%ADIUVO

ENGINEERING AND TRAINING, LTD

Migrating Spartan-6 Designs to
/ Series & Beyond

Adam Tavlor

www.adiuvoengineering.com

Complex Engineering Made Simple

Migration from Spartan-6 Designs to 7 Series and Beyond

Abstract — This white paper will outline the challenges and mitigation strategies which can be
implemented when migrating from a Xilinx Spartan-6 FPGA to a Xilinx 7 series device or beyond.

Contents
Migration from Spartan-6 to 7 Series and BEYONdccoovcuiiiiiiiiiiiiciiee et e e 1
LY o131 T TSSO P TP P PP TPPTUPROPPOUON 1
I o) B T ={ U <L S 2
INEFOTUCTION L.ttt et e st e s bt e e s bt e e bt e e sabeesbeeesabeesabbeesnteesabaeesareean 3
Spartan-6 to 7 Series Architectural DIffer&nCesc.uuvivcciiiei e 3
LOGIC CEIIS -ttt ettt ettt ettt et st e s teebe et e sbeessebesssensessaensesteeseans 3
BIOCK RAM ...ttt b bbbttt sttt ettt 4
(D] S PP OP TP PPPTT PRI 5
L6l To ol USSP PP PSPRPOPRPPRO 5
V1T o 0o VA 1) (=] =Tl PSP 5
TransSCEIVEIS @N0 PCIEveiiiieiiie et st e e s e e ne e sre e sameeesaneeeane 6
AdditioNal NEW FEATUIES.oiiieiiiiteieeete ettt ettt e b e st e st st e bt e b e e be e s beesaeeeneeeneean 6
Selecting the Most APPropriate DEVICEciiiuiiie ittt et e s e e e e e e e sbte e e s sreeeeeennes 7
oo I @ o T @ o =T ¥ =TSP SPP 9
Inference Vs INSTaNtiation — ..o 9
Design Analysis REPOIt (DAR) =uiiieeiiiie et e et e ettt e e eer e e e e etre e e e e areeeeeabeeeeenreeaeenteeasensenas 10
Quality of Result Assessment (QORA)oooiiiii ettt et e e e etee e e e te e e e eebe e e s eareeas 10
Clock Interaction and Clock Domain Crossing REPOIS —......cccveieiiiieeiiiiieeecciiee e ceeee e cvee e e 11
RTL Migration EXGMPIE ..ccccevviei ettt sttt e e e e e etre e e e bae e e et ae e s esaaeeeeesnraeeeennsenas 15
Y [Tl go] 21 PR AV, T = = A o o PSRN 18
Y YA =T o g N CT=T (=T = Lo] g D LT = N 19
RTAT A=Y < TV o N 19
REFEIEINCES ...ttt sttt ettt e b e s bt e s bt e st e et e b e e b e s beesbeesateeneebeesneenane e 19

List of Figures

Figure 1 —Spartan-6 and 7 Series CLB StrUCTUIEcovcviiiiiiiiieecciieeeeeiiee sttt et e e e e s e e s saeeeeseanee 4
Figure 2 — Spartan-6 and 7 Series BIOCKk RAM BIOCKSccccuiiiiiiiieeiiciiie ettt svee e 4
Figure 3 —Spartan-6 DSP48A1 and 7 Series DSPABEL StruCtUIES.......ccuvevivcieeeiiciieeeccreee e sreee e esvreee e 5
FIBUre 4 — XADC STrUCTUIE 7 SEIIES .cviiiiiiiiiiiiiiiiiieieieteeeteeeteeeeeeeeeseeeeeseseseseesseessesesseeseseeeeeseseeeseseeeeeeeeeeesen 6
Figure 5 — Device Selection Spartan-6 to 7 Series FIow Chartc.ccovveriiiiii i 7
Figure 6 — Vivado Language TemMPIatecouciiiiiiiiieecciiee ettt e s s e s s srae e e s satae e e enaneeeeens 10
Figure 7 — Vivado IP Integrator MicroBlaze Block Diagramccceeeeciieeeeiiiiee e e e e svvee e 12
Figure 8- Vivado Clock DOmain CrosSSing REPOIT......ccccuuieiiiiiiieiiiiieeeeiiieeessteeeessereeessareeeessssreeessnseeeens 13
Figure 9- Vivado Clock INtEraction REPOIt......ccivcuiiiiiiiiiieiiiiiie s ecitee e scitee e sstre e e esare e e s satae e e ssaraeeesnanneeeens 13
Figure 10 — Design Migration Flow Chart ISE to Vivado and Vitis.......cccceveeeeeiiiieeecciieee e 14
Figure 11 — Vivado Constraints Wizard...........eeieciieeiiiiiie it sciree st e s s e e s saaae e e ssnbae e e ssanneeeens 16
Figure 12 — Vivado I/0 AsSiZNMENT WIZAIG.........ooiiieiiiieciee ettt ettt ettt e steeeaeeesareeenns 17
Figure 13 — XPS MicroBlaze Creation for Spartan-6 Implementation.........cccccceviveveeiiciiiee e, 18

ADI

Introduction

The semiconductor shortage is having significant impacts on the supply chain, and this is
especially true for older nodes such as the 45nm upon which the Spartan®-6 device is
fabricated. Although there are still challenges with 7 series and UltraScale™/UltraScale+™
deliveries, | am informed that more modern nodes exhibit an improved long-term supply
situation.

In this white paper, we are going to understand the differences between the Spartan-6 and

7 series architectures. We will also discuss how we can select the most appropriate migration
device from the 7 series range along with how to migrate the tool chain from ISE® to Vivado®.
This white paper will also examine how best to migrate a range of designs from pure RTL-based
designs to those which contain a significant element of IP and softcore microcontrollers such as
MicroBlaze™ within the programmable logic fabric.

First introduced in 2009, the Spartan-6 family is based on a 45 nm process and provides
developers within the standard LX version 3.8K and 147K logic cells, up to 576 I/O, 180 DSP
slices, and 268 18Kb block RAMS. The transceiver enabled LXT versions provides the logic
resources of the LX family and provide up to eight GTP transceivers and 1 PCI Express end
point.

Both the LX and LXT range of devices provide hard integrated memaory controllers, which
support DDR, DDR2, DDR3, and LPDDR with data rates up to 800 Mb/s.

Introduced in 2010, the 7 series consist of five families of devices including the Virtex®-7,
Kintex®-7, Artix®-7, Zynq®-7000, and Spartan®-7. This range of families in the 7 series
provides developers sufficient capacity, capability, and performance to migrate a Spartan-6
device but also enables significant opportunity for future product enhancement.

Spartan-6 to 7 Series Architectural Differences

Logic - The fundamental element of an FPGA is the logic cell. Both the Spartan-6

and 7 series have a function generator which consists of a six input Look Up Table (LUT) with
two associated flip flops. Several of these function generators and flip flop structures are
combined to create a slice. Each slice contains eight function generators and 16 flip flops. Within
7 series devices, there are two types of slices -- Slice_M and Slice_L. The LUT within the
Slice_M can act as distributed memories or shift registers. This is not possible within Slice_L.
Architecturally, two slices are combined to create a configurable logic block.

While Slice_M and Slice_L are identical between the Spartan-6 and 7 series devices,

Spartan-6 devices also have a Slice_X. Slice_X is the most basic logical structure of the three
slice configurations. Functions that were implemented using a Slice_X can be easily
accommodated within the Slice_L, which are available within the 7 series. Of course, retargeting
of Slice_Xto Slice_L is automatic in synthesis. As Slice_X provides only the most basic logic
functionality, migration to Slice_L in 7 series devices can result in performance improvement.

ADIUVO

=]

ENGINEERING AND TRAINING, LTD
Spartan 6 7 Series

cout cout cout cout cout cout
: ce | K :—cIE . K :_CEB _____ ‘T_ i :_cfs_ ______ ‘T_ i
| SLICEX | || SLICEX | | | Slicet | |4 siicet | |
! XYt | Xavi | I X1Y1 | g xavi |

1| | I 1

! 1! I ! |l |
| | slice 11| slice [|| sliceo 11| siiceo I
| xovi Ly xevt ! | xovi ba| xevt |
I 1! | 1 1
r o feno 4 fon i CIN CIN |1 CIN oN |
___._|eour ______ ____jeouT ______ o |COuUT___jeouT_ ____|COUT__ _|COuT_
lcLe | icis ! I CLB 1 ICLB [
, SLICEX | | SLICEX | | ! sicet | | | sicet | |
I X1Y0 : I X3Y0 : | X1Y0 1 X3Y0 |
1 ! 1 [|
: - : : - : [11 A I
i Slice L Slice | | Slice0 [Slice0 1
| | Xovo 1| Xxevo | 1| xovo 11| xevo |
VN B R 2 I I T !

Slice L/M Slice X Slice L Slice L/M

Figure 1 —Spartan-6 and 7 Series CLB Structure

Block RAM — One of the largest differences between Spartan-6 and 7 series devices is in the
block Ram. Spartan-6 block RAMs are arranged as 18Kb blocks which can be configured as two
9Kb memories. In comparison, 7 series devices provide 36Kb blocks which can be configured as
two 18Kb memories.

For most applications, the re-targeting should be automatic during synthesis. If, for example,
there are many smaller memories like <9Kb, then a larger 7 series device capable of supporting
that memory granularity may be required.

However, 7 series block RAM offers the designer several significant improvements which can be
very useful. This includes capabilities like providing build in FIFO, cascading block RAMs, and
built-in error correction codes.

Figure 2 — Spartan-6 and 7 Series Block RAM Blocks

4

Spartan 6 7 Series
18 Kb Block RAM
CASCADEOUTA CASCADEOUTB
—<—= DIA
—c— DiPA 36-Kbit Block RAM
—~—~{ADDRA PortA - v
— | WEA —— piPA
— | ENA %) appRA PottA
4
—~{ RSTA oo |—e—e 4ol WEA
= | ——~|ENnA
o DOPA [—~—= — .| RSTREGA
—| REGCEA)
Mm Kb — | RSTRAMA DOA 22 o
::é:’;ry —>CLKA DOPA |44 o
——~{REGCEA| 46 o
—~<—| DIB . Memory
DIPB 008 ey
e 32
—~—{ ADDRB DOPE o b poB 2
—+—={ WEB DIPB pors 4
— Jens Port8 4‘?4—» ADDRB
——~|RSTB Aol weB
—— ENB Port B
— Hgg((:?as —+| RsTREGB
0B 101042209 —| RsTRAMB
——P ks
—['Recces
CASCADEINA CASCADEINB

D TRAINING, LTD

£3ADIUVO

DSP — Being able to leverage the parallelism of programmable logic to implement filters, FFTs,
and arithmetic algorithms is a key benefit of FPGA implementation. Both Spartan-6 and Spartan-
7 provide dedicated DSP slices that enable the developer to implement multiply accumulate
functions. In the Spartan-6, the developer is provided with a DSP48A1 which provides 18x18
signed multiplication while 7 series devices play DSP48E1 which implements a 25x18 signed
multiply. Architecturally, the DSP48EL1 provided in 7 series devices also enables the
implementation of an Algorithmic Logic Unit (ALU) and enables support of Single Instruction
Multiple Data (SIMD) mode which allows increased throughput. The DSP48E1 is also capable of
implementing pattern detection and 17-bit shifter structures as required by the application.

Mapping to the DSP48E1 from the DSP48A1 should be mostly automatic by the Vivado
synthesis engine. However, to implement advanced modes such as SIMD, language templates
are provided in the Vivado editor to allow ease of implementation to achieve the best
performance.

Spartan 6 7 Series

CARRYCASCOUT"

AnpeTeCT |
-
hnBoETECT]
!
ICARRYIN ha— MuLTSIGNIN'Y 1
ig:x&iEL: ’/: -D I D CARRYCASCI ‘ i
1

C_eon e N T -

25x18 MULT ALU Pattern

18x18 MULT Detect

Figure 3 — Spartan-6 DSP48A1 and 7 Series DSP48E1 Structures

Clock — The clocking architecture of 7 series devices is significantly simpler than that previously
provided in the in Spartan-6 devices. Clocking in Spartan-6 has different buffer types which
determined connections and connectivity, for example, BUFG, BUFH, and BUFIO2 or BUFPLL.
Resource wise, the Spartan-6 FPGA provides the developer with Digital Clock Managers (DCM) and
Phase Locked Loops (PLL) clocking resources.

7 series devices provide the user with a simpler clocking architecture which, along with flexibility,
provides a significant improvement in performance. Within a 7 series Clock Management Tile
(CMT), MMCM and PLLs are provided and associated with each 1/0 bank.

Spartan-6 designs which use either a PLL or DCM_SP will migrate to a MMCM in a 7 series
device. We must, of course, make sure we set the necessary parameters such as clock in period
correctly. While most other buffers (e.g., BUFH and BUFG) will migrate automatically during
synthesis, buffers that are specific to Spartan-6 like BUFIO2 will need to be migrated in the
design if directly instantiated in the design.

Memory Interfaces — Being able to interface with high-performance external memories is critical
for many designs. Both Spartan-6 and 7 series devices provide the user with the ability to

achieve this. However, the Spartan-6 implementation uses an integrated memory block whereas
7 series devices use a Soft IP core to implement the memory controller where only the memory

5

<X ADIUVO
ENGINEERING AND TRAINING, LTD
PHY is hardened. This provides 7 series devices with a more flexible approach to 1/O allocation
and design which can be critical when working with complex PCB designs. 7 series Memory
Interface Controller can support DDR3, DDR3L, DDR2, and LPDDR?2 providing maximum
flexibility in selecting the memory.

Transceivers and PCle — Spartan-6 LXT devices provide the developer with multi-gigabit
transceivers in the GTP at a maximum speed of 3.2 Gb/s. 7 series devices which support
transceivers can support higher data rates or up to 6/25 Gb/s. 7 series GTPs provide a quad
implementation per tile compared to the dual-tile GTP in Spartan-6 architecture. The GTP clock
has also evolved in 7 series devices, enabling TX and RX to be independently clocked from any
PLL. This is different than in the Spartan-6 GTP dual tile where the TX and RX must use the
same clock. 7 series GTPs also provide new capabilities such as Continuous Time Linear
Equalization (CTLE) with auto adaptation and post equalization eye scan.

When it comes to implementing PCle, 7 series devices support both PCle Gen 1 and Gen 2 in
the Artix-7 range. This allows the user to benefit from greater performance as bandwidth is
significantly increased if desired.

Additional New Features — As would be expected, the 7 series range also introduced new
features which provide benefits to the developer. The first of these is the XADC which isa 1
MSPS ADC which enables the developer to observe the internal supply voltages and die
temperature. This can be very useful when implementing self-test and anti-tamper features. The
XADC is also able to quantize 16 external differential signals, removing the need for additional
low-speed ADCs used in board monitoring. Along with the ability to provide bitstream security,
this is also enhanced in the XADC with the provision of AES256 CBC encryption and SHA-256
authentication.

VREP 0 VREFN_0
Temperature Supply ... > -

Sensor Sensors yccaux ? ?

oie [Lecea
Temperature ¢ $ *H \cepaux® On-Chip Ref
L vcco_bpR'" 1.25V
\ Control Status
VP_0 O— 12-bit, Registers *™| Registers
VN0 O— Mux 1 MSPS
VAUXP[0] 0— ADC A _
VAUXN[0] O—
.
e L 64 x 16 bits 64 x 16 bits
VAUXP[12] 0—] Read/Write Read Only
VAUXN[12] O— Mux /
VAUXP[13] 00— 12-bit,
External 1 MSPS
Analog VAUXN[13] O— s
Inputs VAUXP[14] 0—] -
VAUXN[14] O—
VAUXP[15] O—— X
VAUXN[15] 0—/ | Y Y |
DRP

JTAG I FPGA I
Interconnect

Figure 4 — XADC Structure 7 Series

D TRAINING, LTD

£3ADIUVO

Selecting the Most Appropriate Device

Each Spartan-6 design considered for migration is unique and the developer must think through
each case individually. At a high level, it is possible to consider device selection from the flow
chart below. This flow chart is based upon three key decisions points:

1.

MicroBlaze — If a MicroBlaze is used in the design, we need to determine if we want to
continue using the MicroBlaze or migrate to a higher performing A9 or A53 in the Zynq
SoC or Zynq MPSoC families. Migration from MicroBlaze to Arm® processor cores is
something we will look at in detail in another blog. However, the Xilinx Vitis framework
and BSP generation does a lot of the heavy lifting for us.

2. Transceivers Used — We need to determine if high speed multi-gigabit transceivers are
being used as part of the application being migrated.

3. Size of the Spartan-6 Device — We can fit the device in a Spartan-7 device if the
Spartan-6 device does not use transceivers and is a smaller device than the
XCS6LX100. However, we need to consider a device from the Artix family if the
Spartan-6 device for migration is larger.

Spartan 6 Design
Yes No
i Used?
Yes No Yes/\No
= A!;M’ s Transceivers Used?
Zynq 7000 or >XCSBLX100?

MPSOC (e.g ZU1)

Artix 7

Spartan 7

Figure 5 — Device Selection Spartan-6 to 7 Series Flow Chart

These decision points are high-level decision points intended to guide potential device selection.
Once the recommended family has been selected, the engineer performing the migration needs
to carefully look through and consider additional salient points of the design and consider the
following to identify the actual target migration device:

1.

2.

Number of block RAMS, DSP, clock management tiles, required.

Maximum number of I/O pins required along with the number of differential pins
required.

I/0 standards required — 7 series I/O is provided in two classes: High Range (HR) and
High Performance. HR banks support I/O standards of 3v3 and 2v5, while HP banks
support I/O standards up to 1v8 and are intended to support higher-performance
interfaces. We also need to identify the specialist I/O structures used in the Spartan-6

7

2y ADIUVO

NGINEERIN TRAINING, LTD

mitigation. Crucially ODELAY is only available within HPIO banks which means the
engineer must consider selecting a device in the Kintex-7 range.

4. Company supply chain preference — It might be sensible to select a slightly larger or
different device if the design will migrate to align with company supply chain preferences
and the purchase of common components which can be used across several projects
within the company.

While migration from Spartan-6 to a 7 series device comes with overheads, it also comes with
opportunity. Depending upon the device selected for migration, a larger device or higher
performance device could be selected. For example, a Kintex-7 part can be used in place of an
Artix-7 or an MPSoC in place of a Zyng-7000 SoC. These selections provide the resources to
support future product roadmap enhancements that may have previously been limited due to
device utilization constraints. This is also the case when using a Zyngq SoC or Zyng MPSoC in
place of a MicroBlaze processor. This provides easy support for a range of now commonly used
interfaces such as USB and Gigabit Ethernet as well as advanced solutions such as SATA or
DisplayPort.

:}ADI

Tool Chain Changes

The major change between Spartan-6 implementations and 7 series implementations is the tool
chain used for development and implementation. Spartan-6 devices use the ISE, EDK,
PlanAhead, and SDK tool chain while 7 series use the Vivado and Vitis tool chains. Vivado is a
guantum leap in capability compared to the older ISE tool chain. Vivado enables developers to
work with pure RTL designs and leverage a large inbuilt IP Library using IP integrator. IP
Integrator is ideal for creating embedded system designs which contain processors within either
the processing system of a heterogeneous System on Chip or softcore implemented in logic
such as MicroBlaze.

Vivado provides developers with end-to-end capability and includes synthesis, place and route,
bit generation, and hardware programming and debugging. Embedded software development
takes place within Vitis, which is an eclipse-based software development environment.

Vivado IP is standardized around the Arm eXtensible Interface (AXI) and provides three classes
of interface:

e AXI MM - Full Memory Mapped interconnect capable of supporting burst access to
increase throughput. This is ideal for Direct Memory Transfer.

e AXI Lite — Reduced single-beat memory mapped interface intended for configuration and
control of IP within the programmable logic.

e AXI Stream — Unidirectional point to point high-speed data channel with no address
component.

Migration between ISE and Vivado for pure RTL design can be as simple as creating a new
project, selecting the targeted device, and importing the RTL. Of course, if there are any IP
blocks specific to the Spartan-6 instantiated and not inferred, the RTL must be updated to
remove them. However, the RTL design should generally be implemented with minor
modifications.

The main difference between the ISE and Vivado is in how constraints are used. ISE uses the
UCF format while Vivado uses XDC which are based on the SDC format. Within our design, we
can use constraints to define timing, 1/0 standards, and control the implementation and
placement of design elements.

Conversion from UCF to XDC is straightforward and well documented within UG911. An
example of timing constraint and 1/O constraint migration is presented in the RTL Migration
Example chapter.

To help get started creating XDC constraints for timing, 1/0, and placement constraints, Vivado
provides several wizards which are enabled under the synthesis and implementation views.
These are helpful in walking you through constraint creation.

One of the most significant challenges developers face is achieving timing closure. Vivado
provides the developer with significant design analysis and reporting for greater design insight.

Inference vs Instantiation — One of the challenges of migration from the Spartan-6 to the

7 series is the migration of instantiated modules, for example, block RAM or DSP slices. Initially,
the developer may consider implementing a similar instantiation in the migrated design of the

7 series primitive.

However, to attain the most portable and flexible design, it is better to update the RTL to infer the
desired primitive. Just as we do not instantiate CLBs and define their logic function and
connections, nor should we in RTL design when it comes to working with block RAMs, DSPs,
and

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug911-vivado-migration.pdf

AD]

other functions. Of course, this could bring about iterations to ensure the RTL description is
correctly interpreted by the synthesis tool and the correct primitive used.

If we want to infer specific primitives in synthesis within Vivado, we can leverage the language
templates available within the Vivado Editor. Language templates also enable the developer to
insert the coding structure which will be mapped by the synthesis tool to the desired primitive.
Templates are provided in both VHDL and Verilog regardless of the developers preferred
language.

/' Language Templates

Select a language template

/
Templates Preview
a T $\n . ; |
10| parameter RAM WIDTH = cwidth>; sp=
> Dsp A~ 1l parameter RAM DEPTH = <depth>;
2| parameter RAM _PERFORMANCE = "HIGH PERFORMANCE":
> [Encoders parameter TNIT_FIIE = ""; -
> = Flip Flops 14
> Logical Shifers 1s | <wire_or_reg> [elogh2 (RAM_DEPTH-1)-1:0] <addra>;
— 16| <wire or_reg> [clogh? (RAM DEPTH-1)-1:0] <addrb>:
> [REM_WIDTE-1:0] <dine>;
> Multiplexers TE-1:0] <dinbsr
v RAM
= BlockRAM

<wire_or_reg> <wea>;
2| <wire or_reg> cweb»;
1Clock 23| cwire or_reg> cena>;
1 Clock wi Byte-write 2%, cwire ex reg> cenk>;

= Simple Dual Port

cwire_or_reg> <zstadi
26| <wire_or_reg> <rstb>;
2 Clock w! Byte-write 27 <wire_or_reg> <regosa
> single Port 22| cwire_or_reg> <regoebd:
wire [REM WIDTH-1:0] <douta>:

2 Clack

“ [True Dual Port
wire [REM WIDTH-1:0] <doutbs;

> 1Clck
v 2Clack 2| rveg [RAM_WIDTH-1:0] <ram memes [RAM DEPTE-1:0];
Mo Change Mode reg [RAM _WIDTH-1:0] <ram data a> = [REM_WIDIA[1'b0}];
4 reg [RAM WIDIH-1:0] <ram data b> = {RAM WIDIH{1l'bO}};
Read First Hode .
Read First M ode w Byte-write 3 The following code either initializes the memory values to a specifs
Wiite First Mode 7 generate
f (INIT FILE !'= "") begin: t £ili v
Wirite First Mode wl Byte-write N iE L)_begin: nse_inis file 5
©

Figure 6 — Vivado Language Template

Whether migrating a design or starting a new one from scratch, it is best to use inference over
instantiation whenever possible to ensure the design is portable and does not encounter future
migration issues.

Design Analysis Report (DAR) - Enables the user to understand the design challenges (e.g.,

congestion) and make changes to the design or constraints. The design analysis report will
provide information on the following:

e Timing — Provides information on the timing and physical characteristics of timing paths.
¢ Complexity — Provides information on routing complexity and LUT distribution.
e Congestion — Provides information on routing congestion.

Quality of Result Assessment (QoRA) — Provides information on the design which can be used
by the developer to understand its complexity and if it can be implemented and achieve timing
closure. Along with a detailed report, the QoRA will present a design score which indicates the
probably of the design implementing with no issues.

10

< e

Table 1 — Vivado QoRA Scores

SCORE MEANING CORRECTIVE ACTION

1 Design will not implement Redesign RTL / HLS modules

2 Design will implement timing Review constraints & RTL HLS
problems

3 Design Runs have a small Use QoR suggestions, review
chance of success clocking, ML strategies

4 Design should meet timing if Use QoR suggestions, ML
directives used strategies

5 Design will implement without Run Implementation
timing issues

In addition to the result assessment, the tool will also make Quality of Result Suggestions
(QoRS) which can, in some instances, enable suggestions to be automatically applied once the
flow is rerun.

Clock Interaction and Clock Domain Crossing Reports — Vivado provides the developer with a
greater understanding of clock interaction and clock domain crossing issues. The CDC report will
provide developers with a greater understanding of the CDC paths within the design. This report
is available following the completion of synthesis.

The clock interaction report enables an easy viewing of the clocks in the design and their
interaction as well as outlines the relationships between the clocks. This enables a system-level
view of how clocks interact and guide the creation of necessary timing relationship constraints.

11

LTD.

ADILVO

ENGINEERING AND

o

—

rst_clk_wiz_1_100M

reset_rtl [>

clk_wiz_1

diff_cock_ntl [——I[|+ cucmip ek om

reset locked

Clocking Wizard

slowest_syne_clk
ext_reset_in

mb_reset T
bus_struct_reset[0:0]

au_reset_in peripheral_reset]
mb_debug_sys_rst interconnect_ars
dem_locked peripheral_aresetn[0:0]

Processor System Reset

mdm_1

MBDEBUG_0 + |}

microblaze_0

Debug_SYS_Rst o

MicroBlaze Debug Module (MDM)

DEBUG

I _

|
Ck
Reset

|I[+ mTErRUPT
i
|

DLMB +
ILMB +

MicroBlaze

MicroBlaze

microblaze_0_local_memory

M_AXIDP +|:=

rst_ps7_0_100M

slowest_sync_clk mb_reset

adlk
aresetn

axi_bram_ctrl_0

axi_bram_cirl_0_bram
[+ sax

ext_reset_in bus_struct_resetf0:0]
aux_reset_in peripheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral

Processor System Reset

AXI SmartConnect

BRAM_PORTA + |||

s_axi_ack
s_axi_aresetn

Block Memory Generator

AXI BRAM Controller

Figure 7 — Vivado IP Integrator MicroBlaze Block Diagram

12

ADIUVO

ENGINEERING AND TRAINING, LTD.

=

Tel Console ?-FaX
alz e n £ |
€06 Bepore
seversty cousn Descripnice
crtzical [y —
Werming 1 L-bit synchronized with missing ASYIC_RES propersy
Inte 2 1bie symchzontzed wizh ASYC_REG property
Inte 2 s ua seses symchzontsed wish ASTNC_REG property
Worning 32 Clock enable comtrollea COC structure devecsed
seuzes cloce: inpar pore clock
Destination Clock: sl 1k
COC Type: Ho Commen Frimary Clock
fow I0 Severiy Descripeion Depeh Exception Source (From) Destineticn (To) I
1 D05 Info Aayschromous seset synehEonsied with ASTNG REG pRoeTTy 2 False Bamh resetn UR/O/nst_fifo g eu———

Source Clock: 82_clk
Destination Clock: al_clk
COC Type: o Common Primary Clock

Tey PCTIIeIen peren ==
mto 1-bte synchronizea with ASTHC_REG propercy S False Path UF/D0/inst_fifo 2, d e_west.gie_rst.sekt_ra_rst_ic_req/C UF/U0/inst_fifo g /qee.et,
Critical 1-piv unkmown COC circuitry] UE/UO/insT_fifo £, /_or_8ync_£100.,910. 1/ empry 3 req/C Teqaata_req/CE
Critical 1-biv unkmown COC chrcuitry o Bone UE/VO/inat_tito 2, _or_sync_t4£0.G10. 5/ _ezpry_3_req/C
Source Clock: ¢ clock
COC Type: No Common Pramary Clock
Severity Description Depth Exceprion Source (From) Desvimation (To)
1 €-¢ Infe Asynchronous reses synchronized with ASTNC_REG property 2 False Fach resecn UF/U0/ dnst_tito, £/get. U ks _wrst. ale_rot, zat_rd_reqd_inst/arstatages_£1_reg[0]/ERE L
Source Clock: s1_clk
Deatinacion Cleck: s2_clk 1
Type: Mo Common Primary Clock
e T it Souree teroc) Destination
1 €-3 Iafo 1-bit synchzonised with ASYNC_REG property € Zalse Path UF/U0/inst_fifo 2 /azt. t.qTseTEst . uaCKt_Mrst. gic_¥at. sckt_r_rat_ic_rea/C UF/T0/inst_fifo 5e/axt
2 €61 Crivical l-bic uwimows COC clrcuitzy o Fone 1 _zeg(3€1/C multresnds_req[0]/0
3 €2C-1 Coitical 1-bit unimown CDC circudtey] 1 _reg(1¢1/C mulereands_reg[2]/0
4 €C-1 Crivical l-bie unmown COC circuirzy o 1_reg(16]/C mleresulc_reg(2]/0
S COC-1 Critical 1-bit waknown CDC Circuitry] 1_real161/C multresds_req(31/0
€ CC-1 Critical 1-bit unkmows COC clrcuitzy] 1_real1€1/C multzesnlt_req(41/0
7 €G-l Critical 1-bit unkmown COC clrcuitzy] 1_real161/C multressdt_req($1/D
® -1 Critical 1-bit unimows COC clrcuitzy] 1_real16/C multressdt_reql€]/D
§ CC-1 Critical l-bic utmown COC clrcuitzy o 1_zeg (266 multzesuls_reg(1]/0
10 €XC-1 Critical i-bit unknown CIC circuiezy] 1_reg(16)/6 muleressls_reg(8]/D
11 COC-1 Critical 1-bit unkmown CDC circuiczy o 1 real1€1/C multresulc realsl/D

Figure 8- Vivado Clock Domain Crossing Report

W NoPan
W Userignored Pahs.

W Timed
W Timed (unsate)

B Partial False Faih
B Parfal False Path (unsase)

B MaxDetay Datapath Only

A, Souce Destinalon Edges

N MU ew GO e fie G WS pe fmees e TG S eccers
3 s2ok siok fise-rse 1885 2081 2 12 dse-fise 0114 0000 o 12 Ho Comman Clack Pastial False P (unsale)

Figure 9- Vivado Clock Interaction Report

To understand the migration complexity from ISE to Vivado, the following flow chart can be used
to scope migration steps and complexity.

13

Mﬁ 06 1gn m Run Device Selection Flow Chart u
Yes No
Device Selected
Yes No
MicroBlaze
Minor Migration Effort
Yes No
IP Centric Design

[}
E:
W Create MicroBlaze in IP Integrator Select IP from Vivado IP Library Add RTL Files

Add Peripheral IP Add Custom RTL from S6 Project, Convert Constraints

Add Custom RTL from S6 Project Update custom RTL to interface with IP e.g. AXl interfaces

Update custom RTL to interface with IP e.g. AXl interfaces Create IP Integrator Design

Create IP Integrator Design Migrate constraints

Migrate constraints

Export Design for Vitis

Create Vitis Platform
2] Import SDK Project
_W Update SDK project for Modified BSP and MicroBlaze

Peripherals

Complex Migration

Intermediate Migration

Simple Migration

Figure 10 — Design Migration Flow Chart ISE to Vivado and VITIS

14

£3ADIUVO

D TRAINING, LTD

RTL Migration Example

One of the primary interfaces used in space electronics is SpaceWire. This is a differential high-
speed communications protocol like firewire so both the flight FPGA and test equipment needs to
implement SpaceWire. Several SpaceWire test equipment units use the Spartan-6 to implement
the SpaceWire Codec. One example which is available open source (BSD License) is the 4 Links
400 Mbps Codec. This provides high-speed SpaceWire communication targeted to a Spartan-6
LX45T.

As this is an RTL project, a new Vivado project can be created that targets the desired device. In
this case, | created a project targeting a Spartan-7 XC7S50 device. However, the UCF which defines both
the pin out and the timing requirements will need migration.

The main conversion here is from the UCF used in ISE to the XDC used in Vivado. Conversion is
straightforward. The first element we need to convert is the timing constraints. In the UCF file, the
timing constraints are defined by the TNM_NET and TIMESPEC constraints. For this project they
are defined as follows:

Clock timing contraints
NET "iclock" TNM_NET = iclock;
TIMESPEC TS _iclock = PERIOD "iclock" 8 ns HIGH 50%;

In this definition, signal iclock is the output from an IBUFDS. Downstream, the design has DCM
and global buffers but iclock is root clock.

In Vivado, we would use the XDC create clock command

create_clock -period 8.000 -name CLK_125MHz_p -waveform {0.000 4.000} [get_ports
CLK_125MHz_p]

When | migrated the design to Vivado, | accounted for the slight difference in how Vivado
analyzes clocks compared to ISE. Vivado assigns time zero to the point at which the clock is
defined and ignores all delays upstream of the declaration point. As such, clocks should be
defined at the primary input pins. If a clock is created in a design logic (e.g., counter, DCM etc.),
that should be defined using the create generated clock constraint.

If you are concerned about which clock constraint to use, you don’t need to write the constraint
by hand in Vivado. You can use the Timing Wizard in Vivado (under the tools menu) once the
synthesis has been completed. The timing wizard will walk you through the creation of a target
constraint file (XDC) while the definition of constraints will save to the target constraints file.

15

https://www.4links.co.uk/index.php/blog/4links-open-sources-400mbps-spacewire-codec
https://www.4links.co.uk/index.php/blog/4links-open-sources-400mbps-spacewire-codec

¢ Timing Constraints Wizard

Primary Clocks

describe the duty cycle if not 50%. More info

Recommended Constraints

Q w o o
IZI Object Mame Frequency (MHz) Period (ns) Rise At{ns) FallAt(ns) Jitter(ns)
[« [l CLK_125MHz_p CLK_125MHz_p 125.000 8.000 0.000 4.000

Constraints for Pulse Width Check Only

Q W I

4

I:I Object Mame Frequency (MHz) Period (ns) Rise At(ns) FallAt(ns) Jitter(ns)

Tcl Command Preview (1) Existing Create Clock Constraints (0}

Q

create_clock -period 8.000 -name CLK_125MHz_p -waveform {0.000 4.000} [get_ports {CLK_125MHz_p}]

Primary clocks usually enter the design though input ports. Specify the period and optionally a name and waveform (rising and falling edge times) to '

| Cancel

Figure 11 — Vivado Constraints Wizard

With the timing issues addressed, the final stage of the migration of this design is to port the
I/O constraints from the UCF to the XDC file. The current definition in the UCF is as follows:

NET Din2_p LOC ="M16" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";
NET Din2_n LOC ="M18" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";
NET Sin2_p LOC ="L17" | IOSTANDARD = LVDS_33 | DIFF_TERM ="TRUE";
NET Sin2_n LOC ="L18" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";

Again, we need to convert these to a XDC format suitable for use with Vivado. If desired, we can

write a XDC file by hand in the existing XDC file created for the project.

set_property IOSTANDARD LVDS_25 [get_ports Dinl_p]
set_property IOSTANDARD LVDS_25 [get_ports Dinl_n]
set_property IOSTANDARD LVDS_25 [get_ports Din2_p]
set_property IOSTANDARD LVDS_25 [get_ports Din2_n]
set_property PACKAGE_PIN A3 [get_ports Dinl_p]
set_property PACKAGE_PIN A5 [get_ports Din2_p]

16

:}ADI

Alternatively, can use the 1/O Ports tab in the synthesis view to define the pin allocation, 1/0
standard, and any other I/O required features if you are unsure of the exact format. Like the
timing information, this will be saved to the target XDC file which can be inspected to

understand the XDC syntax.

SYNTHE SIZED DESIGN * - Xc7s50csga324-1

Device Constraints Package
Q z 3 = *
~ Internal VREF
075V
0.9v
~ = NONE (5
10 Bank 14
10 Rank 15

Drop i0 banks on voltages or the “*NONE" folder to setiunset Intemal
VREF.

10 Port Properties

2 Din2_p - &

MName: Din2_p v

General | Properies Gonfigure Power

1i0 Ports

Q LHE B | Ll
Mame Direction Interface Neg Diff Pair Package Pin Fixed Bank 10 Std Veco Vrel Drive Strength Slew Type Pull Type Off-Chip Termination IN_TERM Partition
- CLK_125MHz_p IN CLK_125MHz_n v LvDS_25* NONE ~ NONE ~ A
B Din1_p IN Din1_n A3 v @ 35 LVDS 25 NONE v NONE v A
- Din2_p IN Din2_n A5 v @ 35 LVDS_25° NONE v NONE v NiA

Figure 12 — Vivado I/O Assignment Wizard

We can now build and implement the project and generate the bit stream that is ready for porting
to the new target 7 series device. Of course, this is a relatively straightforward port of a

straightforward RTL design.

17

NGINEERING AND TRAINING, LTD

2y ADIUVO

MicroBlaze Migration

Many Spartan-6 designs include a MicroBlaze softcore processor which performs sequential
processing implementing UART communications, network stacks, and human machine
interfacing.

Within the Spartan-6 MicroBlaze ecosystem, solutions are developed using Xilinx Platform Studio
to create the processor and the Software Development Kit (SDK) to create the application
software. While XPS does provide the ability to create MicroBlaze solutions using AXI
interconnects, most Spartan-6 MicroBlaze designs are implemented using older interface
standards which are the Processor Local Bus (PLB) and Local Memory Bus (LMB). These
busses are used to connect the MicroBlaze to peripheral interfaces like UART and GPIO, along
with memories such as on chip BRAM and external DDR.

Xilinx Platform Studio (EDK_P.20131013) - /home/ise/edk_projects/system.xmp - [System Assembly View) o
@ fle Edit View Project Hardwars Device Configuration Debug Simulation Window Help I

BadRBoer R aa’'R@ s

Navigator x| Project E0@® |, 14| Bus Interfaces | Ports | Addresses & =<
Platform ~HE Mame BusMame IP Type IP Version 2
- Project Files — |~ 1 Imb_v10_2.00b g

i MHS File: system.mhs imb ¥ Imbv10 2.00b

Iz, LT e cita st . mb_pib % plbvds 105

. \CT Command File: etcidown | o 8 & microbiase 0 + microblaze 8.50.c

Implementation Options Fle: etc/ 5 imb_bram ¥ bram bi... 1002

Bigen Oprons Fle: exchigen.a || | % dimb_cntir ¥ Imb_bra... 3.10.c

= Ef fles i A w1 ifmb_cntir % Imb_bra... 3.10c

& microblaze_0 o FLASH ¥r xps_meh... 3.01.a

&0 < MCB_DDR3 6.063

Bf Device: xcbslxd5tiggasd-3 mam_0 210a

Hetlist: TapLevel
Implementation: XPS (Xflow)

-
-
-
-
-

HOL: VHDL - # DIP_Switches_i8it

Sim Model: BEHAVIORAL b & LEDs_4Bit
pe
-
-
.
pe
-

FCle_Bridge
Ethemet_MAC

Generate Netlist . 40%a
.. 4008
200a
io 2003
io 2,008
203a

¥

Design Summary @ Push_Buttons_4Bit
& IOV

Senerate BitStrean

1 IIC_EEPROM
w1 IIC_SFP.
& SysACE_Con mos: ctflash

203a
203a

Export Design 5. 1012

-

|
Generate HOL Files

N
Launch Simulator

itor
Development

Design Summary ®|e Graphical Design View X|® System Assembly View x

Figure 13 — XPS MicroBlaze Creation for Spartan-6 Implementation

Of course, many MicroBlaze solutions contain custom IP cores which perform application-
specific functions. This custom peripheral needs to be updated to support AXI interfacing if not
already supported. The updated IP can be reused in the updated Vivado project and connected
to the MicroBlaze processor.

Migrating a Spartan-6 design that contains a MicroBlaze to a 7 series device requires more
porting than a pure RTL design but also offers potentially more capability and design reuse.

To get started porting a Spartan-6 MicroBlaze design to a 7 series device, we must first recreate
the MicroBlaze design in the Vivado IP Integrator. This enables a MicroBlaze processor to be
implemented and connected to the necessary library IP in an integrated environment. The Vivado
IP Integrator is not only board aware, enabling peripherals to be configured for specific board
configurations such as DDR memories, UARTS, PCle interfaces, but it's also able to automate
connections between AXI interfaces to accelerate solution development.

When dealing with MicroBlaze applications, engineers must also address a change in software
development tool from SDK to Vitis. Vivado will provide the Xilinx Shell Archive (XSA) which
enables Vitis to create a platform including a board support package of APIs to enable SW
developers to interface and work with the IP peripherals within the design.

18

The software application from SDK must be imported into Vitis and updated to support the new
IP peripherals. Vitis makes upgrading easier by allowing an exported SDK project to be imported
into Vitis.

ISE System Generator Designs

Some designs in Spartan-6 FPGAs may be developed using ISE System Generator. Like MicroBlaze
solutions, these designs are best migrated by recreating the design in Model Composer in Vivado.
Like the MicroBlaze solution, there are several reasons for this including a change in available IP
cores and migrating to AXI interfacing on IP blocks.

The easier migration path is therefore recreating where the ISE System Generator design is used as a
reference design to support the creation in Model Composer.

Wrap Up

Developers needing to convert a design from Spartan-6 to 7 series devices may at first be daunted
but as outlined in this white paper, the steps taken to select a suitable migration device and
migrate the design are straightforward and achievable.

References

The following references may be of assistance in migrating from Spartan 6 to 7 series and beyond
devices.

www.adiuvoengineering.com
UG911: ISE to Vivado Design Suite Migration Guide
UG429: 7 Series Migration Methodology Guide
UG1026: UltraScale Architecture Migration Methodology Guide
UG904: Vivado User Guide - Implementation
UG949: UltraFast™ Design Methodology Guide
XAPP1311: Hot Swapping with FPGAs
WP484: DDR2/DDR3 Low-Cost PCB Design Guidelines for Artix-7 and Spartan-7 FPGAs
XAPP1313: Spartan-7 FPGA Configuration with SPI Flash and Bank 14 at 1.35V
. XAPP1286: 7 Series FPGAs Gen2 Integrated Block for PCle to AXI4-Lite Bridge
. WP473: Software Migration to 64-bit ARM Heterogeneous Platforms
. WP470: Unleash the Unparalleled Power and Flexibility of Zynq UltraScale+ MPSoCs
. WP482: Managing Power and Performance with the Zyng UltraScale+ MPSoC
. 53109: Vivado - Are Spartan-6, Virtex-6 and older devices supported in the Vivado design
tools?
15. 44225: 7 Series Power Sequencing - Hot-swap/-plug capability
16. 40603: MIG 7 Series FPGAs DDR3/DDR2 - Clocking Guidelines
17. 43989: 7 Series, UltraScale, UltraScale+ FPGAs and MPSoC devices - LVDS_33, LVDS_25,
LVDS_18, LVDS inputs and outputs for High Range (HR) and High Performance (HP) I/O banks
18. 62332:14.7 ISE - Artix-7 and Zynq device support clarification

W NOUAWNRE

O S =y o)
B WNRO

19

http://www.adiuvoengineering.com/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug911-vivado-migration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug429_7Series_Migration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1026-ultrascale-migration-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1311-hot-swapping-fpgas.pdf
https://www.xilinx.com/support/documentation/white_papers/wp484-a7-s7-ddr2-3-pcb.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1313-spartan-spi-config.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1286-pcie-axi4-lite-bridge.pdf
https://www.xilinx.com/support/documentation/white_papers/wp473-migration-to-64-bit-arm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
https://support.xilinx.com/s/article/53109?language=en_US
https://support.xilinx.com/s/article/44225?language=en_US
https://support.xilinx.com/s/article/40603?language=en_US
https://support.xilinx.com/s/article/43989?language=en_US
https://support.xilinx.com/s/article/62332?language=en_US

