruction storage), inputs (like the W and Y inputs needed
for the PID controller example), math operators, and output (PWM duty cycle) that are used to
drive a DAC to control a servo motor. The arrival of input data, like W and Y inputs for the PID
control loop, can be used to kick off the math sequence functionality while the end of the math
sequence could be used to update a PWM. The following figure provides an example of a math
sequencer optimized for a PID algorithm.

PID Controller Design with Model Composer for Versal ACAPs

XAPP1376 (v1.0) March 9, 2022  www.xilinx.com
Application Note  10Send Feedback

https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1376&Title=%20PID%20Controller%20Design%20with%20Model%20Composer%20for%20Versal%20ACAPs&releaseVersion=1.0&docPage=10


Figure 9: Math Sequencer Block Diagram
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An instruction array stored in LUTRAM controls the A and B multiplexer selects, where the
resulting arithmetic operation needs to be stored in read-modify-write registers. The instruction
array also controls what specific SPFP arithmetic operation (saturation, bypass, multiply, or add)
is required. An instruction bit breakdown for the proposed math sequencer is shown in the
following figure.

Figure 10: Math Sequencer Instruction

There are ways to reduce the amount of arithmetic hardware needed at the expense of clock
cycles. For example, y = (a – b) would require a two step operation using b × –1 -> b (b is
multiplied by –1 and then stored into register b), followed by a second operation of a + b -> b.
The results of an arithmetic operation is stored in either the A or B register array, which is not
desirable for the next operand input needed to follow the arithmetic operation. To work around
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these issues, a bypass instruction is necessary to move data from the A to the B register array or
from the B to the A register. To expand the computational capabilities for additional algorithms
and reduce clock cycles, custom operators can be added to the instruction pipeline during a shift,
divide, square root, or another time. For the SPFP PID example using a C++ based Math
Sequencer, the only operators needed are saturate, bypass, multiplier, and adder.

The C++ for the Math Sequencer is very simple and easy to understand when written in C:

#include "ms.h"

void ms(float w_in, float y_in, float &pwm) {

    // for register & instruction details see math_sequencer_rv2.xls (MS 
Excel Spreadsheet)

    // A mux  data
    static float a_mux[] = {0, Gi, Gd, c, Gp, 0, 0, 0, 0, 0, 0, minus1, 
plus1, zeroc};
    // B mux data
    static float b_mux[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, minus1, 
plus1, zeroc};
    // constant definitions
#pragma HLS ARRAY_PARTITION variable=b_mux complete dim=1

    // load data from interface
    a_mux[5] = (float) w_in; // cast variable to float
    a_mux[6] = (float) y_in;

    // setup instructions
    unsigned short mnemonics[23] = 
{0x6CC2,0x5B31,0x633,0x2652,0x1662,0x3442,0xB272,0x82A1,0x7C42,0x7A11,0x93B1
,0xA5A1,0xA03,0x4642,0xD8B5,0xA791,0x79A1,0xA23,0x8074,0x9084,0x7D5,0x8E5};
    const short num_instr = 22;

    ap_uint<16> instruction;
    ap_uint<4> instr_sel; // instruction mux controls
    ap_uint<4> store;
    ap_uint<4> dsel_b, dsel_a;

    float a_sel_data, b_sel_data; // variables for data management & 
results storage
    float op_results; // 32 bit results
    float fsat_o; // float data types needed to support saturate

        instruction_loop : for (short inst_loop = 0; inst_loop < num_instr; 
inst_loop++) {
            // split up instruction into tasks
#pragma HLS PIPELINE
            instruction = (ap_uint<16>) mnemonics[inst_loop]; 

            // split out instructions into sub blocks
            instr_sel = instruction & 0x000F; // instruction select
            store = (instruction & 0x00F0) >> 4; // store results where?
            dsel_b = (instruction & 0x0F00) >> 8; // source B side mux from 
what register?
            dsel_a = (instruction & 0xF000) >> 12; // source A side mux 
from what register?

            // determine A select
            a_sel_data = a_mux[dsel_a];

            // determine B select
            b_sel_data = b_mux[dsel_b];
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            switch(instr_sel) {
                case 0: break; // invalid instruction
                case 1: op_results = a_sel_data + b_sel_data; break; // a+b
                case 2: op_results = a_sel_data * b_sel_data; break; // a*b
                case 3: if((b_sel_data >= min_limit) && (b_sel_data <= 
max_limit)) // saturate
                            fsat_o = b_sel_data;
                        else if (b_sel_data < min_limit)
                            fsat_o = min_limit;
                        else if (b_sel_data > max_limit)
                            fsat_o = max_limit;
                        op_results = fsat_o; break;
                case 4: op_results = a_sel_data; break; // bypass a
                case 5: op_results = b_sel_data; break; // bypass b
                // case 6: op_results = a_sel_data / b_sel_data; break; // 
a/b
                break;
            } // end instr_sel

            switch(store) {
                case 0: b_mux[8] = op_results; break; // yi
                case 1: b_mux[7] = op_results; break; // yd
                case 2: b_mux[1] = op_results; break; // pwm
                case 3: b_mux[6] = op_results; break; // error
                case 4: a_mux[7] = op_results; break; // pid_mult
                case 5: a_mux[8] = op_results; break; // x1; a_mux
                case 6: a_mux[9] = op_results; break; // x2; a_mux
                case 7: b_mux[2] = op_results; break; // prev_x1
                case 8: b_mux[3] = op_results; break; //prev_x2
                case 9: b_mux[9] = op_results; break; // pid_addsub
                case 10: b_mux[10] = op_results; break; // pid_addsub2
                case 11: a_mux[10] = op_results; break; // tmp_a; a_mux
                case 12: b_mux[11] = op_results; break; // tmp_b
                case 13: b_mux[4] = op_results; break; // prev_yd
                case 14: b_mux[5] = op_results; break; // prev_yi
                case 15: break; // invalid
            } // end store results

        } // end instruction_loop
    pwm = b_mux[1]; // PWM is a pass by reference variable

} // end math sequencer

The VMC enables functional development and debug of user-authored C and C++ designs. The
traditional methods of C and C++ debugging (GNU debugger or Microsoft Visual C) and printf
options are available in addition to Simulink scopes, display, data logging, MATLAB scripts, and
others that are natural for DSP development in a MATLAB Simulink development environment.

To simplify the microcode instruction creation, the following Microsoft Excel spreadsheet was
used to augment the generation of the hexadecimal values needed for a PID sequence.
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Figure 11: Excel Spreadsheet Used to Generate Math Sequencer Instruction Sequence

Once again, functional simulation indicates there are no functional or dynamic range differences
found between the Simulink golden reference model and the Math Sequencer.
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Figure 12: Simulink versus Math Sequencer Simulation Results

As demonstrated in the following figure, by applying two HLS #pragma instructions to the C++
code, the following PL implemented results in the Clock Rate = 1∕1.567e–9 = 638.2 MHz clock;
Sample Rate = 1∕(83 × 1.567e–9) = 7.7 MSPS.
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Figure 13: PL Implemented Results

Figure 14: Math Sequencer Implementation Results

The advantage of a Math Sequencer is that it can easily change the operators based on the
algorithm requirements. For example, a division operator or a square root function can be added
to calculate the magnitude. Also, the Math Sequencer can change the instruction sequence at a
later date without changing the hardware implementation. Further, the Math Sequencer can
reduce resources at the expense of latency. Direct comparison of the HLS Toolbox and C++ Math
Sequencer PID control loop implementations is demonstrated in the following table.

Table 2: Resources, Latency, Clock Frequency, and Sample Rate Comparison

DSP LUTs FFs Block RAM Latency
(Clocks)

Clock
(MHz)

Sample
Rate

(MSPS)
VMC HLS
Toolbox

5 565 505 0 69 472 6.8

C++ Math
Sequencer

4 513 962 0 83 638.2 7.7
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VMC AI Engine Design
AI Engines add another flexible dimension to numerical computations. In order to show the
versatility of the Versal AI Engine, the PID was re-written to target an AI Engine. A single channel
SPFP AI Engine based PID intrinsic source code is shown in the following code.

// error = setpt - feedback
error = upd_elem(error, 0, readincr(setpt)); // MM 1/6 was inp_data, 0, 
readincr...
scratch_pad = upd_elem(scratch_pad, 0, readincr(feedback));
error = fpsub(error, scratch_pad); // save error data

// proportional code
acc = fpmul(error, *Gp_ptr); // acc now holds proportional path results

writeincr(testpt, ext_elem(error, 0)); // MM

// derivative code
inp_data = fpmul(error, *Gd_ptr); // X1(n)
scratch_pad = fpsub( inp_data, fpmul(derivative_delay1, *C_ptr) ); // X1(n)-
CYd(n-1)
scratch_pad = fpsub(scratch_pad, derivative_delay); // Yd(n) = X1(n)-
CYd(n-1)-X1(n-1)
derivative_delay = inp_data;
derivative_delay1 = scratch_pad;

// add proportional & derivative results
acc = fpadd(acc, scratch_pad);

// integral code
inp_data = fpmul(error, *Gi_ptr); // X2(n)
scratch_pad = fpadd(inp_data, integral_delay);
integral_delay = inp_data;
scratch_pad = fpadd(integral_delay1, scratch_pad);

// test for saturation for integral path (ie: prevent integral anti-windup)
if (ext_elem(scratch_pad,0) > max_clip )
    scratch_pad = upd_elem(scratch_pad, 0, max_clip);
else if (ext_elem(scratch_pad,0) < min_clip )
    scratch_pad = upd_elem(scratch_pad, 0, min_clip);

integral_delay1 = scratch_pad;

// add proportional, integral, derivative results
acc = fpadd(acc, scratch_pad); 

// test for saturation
if (ext_elem(acc,0) > max_clip) 
    acc = upd_elem(acc, 0, max_clip);
else if (ext_elem(acc,0) < min_clip )
    acc = upd_elem(acc, 0, min_clip);

// write out results for servo lane 0
writeincr(outp, ext_elem(acc, 0));

}
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A single channel PID implementation only utilizes one -eighth of the full AI Engine capacity.
Alternately, the vector processor’s single instruction multiple data (SIMD) capability can be used
to process between one and eight PIDs in parallel. The following figure is an example of both a
single channel (reference PID.cc source code) and four channel (reference PID_rv2.cc source
code) SPFP PIDs running concurrently on an AI Engine (reference source code: PID_rv2.cc).

Figure 15: Four Channel AI Engine PID Single Channel PID Compared to a Single
Channel AI Engine PID and the Simulink Golden Reference (Reference Design:

ClosedLoopPID_ACAP_rv2.slx)
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The four channel scope results (ScopeAIE_All) display the results for four different sets of Kp, Ki,
and Kd coefficients. The C++ for the AI Engine was functionally debugged during development
via Vitis Emulation-SW simulations executed by pushing the Simulink run button.

Figure 16: Functionally Simulating (Vitis Emulation-SW Simulation) an AI Engine
Design in Simulink
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Functional debugging (Vitis Emulation-SW simulation) can be one to two orders of magnitude
faster than running the same models using cycle approximate simulations (Vitis Emulation-AI
Engine simulations). Therefore, a large part of development should use functional simulations in
order to reduce development time and simplify debug of any new design. After functional
verification of the PID controller completes, the Vitis Emulation-AI Engine (cycle approximate)
simulator is used via the MC Hub token as demonstrated in the following figure.

Figure 17: Running the Bit Accurate and Cycle Approximate (Emulation-AI Engine)
Simulation

Cycle approximate simulations allow improved throughput by changing the source code or
applying compiler directives and debugging potential cycle accurate implementation issues.
When the Model Composer Hub is used for cycle approximate simulation, the following
automated steps are performed:

1. A test bench using the Simulink design is created, and adaptive dataflow graph (ADF) is
generated.

2. The Emulation-AI Engine Vitis flow is run using the Vitis tools.

3. The Vitis analyzer opens for detailed analysis.

4. The Emulation-AI Engine simulation output is plotted and estimates the throughput.

Plotting the cycle approximate (Emulation-AI Engine simulation) output estimates for the single-
channel AI Engine based PID design has a 5 MSPS throughput as shown in the following figure.
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Figure 18: Emulation-AI Engine Throughput Estimates

The four-channel AI Engine PID has a 4 MSPS throughput. The difference in sample rate
performance between the single-channel and four-channel PID is the conditional statements
necessary to iterate across four parallel channels. Line 105 in PID_rv2.cc has a constant
num_pids which defines the PIDs for loop lengths. The existing value is four, but the maximum
value is eight. For the sake of simplicity, and to keep the Simulink ADF sheet from being too
cluttered for explanation purposes, an arbitrary four channels was chosen.

Emulation AI Engine Analysis
VMC gives you the ability to explore Vitis based performance metrics, graph, array, trace, and log
details using the Vitis Analyzer GUI.
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Figure 19: Vitis Analyzer Results Analysis

All Vitis files generated from a VMC Emulation-AI Engine simulation are available for exploration
or reuse as shown in the following figure.
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Figure 20: Vitis Emulation-SW and Emulation-AI Engine Directories

A makefile is generated as part of the Emulation-AI Engine simulation in addition to a test bench,
AI Engine Adaptive DataFlow graph files (PID_AIE.cpp, PID_AIE.h), and user defined source
files. You can execute the VMC created ./code/Work_aiesim/Makefile in order to perform
a Vitis Emulation-SW (make all_x86) or a Vitis Emulation-AI Engine (through a Vitis xterm make
all) standalone simulation.

AI Engine Hardware Validation
AI Engine, AI Engine+RTL, or AI Engine+HLS based designs can be run in the hardware using the
Model Composer Hub through the Generate Hardware Image option shown in the following
figure.
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Figure 21: Generate Hardware Image Option in the VMC Hub

The following figure demonstrates the hardware validation flow as an automated method to
verify a working AI Engine hardware-based design where the com port echos the pass/fail
sample based results for the four-channel AI Engine design.

Figure 22: Com Port Results from Hardware Validation
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To simply change the test bench rather than going through the longer process of recompiling the
hardware design, perform the following sequence of events:

1. Change the test bench.

2. Use the VMC Hub to re-simulate.

Being able to switch out the test bench without recompiling the hardware can significantly
reduce validation for larger simulation vector sets needed to fully vet a design.

Conclusion
Using a MATLAB Simulink development environment can greatly simplify the effort required to
design, debug, and analyze a DSP based Versal ACAP design. In this application note, a PID
controller was simulated and implemented in PL using the VMC HLS Toolbox and a custom C++
based Math sequencer in PL, targeting the Versal DSP58 single precision floating point hard
macros. The AI Engine implementation demonstrated how the single instruction multiple data
(SIMD) vector processor can be harnessed to perform up to eight PIDs concurrently. The
resource comparison for a one PID loop VMC HLS Toolbox, Math Sequencer implementation,
and four parallel PID loops running concurrently on one AI Engine is shown in the following table.

Table 3: Resources, Latency, Clock Frequency and Sample Rate Comparison for a
Single Precision Floating Point PID Implementation

DSP LUTs FFs Block
RAM AI Engine Latency

(Clocks)
Clock
(MHz)

Sample
Rate

(MSPS)
VMC native
blocks
(single
channel)

5 565 505 0 0 69 472 6.8

Math
Sequencer
(single
channel)

4 513 962 0 0 83 684.3 7.7

AI Engine
(4 channel)

0 0 0 0 1 1 GHz 4

For a single copy of the VMC HLS Toolbox PID, five DSP, 565 LUT, 505 FF would be consumed,
which is an almost negligible number of gates in a Versal device. For one or two PIDs with
available gates, using dedicated gates is the best approach. To run a more complicated algorithm
such as field oriented control (FOC) application, more dedicated hardware with more math
operators is needed, which will increase costs and resources.
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For eight PID loops using the VMC HLS toolbox approach, we need 8 × (565 LUT + 505 FF + 5
DSP58) = (4520 LUT + 4040 FF + 40 DSP58), which will all independently run at 6.84 MSPS.
But 6.84 MSPS is significantly faster than what a brushless DC motor with ~40 KHz loop
bandwidth might require. In other words, with a 40 KHz PID loop bandwidth, you process one
sample every 40 KHz or 40 KSPS. If the VMC HLS toolbox PID is 6.84 MSPS /40 KSPS = 171
times faster than required for a brushless DC motor controller, and you want to drive down cost,
you should resource share the multiplication, adder, and subtract operators over time. The Math
Sequencer is explicitly designed to be a low cost way to sequentially process arithmetic
operations over time.

The Math Sequencer runs a single PID loop at 7.7 MSPS. The register set of the Math Sequencer
can be enhanced and sequentially process eight PIDs using a single math sequencer, but then the
achievable sample rate per channel will drop linearly to ~12.5% of a single channel throughput.
7.7 MSPS / 8 = 0.96 MSPS which is still ~24x faster than needed for a single 40 KSPS brushless
DC motor control loop, and eight copies of dedicated hardware are not needed. A more complex
algorithm like a FOC loop using a Math Sequencer can be processed, and the programming would
be complex, but there are advantages to a Math Sequencer. Not only are they inexpensive, they
only need to be programmed once, no micro controller licensing is required, and no support tools
are required to buy and learn. Any arithmetic algorithm can be customized, and the controller
field can be updated without having to change the design, much like a processor.

When considering the AI Engines, which have both a 32-bit RISC processor and a vector
processor, the vector processor SIMD performs using the same arithmetic operator across all
lanes. There are eight parallel lanes for floating point operations. Each individual lane is used to
perform the same: four multiplications, three subtracts, and four adds for eight independent PIDs
using one AI Engine. If the average brushless DC motor control loop runs at 40 KSPS, the PID
loops are running roughly 100x faster than required. At 40 KSPS, an AI Engine would be idle
~99% of the time because it simply does not have enough work to do. This gives you the ability
to consider more complex algorithms like field oriented control (FOC), which has several
desirable advantages for up to eight motors running simultaneously using a single AI Engine.

Throughout the process, it is worth noting:

• VMC simplifies test bench development, verification, validation, and debug by utilizing the
many inherent Simulink capabilities and toolboxes.

• Using functional simulations to debug and develop a design is significantly faster than using
cycle approximate bit accurate simulations.

• Both the test bench and the user design can be created, evaluated, and exported for use with
Vitis HLS and Vitis.

References
These documents provide supplemental material useful with this application note:

1. Floating-Point PID Controller Design with Vivado HLS and System Generator for DSP (XAPP1163)

2. Versal AI Core Series Data Sheet: DC and AC Switching Characteristics (DS957)
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Reference Design
Download the reference design files for this application note from the Xilinx website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 4: Reference Design Matrix

Parameter Description
General

Developer name Mike Mitchell

Target devices Versal ACAPs

Source code provided? Y

Source code format (if provided) Various

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

Partial reuse from PID Controller Design with Model Composer
(XAPP1341)

Simulation

Functional simulation performed Y

Timing simulation performed? Y

Test bench provided for functional and timing simulation? Y

Test bench format Model Composer

Simulator software and version 2022.1 Xilinx Tools

SPICE/IBIS simulations N

Implementation

Synthesis software tools/versions used Vivado synthesis

Implementation software tool(s) and version Vivado Implementation

Static timing analysis performed? N

Hardware Verification

Hardware verified? Y

Platform used for verification VCK190

The reference design includes the following files:

• ClosedLoopPID_ACAP.slx: Single precision floating point PID controller using native VMC
blocks, C++ based Math Sequencer, single channel AI Engine designs

• ClosedLoopPID_ACAP_rv2.slx: Single precision floating point PID controller example for
both a single channel and a four channel AI Engine design

• ms.cpp, ms.h: PL-based Math Sequencer C++ source files

• PID.cc, PID_rv2.cc, PID.h: AI Engine C++ source files

• create_library.m: MATLAB file used to create the C++ simulatable Math Sequencer
library block for use in a Simulink design
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