
Zynq UltraScale+ MPSoC
Software Developer Guide

UG1137 (v2021.2) October 27, 2021

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1137
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Revision History
The following table shows the revision history for this document.

Section Revision Summary
10/27/2021 Version 2021.2

General updates Updated a few technical details

Revision History

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: About This Guide...7
Introduction... 7
Intended Audience and Scope of this Document..8
Prerequisites.. 8

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices... 10
Hardware Architecture Overview.. 10
Boot Process.. 13
Virtualization..16
System Level Reset Requirements.. 16
Security... 17
Safety and Reliability...20
Memory Overview for APU and RPU Executables... 23

Chapter 3: Development Tools.. 25
Vivado Design Suite.. 25
Vitis Unified Software Platform... 27
Arm GNU Tools.. 29
Device Tree Generator..30
PetaLinux Tools..30
Linux Software Development using Yocto... 31

Chapter 4: Software Stack... 34
Bare Metal Software Stack... 34
Linux Software Stack...37
Third-Party Software Stack...42

Chapter 5: Software Development Flow.. 43
Bare Metal Application Development...44
Application Development Using PetaLinux Tools... 46

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=3

Linux Application Development Using Vitis... 46

Chapter 6: Software Design Paradigms... 51
Frameworks for Multiprocessor Development..51
Symmetric Multiprocessing (SMP).. 52
Asymmetric Multiprocessing (AMP)..53

Chapter 7: System Boot and Configuration... 57
Boot Process Overview... 57
Boot Flow..57
Boot Image Creation...59
Boot Modes.. 61
Detailed Boot Flow.. 67
Disabling FPD in Boot Sequence... 70
Setting FSBL Compilation Flags... 70
FSBL Build Process.. 74
Using the Ethernet-Based Recovery Tool...99

Chapter 8: Security Features.. 101
Boot Time Security.. 101
Bitstream Authentication Using External Memory... 112
Run-Time Security... 115
Trusted Firmware-A.. 115
FPGA Manager Solution... 118
Xilinx Memory Protection Unit...120
Xilinx Peripheral Protection Unit... 121
System Memory Management Unit..121
A53 Memory Management Unit.. 122
R5 Memory Protection Unit..122
TrustZone... 122

Chapter 9: Platform Management.. 123
Platform Management in PS..123
Wake Up Mechanisms.. 126
Platform Management for Memory..127
DDR Controller...127
Platform Management for Interconnects.. 127
PMU Firmware... 128

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=4

Chapter 10: Platform Management Unit Firmware................................ 129
Features..129
PMU Firmware Architecture...130
Execution Flow...131
Handling Inter-Process Interrupts in PMU firmware... 133
PMU Firmware Modules... 137
Error Management (EM) Module.. 140
Power Management (PM) Module..146
Scheduler..147
Safety Test Library...147
CSU/PMU Register Access..148
Timers... 149
Configuration Object.. 152
PMU Firmware Loading Options... 154
PMU Firmware Usage... 160
PMU Firmware Memory Layout and Footprint..166
Dependencies.. 168

Chapter 11: Power Management Framework...169
Introduction... 169
Zynq UltraScale+ MPSoC Power Management Overview...171
Power Management Framework Overview... 175
Using the API for Power Management...188
XilPM Implementation Details... 195
Linux... 198
Trusted Firmware-A (TF-A)... 215
PMU Firmware... 218

Chapter 12: Reset.. 221
System-Level Reset... 221
Block-Level Resets...221
Application Processing Unit Reset.. 222
Real Time Processing Unit Reset...223
Full Power Domain Reset... 223
Warm Restart...223
Supported Use Cases..227

Chapter 13: High-Speed Bus Interfaces... 250

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=5

USB 3.0..250
Gigabit Ethernet Controller..253
PCI Express...256

Chapter 14: Clock and Frequency Management....................................... 261
Changing the Peripheral Frequency... 261

Chapter 15: Target Development Platforms..263
QEMU..263
Boards and Kits..263

Chapter 16: Boot Image Creation.. 264

Appendix A: Libraries... 265

Appendix B: Additional Resources and Legal Notices........................... 266
Xilinx Resources...266
Documentation Navigator and Design Hubs.. 266
References..266
Please Read: Important Legal Notices... 269

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=6

Chapter 1

About This Guide

Introduction
This document provides the software-centric information required for designing and developing
system software and applications for the Xilinx® Zynq® UltraScale+™ MPSoCs. The
Zynq UltraScale+ MPSoC family has different products, based upon the following system
features:

• Application processing unit (APU):

○ Dual or Quad-core Arm® Cortex®-A53 MPCore

○ CPU frequency up to 1.5 GHz

• Real-time processing unit (RPU):

○ Dual-core Arm Cortex®-R5F MPCore

○ CPU frequency up to 600 MHz

• Graphics processing unit (GPU):

○ Arm Mali-400 MP2

○ GPU frequency up to 667 MHz

• Video codec unit (VCU):

○ Simultaneous Encode and Decode through separate cores

○ H.264 high profile level 5.2 (4Kx2K-60)

○ H.265 (HEVC) main, main10 profile, level 5.1, high Tier, up to 4Kx2K-60 rate

○ 8 and 10-bit encoding

○ 4:2:0 and 4:2:2 chroma sampling

For more details, see the Zynq UltraScale+ MPSoC Product Table and the Product Advantages.

Chapter 1: About This Guide

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 7Send Feedback

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=7

Intended Audience and Scope of this
Document

The purpose of this guide is to enable software developers and system architects to become
familiar with:

• Xilinx software development tools.

• Available programming options.

• Xilinx software components that include device drivers, middleware stacks, frameworks, and
example applications.

• Platform management unit firmware (PMU firmware), Trusted Firmware-A (TF-A), OpenAMP,
PetaLinux tools, Xen Hypervisor, and other tools developed for the Zynq UltraScale+ MPSoC
device.

Prerequisites
This document assumes that you are:

• Experienced with embedded software development

• Familiar with Armv7 and Armv8 architecture

• Familiar with Xilinx development tools such as the Vivado® Integrated Design Environment
(IDE), the Vitis™ unified software platform, compilers, debuggers, and operating systems.

This document includes the following chapters:

• Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices: Briefly explains the
architecture of the Zynq UltraScale+ MPSoC hardware. Xilinx recommends you to go through
and understand each feature of this chapter.

• Chapter 3: Development Tools: Provides a brief description about the Xilinx software
development tools. This chapter helps you to understand all the available features in the
software development tools. It is recommended for software developers to go through this
chapter and understand the procedure involved in building and debugging software
applications.

• Chapter 4: Software Stack: Provides a description of various software stacks such as bare
metal software, RTOS-based software and the full-fledged Linux stack provided by Xilinx for
developing systems with the Zynq UltraScale+ MPSoC device.

• Chapter 5: Software Development Flow: Walks you through the software development
process. It also provides a brief description of the APIs and drivers supported in the Linux OS
and bare metal.

Chapter 1: About This Guide

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=8

• Chapter 6: Software Design Paradigms: Helps you understand different approaches to develop
software on the heterogeneous processing systems. After reading this chapter, you will have a
better understanding of programming in different processor modes like symmetric multi-
processing (SMP), asymmetric multi-processing (AMP), virtualization, and a hybrid mode that
combines SMP and AMP.

• Chapter 7: System Boot and Configuration: Describes the booting process using different
booting devices in both secure and non-secure modes.

• Chapter 8: Security Features: Describes the Zynq UltraScale+ MPSoC devices features you
can leverage to enhance security during application boot- and run-time.

• Chapter 9: Platform Management: Describes the features available to manage power
consumption, and how to control the various power modes using software.

• Chapter 10: Platform Management Unit Firmware: Describes the features and functionality of
PMU firmware developed for Zynq UltraScale+ MPSoC device.

• Chapter 11: Power Management Framework: Describes the functionality of the Xilinx Power
Management Framework (PMF) that supports a flexible power management control through
the platform management unit (PMU).

• Chapter 12: Reset: Explains the system and module-level resets.

• Chapter 13: High-Speed Bus Interfaces: Explains the configuration flow of the high-speed
interface protocols.

• Chapter 14: Clock and Frequency Management: Briefly explains the clock and frequency
management of peripherals in Zynq UltraScale+ MPSoC devices.

• Chapter 15: Target Development Platforms: Explains about the different development
platforms available for the Zynq UltraScale+ MPSoC device, such as quick emulators (QEMU),
and the Zynq UltraScale+ MPSoC boards and kits.

• Chapter 16: Boot Image Creation: Describes Bootgen, a standalone tool for creating a
bootable image forZynq UltraScale+ MPSoC devices. Bootgen is included in the Vitis software
platform.

• Appendix A - Appendix K: Describe the available libraries and board support packages to help
you develop a software platform.

• Appendix B: Additional Resources and Legal Notices: Provides links to additional information
that is cited throughout the document.

Chapter 1: About This Guide

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=9

Chapter 2

Programming View of Zynq
UltraScale+ MPSoC Devices

The Zynq® UltraScale+™ MPSoC supports a wide range of applications that require
heterogeneous multiprocessing. Heterogeneous multiprocessing system consists of multiple
single and multi-core processors of differing types. It supports the following features:

• Multiple levels of security

• Increased safety

• Advanced power management

• Superior processing, I/O, and memory bandwidth

• A design approach, based on heterogeneous multiprocessing presents design challenges,
which includes:

○ Meeting application performance requirements within a specified power envelope

○ Optimizing memory access within heterogeneous multiprocessing system

○ Providing low-latency, coherent communications between various processing engines

○ Managing and optimizing system power consumption in all operational modes

Xilinx® provides comprehensive tools for hardware and software development on the
Zynq UltraScale+ MPSoC, and various software modules such as operating systems,
heterogeneous system software, and security management modules.

The Zynq UltraScale+ MPSoC is a heterogeneous device that includes the Arm® Cortex®-A53,
high-performance, energy-efficient, 64-bit application processor, and also the 32-bit Arm
Cortex®-R5F dual-core real-time processor.

Hardware Architecture Overview
The Zynq UltraScale+ MPSoCs provide power savings, programmable acceleration, I/O, and
memory bandwidth. These features are ideal for applications that require heterogeneous
multiprocessing.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=10

The following figure shows the Zynq UltraScale+ MPSoC architecture with next-generation
programmable engines for security, safety, reliability, and scalability.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=11

Figure 1: Zynq UltraScale+ MPSoC Device Hardware Architecture

RPU

256 KB
OCM

LPD-DMA

CSU
PMU

Processing System

Cortex-R5F
32 KB I/D

128 KB TCM

Cortex-R5F
32 KB I/D

128 KB TCM

4 x 1GE

APU

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

GIC

SCU

ACP 1 MB L2

GPU
Mali-400 MP2

64 KB L2

2 x USB 3.0

NAND x8
ONFI 3.1

2 x SD3.0/
eMMC4.51

Quad-SPI
x 8

2 x SPI

2 x CAN

2 x I2C

2 x UART

GPIOs

SYSMON

M
IO Central

Switch

FPD-DMA

VCU
H.264/H.265

PCIe
Gen4

DisplayPort
v1.2 x1, x2

2 x SATA
v3.0

PCIe Gen2
x1, x2, or x4

SHA3
AES-GCM
RSA

Processor
System BPU

DDRC (DDR4/3/3L, LPDDR3/4)

Programmabl
e Logic

128 KB RAM

PL
_L

PD
H

P

GIC

LL
LP

LL
LP

RGMII

ULPI PS
-G

TR

SMMU/CCI

GFC

USB 3.0

SGMII

Low Power Switch

To ACP

Low Power Full PowerBattery
Power

32-bit/64-bit

64-bit
M S

128-bit
M S

LP
D_

PL
H

PC
H

PM

GTY
Quad

GTH
Quad

Interlaken 100G
Ethernet

AC
E DisplayPort

Video and
Audio Interface

M => AXI Master S => AXI Slave X23704-021320

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=12

The Zynq UltraScale+ MPSoC features are as follows:

• Cortex-R5F dual-core real-time processor unit (RPU)

• Arm Cortex-A53 64-bit quad/dual-core processor unit (APU)

• Mali-400 MP2 graphic processing unit (GPU)

• External memory interfaces: DDR4, LPDDR4, DDR3, DDR3L, LPDDR3, 2x Quad-SPI, and
NAND

• General connectivity: 2x USB 3.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x
1GE, and GPIO

• Security: Advanced Encryption Standard (AES), RSA public key encryption algorithm, and
Secure Hash Algorithm-3 (SHA-3)

• AMS system monitor: 10-bit, 1 MSPS ADC, temperature, voltage, and current monitor

• The processor subsystem (PS) has five high-speed serial I/O (HSSIO) interfaces supporting the
protocols:

○ PCIe®: base specification, version 2.1 compliant, and Gen2x4

○ SATA 3.0

○ DisplayPort: Implements a DisplayPort source-only interface with video resolution up to 4k
x 2k

○ USB 3.0: Compliant to USB 3.0 specification implementing a 5 Gb/s line rate

○ Serial GMII: Supports a 1 Gb/s SGMII interface

• Platform Management Unit (PMU) for functions that include power sequencing, safety,
security, and debug.

For more details, see the following sections of the Zynq UltraScale+ Device Technical Reference
Manual (UG1085): APU, RPU, PMU, GPU, and inter-processor interrupt (IPI).

Boot Process
The platform management unit (PMU) and configuration security unit (CSU) manage and perform
the multi-staged booting process. You can boot the device in either secure or non-secure mode.
See Boot Process Overview or, see the Boot and Configuration chapter of the Zynq UltraScale+
Device Technical Reference Manual (UG1085).

Boot Modes
You can use any of the following as the boot mode for booting from external devices:

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=13

• Quad SPI flash memory (QSPI24, QSPI32)

• eMMC18

• NAND

• Secure Digital Interface Memory (SD0, SD1)

• JTAG

• USB

The bootROM does not directly support booting from SATA, Ethernet, or PCI Express (PCIe). The
boot security does not rely on, and is largely orthogonal to TrustZone (TZ). The bootROM
(running on the Platform Management Unit) performs the security resources management (for
example, key management) and establishes root-of-trust. It authenticates FSBL, locks boot
security resources, and transfers chain-of-trust control to FSBL (either on APU or RPU).

To understand more about the boot process in the different boot modes, see the ‘Boot and
Configuration’ chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

QSPI24 and QSPI32

The QSPI boot mode supports the following:

• x1, x2, and x4 read modes for single Quad SPI flash memory (QSPI24) and x8 for dual QSPI

• Image search for MultiBoot

• I/O mode is not supported in FSBL

Note: Single Quad-SPI memory (x1, x2 and x4) is the only boot mode that supports execute-in-place (XIP).

For additional information, see QSPI24 and QSPI32 Boot Modes.

eMMC18

The eMMC18 boot mode supports:

• FAT 16 and FAT 32 file systems for reading the boot images.

• Image search for MultiBoot. The maximum number of searchable files as part of an image
search for MultiBoot is 8,191.

For additional information, see eMMC18 Boot Mode.

NAND

The NAND boot supports the following:

• 8-bit widths for reading the boot images

• Image search for MultiBoot

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=14

For additional information, see NAND Boot Mode.

SD

The SD boot supported version is 3.0. This version supports:

• FAT 16/32 file systems for reading the boot images.

• Image search for MultiBoot. The maximum number of searchable files as part of an image
search for MultiBoot is 8,191.

For additional information, see SD Boot Mode.

JTAG

You can download any software images needed for the PS and hardware images needed for the
PL using JTAG.

IMPORTANT! In JTAG mode, you can boot the Zynq UltraScale+ MPSoC in non-secure mode only.

For additional information, see JTAG Boot Mode.

Zynq UltraScale+ devices do not support JTAG accesses while the CPU cores are powered down
randomly by the software running on the device.

In case of PetaLinux, these kernel configuration options are known to be incompatible with the
JTAG debugger:

• CONFIG_PERF_EVENTS

• CONFIG_FREEZER

• CONFIG_SUSPEND

• CONFIG_PM

• CONFIG_CPU_IDLE

USB

USB boot mode supports USB 3.0. It does not support MultiBoot, image fallback, or XIP. It
supports both secure and non-secure boot mode. It is not supported for systems without DDR.
USB boot mode is disabled by default. For additional information, see USB Boot Mode.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=15

Virtualization
Virtualization allows multiple software stacks to run simultaneously on the same processor,
which enhances the productivity of the Zynq UltraScale+ MPSoC. The role of virtualization varies
from system to system. For some designers, virtualization allows the processor to be kept fully
loaded at all times, saving power and maximizing performance. For others systems, virtualization
provides the means to partition the various software stacks for isolation or redundancy.

For more information, see System Virtualization in the Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

The support for virtualization applies only to an implementation that includes Arm exception
level-2 (EL2). Armv8 supports virtualization extension to achieve full virtualization with near
native guest operating systems performance. There are three key hardware components for
virtualization:

• CPU virtualization

• Interrupt virtualization

• System MMU for I/O virtualization

System Level Reset Requirements
The system-level reset term is used to describe the system or subsystem level resets. ‘System’
reset (different from system-level resets) is a specific type of system-level reset. The following
table provides summary of system-level resets, which are described in details in subsequent
sections.

Table 1: System-Level Resets

Reset Type Description
External POR The external POR reset is triggered by external pin assertion. There are a

number of software only registers which are not reset by the POR resets. At first
POR boot, a safety system (requiring HFT1 by PS & PL) can be configured such
that a subsequent POR only resets PS (and not PL).

Internal POR Internal POR reset can be triggered by software register write, or by safety
errors. With the exception of error status register (which are reset by external
POR, but not by internal POR), internal POR resets the same thing as external
reset does. Internal-POR cannot be guaranteed without silicon validation (due
to in-rush power concern), so internal-POR is for internal purpose unless
validated.

System Reset System reset is to be able to reset system excluding debug logic. To simplify
system reset, there are few other things (xBIST, scan clear, power gating) which
are not reset by this reset. Also, boot mode information is not reset by system
reset. The system reset can be triggered by external pin (SRST), or software
register write, or by safety errors.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemVirtualization
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=16

Table 1: System-Level Resets (cont'd)

Reset Type Description
PS Only Reset The PS only reset is to reset the PS while the PL remains active. This reset can be

triggered by hardware error signals or by software register write. This reset is a
subset of system reset (excluding the PL reset). If the PS reset is triggered by an
error signal, then the error is also transmitted to the PL.

FPD Reset The FPD reset resets all of the FPD power domain. It can be triggered by errors
or software register write. If the FPD reset is triggered by an error signal, then
the error is also transmitted to LPD & PL.

RPU Reset The RPU Reset is to reset the RPU in case of errors. While each of the R5 core
can be independently reset, but in lockstep, only R5_0 needs to be reset to reset
both the R5 cores. This reset can be triggered by errors or software register
write.

Security
The increasing ubiquity of Xilinx devices makes protecting the intellectual property (IP) within
them as important as protecting the data processed by the device. As security threats have
increased, the range of security threats or potential weaknesses that must be considered to
deploy secure products has grown as well.

The Zynq UltraScale+ MPSoC provides the following features to help secure applications running
on the SoC:

• Encryption and authentication of boot images.

• Hardened crypto accelerators for use by the user application.

• Secure methods of storing cryptographic keys.

Methods for detecting and responding to tamper events. See the Security chapter of the Zynq
UltraScale+ Device Technical Reference Manual (UG1085) for more information.

Configuration Security Unit
The following are some of the important responsibilities of the configuration security unit (CSU):

• Secure boot.

• Tamper monitoring and response.

• Secure key storage and management.

• Cryptographic hardware acceleration.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=17

The CSU comprises two main blocks as shown in the following figure. On the left is the secure
processor block that contains a triple redundant processor for controlling boot operation. It also
contains an associated ROM, a small private RAM, and the necessary control/status registers
required to support all secure operations. The block on the right is the crypto interface block
(CIB) and contains the AES-GCM, DMA, SHA, RSA, and PCAP interfaces.

Figure 2: Configuration and Security Unit Architecture

CSU PMU Switch

ROM
Validation

ROM
(128 KB)

RAM
(32 KB)

Triple
Redundant
MicroBlaze

SHA-3
384

AES-
GCM
256

Secure Stream Switch

PCAP

CSU DMA

CSU
Registers

Key
Management

To PL
Configuration

PMU ROM
Validation

To/From LPD Main Switch

Tamper
Sources INTC

ECC

BBRAM
eFUSE
PUF
Operation
KUP
Family

CSU
Local

Registers

PUF RSA
Multiplier

PSTP

Security Processor Block Crypto Interface Block
X15318-032817

After boot, the CSU provides tamper response monitoring. These crypto interfaces are available
during runtime. To understand how to use these features, seethe XilFPGA Library v5.3 in the OS
and Libraries Document Collection (UG643). See the Security chapter of the Zynq UltraScale+
Device Technical Reference Manual (UG1085) for more information.

• Secure Processor Block: The triple-redundant processor architecture enhances the CSU
operations during single event upset (SEU) conditions.

• Crypto Interface Block (CIB): Consists of AES-GCM, DMA, SHA-3/384, RSA, and PCAP
interfaces.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=18

• AES-GCM: The AES-GCM core has a 32-bit word-based data interface, with 256-bits of key
support.

• Key Management: To use the AES, a key must be loaded into the AES block. The key is
selected by CSU bootROM.

• SHA-3/384: The SHA-3/384 engine is used to calculate a hash value of the input image for
authentication.

• RSA-4096 Accelerator: Facilitates RSA authentication.

To understand boot image encryption or authentication, refer to the following:

• Chapter 7: System Boot and Configuration

• Chapter 16: Boot Image Creation

• The Security chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

• Boot and Configuration information in the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

System-Level Protections
The system-level protection mechanism involves the following areas:

• Zynq UltraScale+ MPSoC Linux software stack relies on the Trusted Firmware-A (TF-A).
Protection can be enhanced even further by configuring the XMPU and XPPU to provide the
system-level run-time security.

○ Protection against buggy or malicious software (erroneous software) from corrupting
system memory or causing a system failure.

○ Protection against incorrect programming, or malicious devices (erroneous hardware) from
corrupting system memory or causing a system failure.

○ Memory (DDR, OCM) and peripherals (peripheral control, SLCRs) are protected from illegal
accesses by erroneous software or hardware to protect the system.

• The Xilinx memory protection unit (XMPU) enforces memory partitioning and TrustZone (TZ)
protection for memory and FPD slaves. The XMPU can be configured to isolate a master or a
given set of masters to a developer-defined set of address ranges.

• The Xilinx peripheral protection unit (XPPU) provides LPD peripheral isolation and inter-
processor interrupt (IPI) protection. The XPPU can be configured to permit one or more
masters to access an LPD peripheral. For more information, see the XPPU Protection of Slaves
section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxXPPUProtectionOfSlaves
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=19

Safety and Reliability
The Zynq UltraScale+ MPSoC architecture includes features that enhance the reliability of safety
critical applications to give users and designers increased confidence in their systems. The key
features are as follows:

• Memory and cache error detection and correction

• RPU safety features

• System-wide safety features

To understand how to use these features, see Chapter 8: Security Features.

Safety Features
The Cortex-A53 MPCore processor supports cache protection in the form of ECC on all RAM
instances in the processor using the following separate protection elements:

• SCU-L2 cache protection

• CPU cache protection

These elements enable the Cortex-A53 MPCore processor to detect and correct a 1-bit error in
any RAM, and to detect 2-bit errors.

Cortex-A53 MPCore RAMs are protected against single-event-upset (SEU) such that the
processor system can detect and then, take specific action to continue making progress without
data corruption. Some RAMs have parity single-error detect (SED) capability, while others have
ECC single-error correct, double-error detect (SECDED) capability.

The RPU includes two major safety features:

• Lock-step operation, shown in the following figure.

• Error checking and correction, described further in Error Checking and Correction.

Lock-Step Operation
Cortex-R5F processors support lock-step operation mode, which operates both RPU CPU cores
as a redundant CPU configuration called safety mode.

The Cortex-R5F processor set to operate in the lock-step configuration exposes only one CPU
interface. Because Cortex-R5F processor only supports the static split and lock configuration,
switching between these modes is permitted only while the processor group is held in power-
onreset (POR). The input signals SLCLAMP and SLSPLIT control the mode of the processor
group.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=20

These signals control the multiplex and clamp logic in the lock-step configuration. When the
Cortex-R5F processors are in the lock-step mode (shown in the following figure), there must be
code in the reset handler to manage that the distributor within the GIC dispatches interrupts only
to CPU0. The RPU includes a dedicated interrupt controller for Cortex-R5F MPCore processors.
This Arm PL390 generic interrupt controller (GIC) is based on the GICv1 specification.

Figure 3: RPU Lock-Step Operation

X14824-062717

TCMs Associated
with CPU1

TCM A

TCM B

TCMs Associated
with CPU0

TCM A

TCM B

Shim
Shim

Cortex-R5F
CPU0

Cortex-
R5F CPU0

Comparison and Synchronization Logic

Caches Associated
with CPU0

D-Cache

I-Cache

GIC

Tightly coupled memories (TCMs) are mapped in the local address space of each Cortex-R5F
processor; however, they are also mapped in the global address space where any master can
access them provided that the XPPU is configured to allow such accesses.

The following table lists the address maps from the RPU point of view:

Table 2: RPU Address Maps

Operation Mode Memory R5_0 View (Start
Address)

R5_1 View (Start
Address)

Global Address
View (Start

Address)
Split Mode R5_0 ATCM (64 KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (64 KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache I-Cache N/A 0xFFE4_0000

R5_0 data cache D-Cache N/A 0xFFE5_0000

Split Mode R5_1 ATCM (64 KB) N/A 0x0000_0000 0xFFE9_0000

R5_1 BTCM (64 KB) N/A 0x0002_0000 0xFFEB_0000

R5_1 instruction cache I-Cache N/A 0xFFEC_0000

R5_1 data cache D-Cache N/A 0xFFED_0000

Lock-step Mode R5_0 ATCM (128 KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (128 KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache I-Cache N/A 0xFFE4_0000

R5_0 data cache D-Cache N/A 0xFFE5_0000

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=21

Error Checking and Correction
The Cortex-R5F processor supports error checking and correction (ECC) schemes of data. The
data has similar properties although the size of the data chunk to which the ECC scheme applies
is different.

For each aligned data chunk, the processor computes and stores a number of redundant code
bits with the data. This enables the processor to detect up to two errors in the data chunk or its
code bits, and correct any single error in the data chunk or its associated code bits. This is also
referred to as a single-error correction, double-error detection (SEC-DED) ECC scheme.

System-Wide Safety Features
The system-wide safety features are designed to address error-free operation of the
Zynq UltraScale+ MPSoC.

These features include the following:

Platform Management Unit

The platform management unit (PMU) in the Zynq UltraScale+ MPSoC executes the code loaded
from ROM and RAM within a flat memory space, implements power safety routines to prevent
tampering of PS voltage rails, performs logic built-in self-test (LBIST), and responds to a user-
driven power management sequence.

The PMU also includes some registers to control the functions that are typically very critical to
the operation and safety of the device. Some of the registers related to safety are as follows:

• GLOBAL_RESET: Contains reset for safety-related blocks.

• SAFETY_GATE: Gates hardware features from accidental enablement.

• SAFETY_CHK: Checks the integrity of the interconnect data lines by using target registers for
safety applications by periodically writing to and reading from these registers.

PMU Triple-Redundancy

The power management unit (PMU) contains triple-redundant MicroBlaze™ processors for a
high-level of system reliability and strong SEU resilience. PMU controls the power-up, reset, and
monitoring of resources within the entire system. The PMU performs multiple tasks including the
following tasks:

• Initializing the system during boot

• Managing power gating and retention states for different power domains and islands

• Communicating the supply voltage settings to the external power control devices

• Managing sleep states including the deep-sleep mode and processing of wake functions

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=22

More details about PMU are available in Chapter 9: Platform Management.

Interrupts

The generic interrupt controller (GIC) handles interrupts. Both the APU and the RPU have a
separate dedicated GIC for interrupt handling. The RPU includes an Arm PL390 GIC, which is
based upon the GICv1 specification due to its flexibility and protection. The APU includes a
GICv2 controller. The GICv2 is a centralized resource for supporting and managing interrupts in
multi-processor systems. It aids the GIC virtualization extensions that support the
implementation of the GIC in systems supporting processor virtualization.

The Zynq UltraScale+ MPSoC embeds an inter-processor interrupt (IPI) block that aids in
communication between the heterogeneous processors. Because PMUs can communicate with
different processors simultaneously, the PMU has four IPIs connected to the GIC of the PMU.

For more information on IPI routing to different processors, see the “Interrupts” chapter in the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Memory Overview for APU and RPU
Executables

The following tables give the configurable memory regions for APUs and RPUs.

Note:

• In RPU lock-step mode (Lock-Step Operation), R5_0_ATCM_MEM_0 and R5_0_BTCM_MEM_0 memory
address are mapped to R5_0_ATCM_LSTEP and R5_0_BTCM_LSTEP memory ranges respectively in the
system address map.

• In RPU split mode, R5_x_ATCM_MEM_0 and R5_x_BTCM_MEM_0 memory address are mapped to
R5_x_ATCM_SPLIT and R5_x_BTCM_SPLIT memory ranges respectively in the system address map.

• QSPI memory is accessible when QSPI controller is in linear mode.

See the System Addresses chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085) for more information.

See Real-time Processing Unit (RPU) and On-Chip Memory (OCM) sections of the Zynq UltraScale
+ Device Technical Reference Manual (UG1085) for more information on RPU, R5 and OCM.

Table 3: Configurable Memory Regions for APUs

Memory Type Start Address Size
DDR Low 0x00000000 2 GB

DDR High 0x800000000 2 GB

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 23Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemAddresses
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=23

Table 3: Configurable Memory Regions for APUs (cont'd)

Memory Type Start Address Size
OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

Table 4: Configurable Memory Regions for RPU Lock-Step Mode

Memory Type Start Address Size
DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_0_ATCM_MEM_0 0x00000 64 KB

R5_0_BTCM_MEM_0 0x20000 64 KB

R5_TCM_RAM_0_MEM 0x00000 256 KB

Table 5: Configurable Memory Regions for RPU Split Mode

Memory Type Start Address Size
R5_0

DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_0_ATCM_MEM_0 0x00000 64 KB

R5_0_BTCM_MEM_0 0x20000 64 KB

R5_1

DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_1_ATCM_MEM_0 0x00000 64 KB

R5_1_BTCM_MEM_0 0x20000 64 KB

Note: BootROM always copies First Stage Boot Loader (FSBL) from 0xFFFC0000 and it is not configurable.
If FSBL is compiled for a different load address, Bootgen may refuse it as CSU bootROM (CBR) does not
parse partition headers in the boot image but merely copies the FSBL code at a fixed OCM memory
location (0xfffc0000). See Chapter 7: System Boot and Configuration for more information on Bootgen.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=24

Chapter 3

Development Tools
This chapter focuses on Xilinx® tools and flows available for programming software for
Zynq® UltraScale+™ MPSoCs. However, the concepts are generally applicable to third-party tools
as the Xilinx tools incorporate familiar components such as an

Eclipse-based integrated development environment (IDE) and the GNU compiler tool chain.

This chapter also provides a brief description about the open source tools available that you can
use for open source development on different processors of the Zynq UltraScale+ MPSoC.

A comprehensive set of tools for developing and debugging software applications on
Zynq UltraScale+ MPSoC devices includes:

• Hardware IDE

• Software IDEs

• Compiler toolchain

• Debug and trace tools

• Embedded OS and software libraries

• Simulators (for example: QEMU)

• Models and virtual prototyping tools (for example: emulation board platforms)

Third-party tool solutions vary in the level of integration and direct support for
Zynq UltraScale+ MPSoC devices.

The following sections provide a summary of the available Xilinx development tools.

Vivado Design Suite
The Xilinx Vivado® Design Suite contains tools that are encapsulated in the Vivado integrated
design environment (IDE). The IDE provides an intuitive graphical user interface (GUI) with
powerful features.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=25

The Vivado Design Suite supersedes the Xilinx ISE software with additional features for system-
on-a-chip development and high-level synthesis. It delivers a SoC-strength, IP- and system-
centric, next generation development environment built exclusively by Xilinx to address the
productivity bottlenecks in system-level integration and implementation.

All of the tools and tool options in Vivado Design Suite are written in native Tool Command
Language (Tcl) format, which enables use both in the Vivado IDE or the Vivado Design Suite Tcl
shell. Analysis and constraint assignment is enabled throughout the entire design process. For
example, you can run timing or power estimations after synthesis, placement, or routing. Because
the database is accessible through Tcl, changes to constraints, design configuration, or tool
settings happen in real time, often without forcing re-implementation.

The Vivado IDE uses a concept of opening designs in memory. Opening a design loads the design
netlist at that particular stage of the design flow, assigns the constraints to the design, and then
applies the design to the target device. This provides the ability to visualize and interact with the
design at each design stage.

IMPORTANT! The Vivado IDE supports designs that target 7 series and newer devices only.

You can improve design performance and ease of use through the features delivered by the
Vivado Design Suite, including:

• The Processor Configuration Wizard (PCW) within the IP integrator with graphical user
interfaces to let you create and modify the PS within the IP integrator block design.

VIDEO: For a better understanding of the PCW, see the Quick Take Video: Vivado Processor
Configuration Wizard Overview.

• Register transfer level (RTL) design in VHDL, Verilog, and SystemVerilog.

• Quick integration and configuration of IP cores from the Xilinx IP catalog to create block
designs through the Vivado IP integrator.

• Vivado synthesis.

• C-based sources in C, C++, and SystemC.

• Vivado implementation for place and route.

• Vivado serial I/O and logic analyzer for debugging.

• Vivado power analysis.

• SDC-based Xilinx Design Constraints (XDC) for timing constraints entry.

• Static timing analysis.

• Flexible floorplanning.

• Detailed placement and routing modification.

• Bitstream generation.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 26Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-ps-configuration-wizard-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-ps-configuration-wizard-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=26

• Vivado Tcl Store, which you can use to add to and modify the capabilities in Vivado.

You can download the Vivado Design Suite from the Xilinx Vivado Design Suite – ML Editions.

Vitis Unified Software Platform
The Vitis™ unified software platform is an integrated development environment (IDE) for the
development of embedded software applications targeted towards Xilinx embedded processors.
The Vitis software platform works with hardware designs created with Vivado Design Suite. The
Vitis software platform is based on the Eclipse open source standard and the features for
software developers include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Integrated environment for seamless debugging and profiling of embedded targets

• Source code version control

• System-level performance analysis

• Focused special tools to configure FPGA

• Bootable image creation

• Flash programming

• Script-based command-line tool

The Vitis IDE lets you create software applications using a unified set of Xilinx tools for the Arm®

Cortex®-A53 and Cortex®-R5F processors as well as for Xilinx MicroBlaze™ processors. It
provides various methods to create applications, as follows:

• Bare metal and FreeRTOS applications for MicroBlaze

• Bare metal, Linux, and FreeRTOS applications for APU

• Bare metal and FreeRTOS applications for RPU

• User customization of PMU firmware

• Library examples are provided with the Vitis tool (ready to load sources and build), as follows:

○ OpenCV

○ OpenAMP RPC

○ FreeRTOS “HelloWorld”

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 27Send Feedback

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=27

○ lwIP

○ Performance tests (Dhrystone, memory tests, peripheral tests)

○ RSA authentication for preventing tampering or modification of images and bitstream

○ First stage boot loader (FSBL) for APU or RPU.

You can export a block design, hardware design files, and bitstream files to the export directory
directly from the Vivado Project Navigator. For more information regarding the Vivado Design
Suite, see the Vivado Design Suite Documentation.

All processes necessary to successfully complete this export process are run automatically. The
Vitis IDE creates a new hardware platform project within the workspace containing the following
files:

• .project: Project file

• psu_init.tcl: PS initialization script

• psu_init.c, psu_init.h: PS initialization code

• psu_init.html: Register summary viewer

• system.hdf: Hardware definition file

The compiler can be switched as follows:

• 32-bit or 64-bit (applications that are targeted to Cortex-A53)

• 32-bit only (applications targeted to Cortex-R5F, and Xilinx MicroBlaze devices)

For the list of build procedures, see the Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400), where built-in help content lets you explore further after you
launch the Vitis IDE.

The Vitis software platform has the following IDE extensions.

• XSCT Console: Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable
command-line interface to the Vitis software platform. As with other Xilinx tools, the scripting
language for XSCT is based on Tools Command Language (Tcl). You can run XSCT commands
interactively or script the commands for automation. XSCT supports the following actions.

• Creating platform projects and application projects

• Manage repositories

• Manage domain settings and add libraries to domains

• Set toolchain preferences

• Configure and build applications

• Download and run applications on hardware targets

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=28

• Create and flash boot images by running Bootgen and program_flash tools

• Bootgen Utility: Bootgen is a Xilinx tool that lets you stitch binary files together and generate
device boot images. Bootgen defines multiple properties, attributes and parameters that are
input while creating boot images for use in a Xilinx device. Bootgen comes with both a
graphical user interface and a command line option. The tool is integrated into the Vitis
software platform for generating basic boot images using a GUI, but the majority of Bootgen
options are command line-driven. For more information on the Bootgen utility, see the
Bootgen User Guide (UG1283).

• Program Flash: Program Flash is a tool used to program the flash memories in the design.
Various types of flash types are supported by the Vitis software platform for programming.

• Repositories: A software repository is a directory where you can install third-party software
components, as well as custom copies of drivers, libraries, and operating systems. When you
add a software repository, the Vitis software platform automatically infers all the components
contained with the repository and makes them available for use in its environment. Your
workspace can point to multiple software repositories.

• Program FPGA: You can use the Program FPGA feature to program FPGA using bitstream.

• Device Tree Generation: Device tree (DT) is a data structure that describes hardware. This
describes hardware that is readable by an operating system like Linux so that it does not need
to hard code details of the machine. Linux uses the DT basically for platform identification,
runtime configuration like bootargs, and device node population.

For a detailed explanation on the Vitis IDE features, and to understand the embedded software
design flow, see the Vitis Unified Software Platform Documentation: Embedded Software
Development (UG1400).

You can download the Vitis tool from the Embedded Design Tools Download.

Arm GNU Tools
The Arm GNU open source toolchain is adopted for the Xilinx software development platform.
The GNU tools for Linux hosts are available as part of Vitis software platform. This section details
the open source GNU tools and Linux tools available for the processing clusters in the
Zynq UltraScale+ MPSoC.

The following table lists some of the Xilinx Arm GNU tools available for programming the APU,
RPU, and embedded MicroBlaze processors.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=29

Table 6: Xilinx Arm GNU Tools

Tool Description
aarch64-none-elf-gcc
aarch64-none-elf-g++

GNU C/C++ compiler.

aarch64-none-elf-as GNU assembler.

aarch64-none-elf-ld GNU linker.

aarch64-none-elf-ar A utility for creating, modifying, and extracting from
archives.

aarch64-none-elf-objcopy Copies and translates object files.

aarch64-none-elf-objdump Displays information from object files.

aarch64-none-elf-size Lists the section sizes of an object or archive file.

aarch64-none-elf-gprof Displays profiling information.

aarch64-none-elf-gdb The GNU debugger.

Device Tree Generator
The device tree (DT) data structure consists of nodes with properties that describe a hardware.
The Linux kernel uses the device tree to support a wide range of hardware configurations.

In FPGAs, it is possible to have different combinations of peripheral logics, each using a different
configuration. For all the different combinations, the device tree generator (DTG) generates
the .dts/.dtsi device tree files.

The following is a list of the .dts/.dtsi files generated by the device tree generator:

• pl.dtsi: Contains all the memory mapped peripheral logic (PL) IPs.

• pcw.dtsi: Contains the dynamic properties for the PS IPs.

• system-top.dts: Contains the memory, boot arguments, and command line parameters.

• zynqmp.dtsi: Contains all the PS specific and the CPU information.

• zynqmp-clk-ccf.dtsi: Contains all the clock information for the PS peripheral IPs.

For more information, see the Build Device Tree Blob page on the Xilinx Wiki.

PetaLinux Tools
The PetaLinux tools offer everything necessary to customize, build, and deploy open source
Linux software to devices.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 30Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build%2BDevice%2BTree%2BBlob
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=30

PetaLinux tools include the following:

• Build tools such as GNU, petalinux-build, and make to build the kernel images and the
application software.

• Debug tools such as GDB, petalinux-boot, and oprofile for profiling.

The following table shows the supported PetaLinux tools.

Table 7: PetaLinux Supported Tools

Tools Description
GNU Arm GNU tools.

petalinux-build Used to build software image files.

Make Make build for compiling the applications.

GDB GDB tools for debugging.

petalinux-boot Used to boot Linux.

QEMU Emulator platform for the Zynq UltraScale+ MPSoC device.

OProfile Used for profiling.

See the following documentation for more details:

• PetaLinux Tools documentation

• Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

• Libmetal and OpenAMP for Zynq Devices User Guide (UG1186)

Linux Software Development using Yocto
Xilinx offers the meta-xilinx Yocto/OpenEmbedded recipes to enable those customers with
in-house Yocto build systems to configure, build, and deploy Linux for Zynq® UltraScale+™
MPSoCs.

The meta-xilinx layer also provides a number of BSPs for common boards which use Xilinx
devices.

The meta-xilinx layer provides additional support for Yocto/OE, adding recipes for various
components. See meta-xilinx for more information.

You can develop Linux software on Cortex-A53 using open source Linux tools. This section
explains the Linux Yocto tools and its project development environment.

The following table lists the Yocto tools.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 31Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/ZynqMPSoC-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=31

Table 8: Yocto Tools

Tool Type Name Description
Yocto build tools Bitbake Generic task execution engine that

allows shell and Python tasks to be run
efficiently, and in parallel, while
working within complex inter-task
dependency constraints.

Yocto profile and trace tools Perf Profiling and tracing tool that comes
bundled with the Linux Kernel.

Ftrace Refers to the ftrace function tracer but
encompasses a number of related
tracers along with the infrastructure
used by all the related tracers.

Oprofile System-wide profiler that runs on the
target system as a command-line
application.

Sysprof System-wide profiler that consists of a
single window with three panes, and
buttons, which allow you to start, stop,
and view the profile from one place.

Blktrace A tool for tracing and reporting low-
level disk I/O.

Yocto Project Development Environment
Developers can configure the Yocto project development environment to support developing
Linux software for Zynq UltraScale+ MPSoCs through Yocto recipes provided from the Xilinx GIT
server. You can use components from the Yocto project to design, develop, and build a Linux-
based software stack.

The following figure shows the complete Yocto project development environment. The Yocto
project has wide range of tools which can be configured to download the latest Xilinx kernel and
build with some enhancements made locally in the form of local projects.

You can also change the build and hardware configuration through BSP.

Yocto combines a compiler and other tools to build and test images. After the images pass the
quality tests and package feeds required for SDK generation are received, the Yocto tool
launches the Vitis IDE for application development.

The important features of the Yocto project are, as follows:

• Provides a recent Linux kernel along with a set of system commands and libraries suitable for
the embedded environment.

• Makes available system components such as X11, GTK+, Qt, Clutter, and SDL (among others)
so you can create a rich user experience on devices that have display hardware. For devices
that do not have a display or where you wish to use alternative UI frameworks, these
components need not be installed.

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=32

• Creates a focused and stable core compatible with the OpenEmbedded project with which
you can easily and reliably build and develop Linux software.

• Supports a wide range of hardware and device emulation through the quick emulator (QEMU).
See the Xilinx Quick Emulator User Guide: QEMU for more information.

IMPORTANT! Enabling full Yocto of Xilinx QEMU is not available.

Figure 4: Yocto Project Development Environment

User Configuration

Metadata
(.bb+patches)

Machine(BSP)
Configuration

Policy Configuration

Source
Fetching

Patch
Application

Configuration /
Compile /

Autoreconf as
needed

Output
Analysis for

package
splitting plus

Package
relationships

.rpm
Generation

.deb
Generation

.ipk
Generation

QA
Tests

image
Generation

Images
Application

Development
SDK

Package Feeds

Source Mirror(s)

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Upstram Source
Metadata/Inputs
Build System

Output Packages
Process steps (Tasks)
Output Image Data

SDK
Generation

X14841-021317

You can download the Yocto tools and the Yocto project development environment from the
Yocto Project Organization.

For more information about Xilinx-provided Yocto features, see Yocto Features in the PetaLinux
Tools Documentation: Reference Guide (UG1144).

Chapter 3: Development Tools

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 33Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.yoctoproject.org/downloads
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=33

Chapter 4

Software Stack
This chapter provides an overview of the various software stacks available for the Zynq®

UltraScale+™ MPSoC devices.

For more information about the various software development tools used with this device, see
Chapter 3: Development Tools. For more information about bare metal and Linux software
application development, see Chapter 5: Software Development Flow.

Bare Metal Software Stack
Xilinx® provides a bare metal software stack called the standalone board support package (BSP)
as part of the Vitis™ software platform. The Standalone BSP gives you a simple, single-threaded
environment that provides basic features such as standard input/output and access to processor
hardware features. The BSP and included libraries are configurable to provide the necessary
functionality with the least overhead. You can locate the standalone drivers at the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw
\XilinxProcessorIPLib\drivers

You can locate libraries at the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw\lib
\sw_services

The following figure illustrates the bare metal software stack in the APU.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=34

Figure 5: Bare-Metal Software Development Stack

User Applications

Zynq UltraScale+ MPSoC Hardware

lwIP 211

XilFlash

XilSecure

XilFFS

Xilpm

XilSkey

Display
Driver

ZDMA
drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

SPI, I2C,
UART
Drivers

SYSMON
Drivers

Libraries

Standalone
Drivers

XilFPGA

X17169-062121

Note: The software stack of libraries and drivers layer for bare metal in RPU is same as that of APU.

The key components of this bare metal stack are:

• Software drivers for peripherals including core routines needed for using the Arm® Cortex®-
A53, Arm® Cortex®-R5F processors in the PS as well as the Xilinx® MicroBlaze™ processors in
the PL.

• Bare metal drivers for PS peripherals and optional PL peripherals.

• Standard C libraries: libc and libm, based upon the open source Newlib library, ported to the
Arm Cortex-A53, Arm Cortex-R5F, and the MicroBlaze processors.

• Additional middleware libraries that provide networking, file system, and encryption support.

• Application examples including the first stage boot loader (FSBL) and test applications.

The C Standard Library (libc)
libc library contains standard functions that all C programs can use. The following table lists the
libc modules:

Table 9: Libc.a Functions and Descriptions

Header File Description
alloca.h Allocates space in the stack

assert.h Diagnostics code

ctype.h Character operations

errno.h System errors

inttypes.h Integer type conversions

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=35

Table 9: Libc.a Functions and Descriptions (cont'd)

Header File Description
math.h Mathematics

setjmp.h Non-local goto code

stdint.h Standard integer types

stdio.h Standard I/O facilities

stdlib.h General utilities functions

time.h Time function

The C Standard Library Mathematical Functions
(libm)
The following table lists the libm mathematical C modules:

Table 10: libm.a Function Types and Function Listing

Function Type Supported Functions
Algebraic cbrt, hypot, sqrt

Elementary transcendental asin, acos, atan, atan2, asinh, acosh, atanh, exp, expm1, pow, log,
log1p, log10, sin, cos, tan, sinh, cosh, tanh

Higher transcendentals j0, j1, jn, y0, y1, yn, erf, erfc, gamma, lgamma, and gamma_ramma_r

Integral rounding eil, floor, rint

IEEE standard recommended copysign, fmod, ilogb, nextafter, remainder, scalbn, and fabs

IEEE classification isnan

Floating point logb, scalb, significand

User-defined error handling routine matherr

Standalone BSP
The libraries available with the standalone BSP are as follows:

• XilFatFS: A LibXil FATFile system and provides read/write access to files stored on a Xilinx
system ACE compact flash.

• XilFFS: Generic Fat File System Library.

• XilFlash: Xilinx flash library for Intel/AMD CFI compliant parallel flash.

• XilSecure: Xilinx Secure library provides an interface to access secure hardware (AES, RSA and
SHA) engines.

• XilSkey: Xilinx secure key library.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=36

• XilFPGA: A library that provides an interface to the Linux or bare-metal users for configuring
the programmable logic (PL) over PCAP from PS.

• XilPM: Xilinx Power Management (XilPM) provides Embedded Energy Management Interface
(EEMI) APIs for power management on Zynq UltraScale+ MPSoC.

• XilMailbox: The XilMailbox library provides the top-level hooks for sending or receiving an
inter-processor interrupt (IPI) message using the Zynq UltraScale+ MPSoC IPI hardware

• lwIP Library: An open source TCP/IP protocol suite that provides access to the core lwIP stack
and BSD (Berkeley Software Distribution) sockets style interface to the stack.

These libraries are documented in The C Standard Library (libc).

.

Linux Software Stack
The Linux OS supports the Zynq UltraScale+ MPSoC. With the sole exception of the Arm GPU,
Xilinx provides open source drivers for all peripherals in the PS as well as key peripherals in the
PL. The following figure illustrates the full software stack in APU, including Linux and an optional
hypervisor.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=37

Figure 6: Linux Software Development Stack

Trusted
App1

Third Party Secure OS

ARM Trusted Firmware

EL0

EL1

EL2

EL3

Secure World

App1 App2 App3

Linux SMP

U-Boot/Hypervisor

Non-secure World

PMU Firmware

X18968-062121

The Armv8 exception model defines exception levels EL0–EL3, where:

• EL0 has the lowest software execution privilege. Execution at EL0 is called unprivileged
execution.

• Increased exception levels, from 1 to 3, indicate an increased software execution privilege.

• EL1 runs the non-secure operating system in the non-secure world or a secure operating
system in the secure world when using a TEE architecture.

• EL2 provides support for processor virtualization. You may optionally include an open source
or commercial hypervisor in the software stack.

• EL3 provides support for secure monitor software. The Cortex-A53 MPCore processor
implements all the exception levels (EL0-EL3) and supports both execution states (AArch64
and AArch32) at each exception level.

You can leverage the Linux software stack for the Zynq UltraScale+ MPSoC in multiple ways. The
following are some of your options:

• PetaLinux Tools: The PetaLinux tools include a branch of the Linux source tree, U-Boot as well
as Yocto-based tools to make it easy to build complete Linux images including the kernel, the
root file system, device tree, and applications for Xilinx devices. See the PetaLinux Product
Page for more information. The PetaLinux tools work with the same open source Linux
components described immediately below.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 38Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=38

• Open Source Linux and U-Boot: The Linux Kernel sources including drivers, board
configurations, and U-Boot updates for the Zynq UltraScale+ MPSoC are available from the
Xilinx Github link, and on a continuing basis from the main Linux kernel and U-Boot trees as
well. Yocto board support packages are also available from the main Yocto tree.

• Commercial Linux Distributions: Some commercial distributions also include support for Xilinx
UltraScale+ MPSoC devices and they include advanced tools for Linux configuration,
optimization, and debug. You can find more information about these from the Xilinx
Embedded Computing page.

Multimedia Stack Overview
This section describes the multimedia software stack in the Zynq UltraScale+ MPSoC.

The GPU and a high performance DisplayPort accelerate the graphics application. The GPU
provides hardware acceleration for 2D and 3D graphics by including one geometry processor
(GP) and two pixel processors (PP0 and PP1), each having a dedicated memory management unit
(MMU). The cache coherency between the APU and the GPU is achieved by cache-coherent
interconnect (CCI), which supports the AXI coherency extension (ACE) only.

CCI in-turn connects the APU and the GPU to the DDR controller, which arbitrates the DDR
access.

The following figure shows the multimedia stack.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 39Send Feedback

https://github.com/Xilinx/linux-xlnx/
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=39

Figure 7: Multimedia Stack

Graphics Application

Display Server
Ex: XII, Wayland Mali common

Libraries

Video Codecs

Graphic Libraries
Ex: Open GLES1,

Open GLES 2, Open
VG

Gstreamer

Frame Buffer
Driver Display DriversVideo Drivers

Ex: V4L2
Mali Graphic

DriversDRM

APU

Linux Kernel Drivers

DDR Controller

Memory

GPO PPO PP1
Display Port

ARM MALI GPU
Cache Coherent

Interconnect

Ffmpeg pipeline

X14795-110320

The Linux kernel drivers for multimedia enables the hardware access by the applications running
on the processors.

The following table lists the multimedia drivers through the middleware stack that consists of the
libraries and framework components the applications use.

Table 11: Libraries and Framework Components

Component Description
Display server Coordinates the input and output from the applications to

the operating system.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=40

Table 11: Libraries and Framework Components (cont'd)

Component Description
Graphics library The Zynq UltraScale+ MPSoC architecture supports OpenGL

ES 1.1 and 2.2, and Open VG 1.1.

Mali™-400 MP2 common libraries Mali-400 MP2 graphic libraries. For more details on how to
switch between different EGL backends, refer to Xilinx MALI
Driver.

Gstreamer A freeware multimedia framework that allows a
programmer to create a variety of media handling
components.

Video codecs Video encoders and decoders.

The following table lists the Linux kernel graphics drivers.

Table 12: Linux Kernel Drivers

Drivers Description
Frame buffer driver Kernel graphics driver exposing its interface through /dev/

fb*. This interface implements limited functionality
(allowing you to set a video mode and drawing to a linear
frame buffer).

Direct rendering manager (DRM) Serves in rendering the hardware between multiple user
space components.

Mali-400 MP2 graphics drivers Provides the hardware access to the GPU hardware.

Video drivers Video capture and output device pipeline drivers based on
the V4L2 framework. The Xilinx Linux V4L2 pipeline driver
represents the whole pipeline with multiple sub-devices.
You can configure the pipeline through the media node, and
you can perform control operations, such as stream on/off,
through the video node.
Device nodes are created be the pipeline driver. The
pipeline driver also includes the wrapper layer of the DMA
engine API, and this enables it to read/write frames from
RAM.

Display port drivers Enables the hardware access to the display port, based on
DRM framework.

FreeRTOS Software Stack
Xilinx provides a FreeRTOS board support package (BSP) as a part of the Vitis™ software
platform. The FreeRTOS BSP provides you a simple, multi-threading environment with basic
features such as, standard input/output and access to processor hardware features. The BSP and
the included libraries are highly configurable to provide you the necessary functionality with the
least overhead. The FreeRTOS software stack is similar to the bare metal software stack, except
that it contains the FreeRTOS library. Xilinx device drivers included with the standalone libraries

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 41Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841928/Xilinx%2BMALI%2Bdriver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841928/Xilinx%2BMALI%2Bdriver
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=41

can typically be used within FreeRTOS provided that only a single thread requires access to the
device. Xilinx bare metal drivers are not aware of Operating Systems. They do not provide any
support for mutexes to protect critical sections, nor do they provide any mechanism for
semaphores to be used for synchronization. While using the driver API with FreeRTOS kernel,
you must take care of this aspect.

The following figure illustrates the FreeRTOS software stack for RPU.

Figure 8: FreeRTOS Software Stack

X16911-062121

User Applications

Lwip Networking File system (xilffs)

Secure Key
(xilkey)

Standard ‘C’
Library(libxil.a)

Display
Driver

ZDMA
drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

SPI, I2C,
UART
Drivers

SYSMON
Drivers

Libraries

Drivers

Secure
(xilsecure)

Power Mgr API
(xilpm)

OpenAmp
(xilopenamp)

Parallel Flash
(xilflash)

ARM Cortex-R5 Core 0

RPU

FreeRTOS

ARM Cortex-R5 Core 1

Note: The FreeRTOS software stack for APU is same as that for RPU except that the libraries support both
32-bit and 64-bit for APU.

Third-Party Software Stack
Many other embedded software solutions are also available from the Xilinx partner ecosystem.
More information is available from the Xilinx website, Embedded Computing and the website,
Xilinx Third Party Tools.

Chapter 4: Software Stack

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 42Send Feedback

https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=42

Chapter 5

Software Development Flow
This chapter explains the bare metal software development for RPU and APU using the Vitis™
unified software platform as well as Linux software development for APU using PetaLinux tools
and the Vitis software platform.

The following figure depicts the top-level software architecture of the
Zynq® UltraScale+™ MPSoC.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=43

Figure 9: Software Development Architecture

Software Development
Tools

IDE

Boot Loader
Ex: U-Boot

Power Management
Firmware

Hardware
Handoff

Build Tools

Compiler Assembler

Linker

Zynq UltraScale+ MPSoC Hardware

Quad core
ARM-A53 APU

ARM Mali400
GPU

Dual core ARM
Cortex-R5F RPU

Enhanced DSP
and AXI

Platform
Management

Unit

System
Configuration

and Security Unit

DDR Memory
Controller

Debugger Profiler

Simulator Flash Writer

Debug Tools

· Configure PS
· Integrate IP
· Export Hardware to SDK

Vivado

Software

HardwareOS Kernel

Applications

Middleware Stack
(Ex: Graphics, File system)

System Software
 (Ex: Hypervisor, OpenAMP)

Security Management
Software

Software Stack

Programmable
Logic

Peripherals

OS Kernel

Drivers

X14793-051519

Bare Metal Application Development
This section assists you in understanding the design flow of bare metal application development
for APU and RPU using the Vitis software platform. The following figure shows the top-level
design flow in the Vitis software platform. You can create a C or C++ standalone application
project by using the New Application Project wizard.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=44

To create a project, follow these steps:

1. Click File → New → Application Project. The New Application Project dialog box appears.

Note: This is equivalent to clicking on File → New → Project to open the New Project wizard, selecting
Xilinx → Application Project, and clicking Next.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C or C++.

8. Select an OS for the targeted application.

9. Click Next to advance to the Templates screen.

The Vitis software platform provides useful sample applications listed in Templates dialog box
that you can use to create your project. The Description box displays a brief description of
the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

10. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

11. Click Finish to create your application project and board support package (if it does not exist).

Note:

1. Xilinx recommends that you use the Managed Make flow rather than Standard Make C/C++ unless you
are comfortable working with make files.For more details on QEMU, see the Xilinx Quick Emulator User
Guide: QEMU.

2. Cortex®-R5F and Cortex®-A53 32-bit bare metal software do not support 64-bit addressed data
transfer using device DMA.

3. By default, all standalone applications will run only on APU0. The other APU cores will be off.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 45Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=45

Application Development Using PetaLinux
Tools

Software development flow in the PetaLinux tools environment involves many stages. To simplify
understanding, the following figure shows a chart with all the stages in the PetaLinux tools
application development.

Figure 10: PetaLinux Tool-Based Software Development Flow

Petalinux Tools

Build Tools

Debug and Profile Tools

GNU Petalinux-Build

Yocto Make

GDB Petalinux-Boot

QEMU OProfile

X14815-063017

Linux Application Development Using Vitis
Xilinx software design tools facilitate the development of Linux user applications. This section
provides an overview of the development flow for Linux application development.

The following figure illustrates the typical steps involved to develop Linux user applications using
the Vitis software platform.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=46

Figure 11: Linux Application Development Flow

Invoke SDK

Create a Linux application
project

Build the Linux application
project

Software Application
DevelopmentProfiling

Performance met?

Download Hardware
Bitstream to FPGA

Debug

Functionality
achieved?

Open / Create
SDK workspace

Adding an Application to
Linux file system

Yes Yes

No No

Boot Linux & set up target
connection

X14816-063017

Creating a Linux Application Project
You can create a C or C++ Linux application project by using the New Application Project wizard.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=47

To create a project:

1. Click File → New → Application Project. The New Application Project dialog box appears.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Next.

5. On the Select platform tab, select the Platform that has a Linux domain and click Next.

6. On the Domain window, select the domain from the Domain drop-down.

7. Select your preferred language: C or C++.

8. Optionally, select Linux System Root to specify the Linux sysroot path and select Linux
Toolchain to specify the Linux toolchain path.

9. Click Next to move to the Templates screen.

10. The Vitis software platform provides useful sample applications listed in the Templates dialog
box that you can use to create your project. The Description box displays a brief description
of the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

11. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

12. Click Finish to create your Linux application project.

13. Click the icon to generate or build the application project.

Create a Hello World Application
After installing the Vitis™ software platform, the next step is to create a software application
project. Software application projects are the final application containers. The project directory
that is created contains (or links to) your C/C++ source files, executable output file, and
associated utility files, such as the Makefiles used to build the project.

Note: The Vitis software platform automatically creates a system project for you. A system project is a top-
level container project that holds all of the applications that can run in a system at the same time. This is
useful if you have many processors in your system, especially if they communicate with one another,
because you can debug, launch, and profile applications as a set instead of as individual items.

Build a Sample Application

This section describes how to create a sample Hello World application using an existing template.

1. Launch the Vitis software platform.

2. Select a workspace directory for your first project.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=48

3. Click Launch. The welcome page appears.

4. Close the welcome page. The development perspective opens.

5. Select File → New → Application Project.

6. Enter a name in the Project name field and click Next. The Select platform tab opens. You
should choose a platform for your project. You can either use a pre-supplied platform (from
Xilinx or another vendor), a previously created custom platform, or you can create one
automatically from an exported Vivado® hardware project.

7. On the Select platform tab, click the platform you just created and click Next. To use your

own hardware platform, click the icon and add your platform to the list.

8. Select the system configuration for your project and click Next. The Templates window
opens.

9. Select Hello World and click Next. Your workspace opens with the Explorer pane showing
the hello_world_system system project and the zcu102 platform project.

10. Right-click the system project and select Build Project. You have now built your application
and the Console tab shows the details of the file and application size.

Debug and Run the Application

Now that you have generated the executable binary, you can test it on a board. To run the
application on the board, perform the following preliminary steps:

• Connect a JTAG cable to the computer.

• Set the Boot Mode switch of the board to JTAG mode.

• Connect a USB UART cable and setup your UART console.

• Power up the board.

1. Expand the system project and choose the application project you want to debug. Right-click
the application and select Debug As → Launch on Hardware (Single Application Debug).

2. On the Confirm Perspective Switch dialog, click Yes. The Vitis IDE switches to the Debug
perspective and the debugger stops at the entry to your main() function.

3. Using the commands in the toolbar, step through the application. After you step through the
print() function, Hello World appears in the UART console.

Adding Driver Support for Custom IP in the PL
The Vitis software platform supports Linux BSP generation for peripherals in the PS as well as
custom IP in the PL. When generating a Linux BSP, the Vitis software platform produces a device
tree, which is a data structure describing the hardware system that passes to the kernel when
you boot.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=49

Device drivers are available as part of the kernel or as separate modules, and the device tree
defines the set of hardware functions available and features enabled.

Additionally, you can add dynamic, loadable drivers. The Linux kernel supports these drivers.
Custom IP in the PL are highly configurable, and the device tree parameters define both the set
of IP available in the system and the hardware features enabled in each IP.

See Chapter 3: Development Tools for additional overview information on the Linux Kernel and
boot sequence.

Chapter 5: Software Development Flow

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=50

Chapter 6

Software Design Paradigms
The Xilinx® Zynq® UltraScale+™ MPSoC architecture supports heterogeneous multiprocessor
engines targeted at different tasks. The main approaches for developing software to target these
processors are by using the following:

• Frameworks for Multiprocessor Development: Describes the frameworks available for
development on the Zynq UltraScale+ MPSoC.

• Symmetric Multiprocessing (SMP): Using SMP with PetaLinux is the most simple flow for
developing an SMP with a Linux platform for the Zynq UltraScale+ MPSoC.

• Asymmetric Multiprocessing (AMP): AMP is a powerful mode to use multiple processor
engines with precise control over what runs on each processor. Unlike SMP, there are many
different ways to use AMP. This section describes two ways of using AMP with varying levels
of complexity.

The following sections describe these development methods in more detail.

Frameworks for Multiprocessor Development
Xilinx provides multiple frameworks for Zynq UltraScale+ MPSoCs to facilitate the application
development on the heterogeneous processors and Xilinx 7 series FPGAs. These frameworks are
described as follows:

• Hypervisor Framework: Xilinx provides the Xen hypervisor, a critical item needed to support
virtualization on APU of Zynq UltraScale+ MPSoC. The Use of Hypervisors section covers
more details.

• Authentication Framework: The Zynq UltraScale+ MPSoC supports authentication and
encryption features as a part of authentication framework. To understand more about the
authentication framework, see Boot Time Security.

• TrustZone Framework: The TrustZone technology allows and maintains isolation between
secure and non-secure processes within the same system. See this whitepaper for more
information.

Xilinx provides the trustzone support through the Trusted Firmware-A (TF-A) to maintain the
isolation between secure and non-secure worlds. To understand more about TF-A, see Trusted
Firmware-A.

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 51Send Feedback

https://www.xilinx.com/support/documentation/white_papers/wp516-security-apps.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=51

• Multiprocessor Communication Framework: Xilinx provides the OpenAMP framework for
Zynq UltraScale+ MPSoCs to allow communication between the different processing units.
For more details, see the Xilinx Quick Emulator User Guide: QEMU

• Power Management Framework: The power management framework allows software
components running across different processing units to communicate with the power
management unit.

Symmetric Multiprocessing (SMP)
SMP enables the use of multiple processors through a single operating system instance. The
operating system handles most of the complexity of managing multiple processors, caches,
peripheral interrupts, and load balancing.

The APU in the Zynq UltraScale+ MPSoCs contains four homogeneous cache coherent Arm®

Cortex®-A53 processors that support SMP mode of operation using an OS (Linux or VxWorks).
Xilinx and its partners provide operating systems that make it easy to leverage SMP in the APU.
The following diagram shows an example of Linux SMP with multiple applications running on a
single OS.

Figure 12: Example SMP Using Linux

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in SMP

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

X14837-063017

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 52Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=52

This would not be the best mode of operation when there are hard, real-time requirements as it
ignores Linux application core affinity which should be available to developers with the existing
Xilinx software.

Asymmetric Multiprocessing (AMP)
AMP uses multiple processors with precise control over what runs on each processor. Unlike
SMP, there are many different ways to use AMP. This section describes two ways of using AMP
with varying levels of complexity.

In AMP, a software developer must decide what code has to run on each processor before
compiling and creating a boot image that includes the software executable for each CPU. Using
AMP with the Arm Cortex-R5F processors (SMP is not supported in Cortex-R5F) in the RPU
enables developers to meet highly demanding, hard real-time requirements as opposed to soft
real-time requirements.

You can develop the applications independently, and program those applications to communicate
with each other using inter-processing communication (IPC) options. See this link to the
“Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for
further description of this feature.

You can also apply this AMP method to applications running on MicroBlaze™ processors in the
PL or even in the APU. The following diagram shows an AMP example with applications running
on the RPU and the PL without any communication with each other.

Figure 13: AMP Example using Bare-Metal Applications Running on RPU and PL

MicroBlaze

Bare-metal
Application

Bare-metal
Application

Bare-metal
Application

RPU
PL

Arm
Cortex-R5F

Arm
Cortex-R5F

MicroBlaze

MicroBlaze

X19225-071317

OpenAMP
The OpenAMP framework provides mechanisms to do the following:

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?%3Bt=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=53

• Load and unload firmware

• Communicate between applications using a standard API

The following diagram shows an example of an OpenAMP and the hard real-time capabilities of
the RPU using the OpenAMP framework.

In this case, Linux applications running on the APU perform the loading and unloading of RPU
applications. This allows developers to load different processing dedicated algorithms to the RPU
processing engines as needed with very deterministic performance.

Figure 14: Example with SMP and AMP using OpenAMP Framework

X14839-063017

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in SMP mode RTOS
Kernel

Baremetal
Application

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPU

Arm
Cortex-R5F

Arm
Cortex-R5F

PL

MicroBlaze

MicroBlaze

RTOS
Kernel

Baremetal
Application

Baremetal
Application

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPMsg

Open AMP
(APIs for loading/ Unloading
firmware, Message Passing)

RPMsg

See the Libmetal and OpenAMP for Zynq Devices User Guide (UG1186) for more information about
the OpenAMP Framework.

Virtualization with Hypervisor
The Zynq UltraScale+ MPSoCs include a hardware virtualization extension on the Arm Cortex-
A53 processors, interrupt controller, and Arm System MMU (SMMU) that provides flexibility to
combine various operating system combinations, including SMP and AMP, within the APU.

The following diagram shows an example of an SMP-capable OS, like Linux working along with
Real-Time Operating System (RTOS) as well as a bare metal application using a single hypervisor.

This enables independent development of applications in their respective mode of operation.

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=54

Figure 15: Example with Hypervisor

X14840-063017

Hypervisor

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in
SMP mode

RTOS
Kernel

Baremetal
Application

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

Ap
pl

ic
at

io
n

n

Ta
sk

 1

Ta
sk

 2

Ta
sk

 n

Although the hardware virtualization included within Zynq UltraScale+ MPSoC and its
hypervisors allow the standard operating systems and their applications to function with low to
moderate effort, the addition of a hypervisor does bring design complexity to low-level system
functions such as power management, FPGA bitstream management,

OpenAMP software stack, and security accelerator access which must use additional underlying
layers of system firmware. Hence, Xilinx recommends that the developers must initiate early
effort into these aspects of system architecture and implementation.

For more details on using Hypervisor like the Xen Hypervisor, see the MPSoC Xen Hypervisor
website.

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 55Send Feedback

http://dornerworks.com/services/xilinxxen
http://dornerworks.com/services/xilinxxen
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=55

Use of Hypervisors
Xilinx distributes a port for the Xen open source hypervisor in the Xilinx
Zynq UltraScale+ MPSoC. Xen hypervisor provides the ability to run multiple operating systems
on the same computing platform. Xen hypervisor, which runs directly on the hardware, is
responsible for managing CPU, memory, and interrupts. Multiple numbers of OS can run on top
of the hypervisor. These operating systems are called domains (also called as virtual machines
(VMs)).

The Xen hypervisor provides the ability to concurrently run multiple operating systems and their
standard applications with relative ease. However, Xen does not provide a generic interface
which gives the guest an operating system access to system functions. Hence, you need to follow
the cautions mentioned in this section.

Xen hypervisor controls one domain, which is domain 0, and one or more guest domains. The
control domain has special privileges, such as the following:

• Capability to access the hardware directly

• Ability to handle access to the I/O functions of the system

• Interaction with other virtual machines.

It also exposes a control interface to the outside world, through which the system is controlled.
Each guest domain runs its own OS and application. Guest domains are completely isolated from
the hardware.

Running multiple Operating Systems using Xen hypervisor involves setting up the host OS and
adding one or more guest OS.

Note: Xen hypervisor is available as a selectable component within the PetaLinux tools; Xen hypervisor can
also be downloaded from Xilinx GIT. With Linux and Xen software that is made available by Xilinx, it is
possible to build custom Linux guest configurations. Guest OS other than Linux require additional software
and effort from third-parties. See the PetaLinux Product Page for more information.

Chapter 6: Software Design Paradigms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 56Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=56

Chapter 7

System Boot and Configuration
Zynq® UltraScale+™ MPSoCs support the ability to boot from different devices such as a QSPI
flash, an SD card, a host with Device Firmware Upgrade utility installed on it, or a NAND flash in
place. This chapter details the booting process using different booting devices in both secure and
non-secure modes.

Boot Process Overview
The platform management unit (PMU) and configuration security unit (CSU) manage and perform
the multi-staged booting. You can boot the device in either secure (using authenticated boot
image) or non-secure (using an unauthenticated boot image) mode. The boot stages are as
follows:

• Pre-configuration stage: The PMU primarily controls pre-configuration stage that executes
PMU ROM to setup the system. The PMU handles all of the processes related to reset and
wake-up.

• Configuration stage: This stage is responsible for loading the first-stage boot loader (FSBL)
code for the PS into the on-chip RAM (OCM). It supports both secure and non-secure boot
modes. Through the boot header, you can execute FSBL on the Cortex®-R5F-0 / R5-1
processor or the Cortex®-A53 processor. The Cortex-R5F-0 processor also supports lock step
mode.

• Post-configuration stage: After FSBL execution starts, the Zynq UltraScale+ MPSoC enters
the post configuration stage.

Boot Flow
There are two boot flows in the Zynq UltraScale+ MPSoC architecture: secure and non-secure.
The following sections describe some of the example boot sequences in which you bring up
various processors and execute the required boot tasks.

Note: The figures in these sections show the complete boot flow, including all mandatory and optional
components.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=57

Figure 16: Boot Flow Example

Time

Release
CSU

Power
Monitoring

Load
FSBL

Tamper
Monitoring

PMU

CSU

RPU FSBL

APU U-Boot LinuxATF

X18969-062421

Non-Secure Boot Flow

In non-secure boot mode, the PMU releases the reset of the configuration security unit (CSU),
and enters the PMU server mode where it monitors power. After the PMU releases the CSU
from reset, it loads the FSBL into OCM. PMU firmware runs from PMU RAM in parallel to FSBL
in OCM. FSBL is run on APU or RPU. FSBL runs from APU/RPU and TF-A; U-Boot and Linux run
on APU. Other boot configurations allow the RPU to start and operate wholly independent of
the APU and vice-versa.

• On APU, TF-A will be executed after the FSBL hands off to TF-A. TF-A hands off to a second
stage boot loader like U-Boot which executes and loads an operating system such as Linux.

• On RPU, FSBL hands off to a software application.

• Linux, in turn, loads the executable software.

Note: The operating system manages the multiple Cortex-A53 processors in symmetric multi-processing
(SMP) mode.

Secure Boot Flow

In the secure boot mode, the PMU releases the reset of the configuration security unit (CSU) and
enters the PMU server mode where it monitors power. After the PMU releases the CSU from
reset, the CSU checks to determine if authentication is required by the FSBL or the user
application.

The CSU does the following:

• Performs an authentication check and proceeds only if the authentication check passes. Then
checks the image for any encrypted partitions.

• If the CSU detects partitions that are encrypted, the CSU performs decryption and loads the
FSBL into the OCM.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=58

For more information on CSU, see the Configuration Security Unit section.

FSBL running on APU hands off to TF-A. FSBL running on RPU loads TF-A. In both the cases, TF-
A loads U-Boot which loads the OS. TF-A then executes the U-Boot and loads an OS such as
Linux. Then Linux, in turn, loads the executable software. Similarly, FSBL checks for
authentication and encryption of each partition it tries to load. The partitions are only loaded by
FSBL on successful authentication and decryption (if previously encrypted).

Note: In the secure boot mode, psu_coresight_0 is not supported as a stdout port.

Boot Image Creation
Bootgen is a tool that lets you stitch binary files together and generate device boot images.
Bootgen defines multiple properties, attributes and parameters that are input while creating boot
images for use in a device.

The secure boot feature for devices uses public and private key cryptographic algorithms.
Bootgen provides assignment of specific destination memory addresses and alignment
requirements for each partition. It also supports encryption and authentication, described in the
Bootgen User Guide (UG1283). More advanced authentication flows and key management options
are discussed in the Using HSM Mode section of Bootgen User Guide (UG1283), where Bootgen
can output intermediate hash files that can be signed offline using private keys to sign the
authentication certificates included in the boot image. The program assembles a boot image by
adding header blocks to a list of partitions.

Optionally, each partition can be encrypted and authenticated with Bootgen. The output is a
single file that can be directly programmed into the boot flash memory of the system.

Various input files can be generated by the tool to support authentication and encryption as well.

Bootgen comes with both a GUI interface and a command line option. The tool is integrated into
the software development toolkit, Integrated Development Environment (IDE), for generating
basic boot images using a GUI, but the majority of Bootgen options are command line-driven.
Command line options can be scripted. The Bootgen tool is driven by a boot image format (BIF)
configuration file, with a file extension of *.bif. Along with SoC, Bootgen has the ability to
encrypt and authenticate partitions for and later FPGAs, as described in FPGA Support. Along
with SoC and ACAP devices, Bootgen has the ability to encrypt and authenticate partitions for
and later FPGAs, as described in FPGA Support. In addition to the supported command and
attributes that define the behavior of a Boot Image, there are utilities that help you work with
Bootgen. Bootgen code is now available on Github.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=59

Creating a Bootable Image
When a system project is selected, by running build, the Vitis software platform builds all
applications in the system project and creates a bootable image according to a pre-defined BIF or
an auto-generated BIF.

You can create bootable images using Bootgen. In the Vitis™ IDE, the Create Boot Image menu
option is used to create the boot image.

To create a bootable image, follow these steps:

1. Select the Application Project in the Project Explorer view.

2. Right-click the application and select Create Boot Image to open the Create Boot Image
dialog box.

3. Specify the boot loader and the partitions.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=60

4. Click Create Image to create the image and generate the BOOT.bin in the
<Application_project_name>/_ide/bootimage folder.

Boot Modes
Refer to this link to the “Boot and Configuration” chapter of the Zynq UltraScale+ Device Technical
Reference Manual (UG1085) for a comprehensive table of the available boot modes.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=61

QSPI24 and QSPI32 Boot Modes
The QSPI24 and QSPI32 boot modes support the following:

• x1, x2, and x4 read modes for single Quad SPI flash memory 24 (QSPI24) and single Quad SPI
flash memory 32 (QSPI32)

• x8 read mode for dual QSPI.

• Image search for MultiBoot

• I/O mode for BSP drivers (no support in FSBL)

The bootROM searches the first 256 Mb in x8 mode. In QSPI24 and QSPI32 boot modes (where
the QSPI24/32 device is < 128 Mb), to use MultiBoot, place the multiple images so that they fit
in memory locations less than 128 Mb. The pin configuration for QSPI24 boot mode is 0x1.

Note: QSPI dual stacked (x8) boot is not supported. Only QSPI Single Transmission Rate (STR) is supported.
Single Quad-SPI memory (x1, x2, and x4) is the only boot mode that supports execute-in-place (XIP).

To create a QSPI24/QSPI32 boot image, provide the following files to the Bootgen tool:

• An FSBL ELF

• A secondary boot loader (SBL), such as U-Boot, or a Cortex-R5F-0/R5-1 and/or a Cortex-A53
application ELF

• Authentication and encryption key (optional)

For more information on Authentication and Encryption, see Chapter 8: Security Features.

Bootgen generates the boot.mcs and a boot.bin binary file that you can write into the QSPI
flash using the flash writer. MCS is an Intel hex-formatted file that includes a checksum for
reliability.

Note: The pin configuration for QSPI24 boot mode is 0x1 for qspi 24 and 0x2 for qspi32.

SD Boot Mode
SD boot (version 3.0) supports the following:

• FAT 16/32 file systems for reading the boot images.

• Image search for MultiBoot with a maximum number 8,192 files are supported.

Note: exFAT is not supported for SD boot in FSBL and U-Boot.

The following figure shows an example for booting Linux in SD mode.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=62

Figure 17: Booting in SD Mode

Bootgen Tool

Boot.bin

FAT 32
Kernel Image

Device tree file

Root file system
EXT 3

File system

Zynq
UltraScale+

MPSoc

0 1 0 1

Petalinux SDK

SDK
FSBL

U-Boot

A53 Image

KEY

.bif

SD card Boot Mode
pins

KEY

Board

X14933-063017

To create an SD boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex-R5F-0/R5-1 and/or an Cortex-A53 application ELF

• Optional authentication and encryption keys

The Bootgen tool generates the boot.bin binary file. You can write the boot.bin file into an SD
card using a SD card reader.

In PetaLinux, do the following:

1. Build the Linux kernel image, device tree file, and the root file system.

2. Copy the files into the SD card.

The formatted SD card then contains the boot.bin, the kernel image, and the device tree file in
the FAT32 partition; the root file system resides in the EXT 4 partition.

IMPORTANT! To boot from SD1, configure the boot pins to 0x5. To boot from SD0, configure the boot
pins to 0x3.To boot from SD with a level shifter, configure the boot pins to 0xE.

eMMC18 Boot Mode
eMMC18 boot (version 4.5) supports the following:

• FAT 16/32 file systems for reading the boot images.

• Image search for MultiBoot with a maximum number of 8,192 files being supported.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=63

The following figure shows an example for booting Linux in eMMC18 mode.

Figure 18: Booting in eMMC18 Mode

Bootgen Tool

Boot.bin

FAT 32
Kernel Image

Device tree file

Root file system
EXT 3

File system

Zynq
UltraScale+

MPSoc

0 1 1 0

PetaLinux SDK

SDK
FSBL

U-Boot

A53 Image

KEY

.bif

eMMC18 card Boot Mode
pins

KEY

Board

X18971-071317

To create an eMMC18 boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex®-R5F-0/R5-1 and/or a Cortex®-A53 application ELF

• Optional authentication and encryption keys

The Bootgen tool generates the boot.bin binary file. You can write the boot.bin file into an
eMMC18 card using an eMMC18 card reader.

In PetaLinux, do the following:

• Build the Linux kernel image, device tree file, and the root file system.

• Copy the files into the eMMC18 card.

The formatted eMMC18 card then contains the boot.bin, the kernel image, and the device tree
files in the FAT32 partition; the root file system resides in the EXT4 partition.

NAND Boot Mode
The NAND boot only supports 8-bit widths for reading the boot images, and image search for
MultiBoot. The following figure shows an example for booting Linux in NAND mode.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=64

Figure 19: Booting in NAND Mode

Boot Header

FSBL

SBL

R5 Image

A53 Image

Bootgen
Tool Flash

Writer

Flash

Boot.bin

eFuse

FSBL

R5 Image

A53 Image

.bif

SDK

JTAG

Key

QSPI

Board

NAND
Converter

NAND
image

Key

FSBL

Boot Pins

Zynq
UltraScale+

MPSoC

0100

X14934-071317

To create a NAND boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex-R5F-0/R5-1 application ELF and/or an Cortex-A53 application ELF

• Optional authentication/encryption keys

The Bootgen tool generates the boot.bin binary file. You can then write the NAND bootable
image into the NAND flash using the flash writer

IMPORTANT! To boot from NAND, configure boot pins to 0x4.

JTAG Boot Mode
You can manually download any software image needed for the PS and any hardware image on
the PL using JTAG. For JTAG boot mode settings, see this link in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

IMPORTANT! Secure boot is not supported in the JTAG mode.

USB Boot Mode
The USB boot mode supports only USB 2.0. In USB boot mode, both the secure and non-secure
boot modes are supported. USB boot mode is not supported for DDR-less systems. Features like
Multiboot, fallback image, and XIP are not supported.

Note: USB boot mode is disabled by default in FSBL. To enable the USB boot mode, configure the
FSBL_USB_EXCLUDE_VAL to 0 in xfsbl_config.h file.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?%3Bt=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=65

Table 13: USB Boot Mode Details

Pin Functionality
Mode pins 0x7

MIO pins MIO[63:52]

Non-secure Yes

Secure Yes

Signed Yes

Mode Slave

USB boot mode requires a host PC with dfu-utils installed on it. The host and device need to be
connected through a USB 2.0 or USB 3.0 cable. The host must contain one boot.bin to be loaded
by bootROM, which contains only fsbl.elf and another boot_all.bin to be loaded by
FSBL. On powering up the board in USB boot mode, issue the following commands:

• On Linux host:

• dfu-util -D boot.bin: This downloads the file to the device, which is processed by
bootROM.

• dfu-util -D boot_all.bin: This downloads the file to the device, which is processed by FSBL.

• On Windows host:

• dfu-util.exe -D boot.bin: This downloads the file to the device, which is processed by
bootROM.

• dfu-util.exe -D boot_all.bin: This downloads the file to the device, which is then processed
by FSBL.

The size limit of boot.bin and boot_all.bin are the sizes of OCM and DDR. The size of
OCM is 256 KB.

Secondary Boot Mode
There is a provision to have two boot devices in the Zynq UltraScale+ MPSoC architecture. The
primary boot mode is the boot mode used by bootROM to load FSBL and optionally PMU FW.
The secondary boot mode is the boot device used by FSBL to load all the other partitions. The
supported secondary boot modes are QSPI24, QSPI32, SD0, eMMC, SD1, SD1-LS, NAND and
USB.

When using PS-PCIe® on ZU+ in Endpoint mode, running FSBL is enough to set up the block for
endpoint mode operation. FSBL should be able to program the PS/PS-PCIe® and GTR within 100
ms. However, this doesn’t include PL-bitstream programming as including that would make this
greater than 100 ms.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=66

IMPORTANT! If secondary boot mode is specified, it should be different from the primary boot device. For
example, if QSPI32 is the primary boot mode, QSPI24 cannot be the secondary boot mode. Instead, you
can have SD0, eMMC, SD1, SD1-LS, NAND, USB as secondary boot modes. All combinations of boot
devices are supported as primary and secondary boot devices.

Note: By default, the secondary boot mode is the same as primary boot mode and there will be only one
boot image.

See What is Secondary Boot Mode in FSBL wiki page for more information.

Detailed Boot Flow
The platform management unit (PMU) in the Zynq UltraScale+ MPSoC is responsible for handling
the primary pre-boot tasks.

PMU ROM will execute from a ROM during boot to configure a default power state for the
device, initialize RAMs, and test memories and registers. After the PMU performs these tasks and
relinquishes system control to the configuration security unit (CSU), it enters a service mode. In
this mode, the PMU responds to interrupt requests made by system software through the
register interface or by hardware through the dedicated I/O to perform platform management
services.

Pre-Boot Sequence
The following table lists the tasks performed by the PMU in the pre-Boot sequence.

Table 14: Pre-Boot Sequence

Pre-Boot Task Description
0 Initialize MicroBlaze™ processor. Capture key states.

1 Scan, and clear LPD and FPD.

2 Initialize the System Monitor.

3 Initialize the PLL used for MBIST clocks.

4 Zero out the PMU RAM.

5 Validate the PLL. Configure the MBIST clock.

6 Validate the power supply.

7 Repair FPD memory (if required).

8 Zeroize the LPD and FPD and initialize memory self-test.

9 Power-down any disabled IPs.

10 Either release CSU or enter error state.

11 Enter service mode.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 67Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/Zynq+UltraScale+FSBL#ZynqUltraScale%2BFSBL-WhatisSecondaryBootmode%3F
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=67

As soon as the CSU reset is released, it executes the CSU bootROM and performs the following
sequence:

1. Initializes the OCM.

2. Determines the boot mode by reading the boot mode register, which captures the boot-mode
pin strapping at the POR.

3. The CSU continues with the FSBL load and the optional PMU firmware load. PMU firmware
is the software that can be executed by the PMU unit. The code executes from the RAM of
the PMU. See Chapter 9: Platform Management for more information.

The following figure shows the detailed boot flow diagram.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=68

Figure 20: Detailed Boot Flow Example

Power ON

PMU releases CSU Reset

Read Boot Mode Pins

Read Boot Header from
the Boot image

Check for
Authentication

Fallback bootDecrypt FSBL

Load FSBL to OCM

FSBL configures the PS

FSBL configures PL with
the bitstream

FSBL loads the RPU
software

FSBL loads the APU
software

FSBL Handoff to APU
software

Is FSBL
Authenticated?

YES

YES NOYES

NO

Is FSBL
Encrypted?

Authentication
Test passed?

Decryption
Fails?

NO

Fallback boot

YES

APU/RPU

CSU

PMU

X14935-070717

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=69

Disabling FPD in Boot Sequence
Perform the following to avoid an FPD lockout, where FPD Power is applied momentarily:

• Apply the power until the completion of bootROM execution.

• To power down the FP during FSBL execution, set FPD bit '22' of PMU_GLOBAL
REQ_PWRDWN_STATUS register.

• To bring the FP domain up in a later stage of the boot process, set the PMU_GLOBAL
REQ_PWRUP_STATUS bit to '22’.

Perform the following in cases where the FPD power is not applied before the FSBL boots

1. Power up the R5.

2. A register is set indicating the FPD is locked pending POR as the reset or clear sequence
cannot execute on the FPD.

3. R5 can read the FP locked status from PMU_GLOBAL REQ_ISO_STATUS register bit ‘4’.

4. At this stage, PMU_GLOBAL REQ_PWRUP_STATUS bit '22' will not be set.

5. To bring the FPD node back up, power must be supplied to the node and a POR needs to be
issued.

Setting FSBL Compilation Flags
You can set compilation flags using the C/C++ settings in the Vitis FSBL project, as shown in the
following figure:

Note: There is no need to change any of the FSBL source files or header files to include these flags.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=70

Figure 21: FSBL Debug Flags

The following table lists the FSBL compilation flags.

Table 15: FSBL Compilation Flags

Flag Description
FSBL_DEBUG Prints basic information and error prints, if any.

FSBL_DEBUG_INFO Enables debug information in addition to the basic information.

FSBL_DEBUG_DETAILED Prints information with all data exchanged.

FSBL_NAND_EXCLUDE Excludes NAND support code.

FSBL_QSPI_EXCLUDE Excludes QSPI support code.

FSBL_SD_EXCLUDE Excludes SD support code.

SBL_SECURE_EXCLUDE Excludes authentication code and encryption code but not checksum
code.

FSBL_BS_EXCLUDE Excludes bitstream code.

FSBL_EARLY_HANDOFF_EXCLUDE Excludes early handoff related code.

FSBL_WDT_EXCLUDE Excludes WDT support code.

FSBL_PERF_EXCLUDE_VAL Excludes performance prints.

FSBL_A53_TCM_ECC_EXCLUDE_VAL Excludes TCM ECC Init for A53.

FSBL_PL_CLEAR_EXCLUDE_VAL Excludes PL clear unless boot.bin contains bitstream.

FSBL_PROT_BYPASS_EXCLUDE_VAL Excludes isolation configurations.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=71

Table 15: FSBL Compilation Flags (cont'd)

Flag Description
8FSBL_PARTITION_LOAD_EXCLUDE_VAL Excluded partition loading.

FSBL_USB_EXCLUDE_VAL Excludes USB code.
This is set to 1 by default.
Set this value to 0 to enable USB boot mode.

FSBL_FORCE_ENC_EXCLUDE_VAL Excludes forcing encryption of all partitions when ENC_ONLY fuse is
programmed. By default, this is set to 0.
FSBL forces to enable encryption for all the partitions when ENC_ONLY
is programmed.

FSBL_DDR_SR_EXCLUDE_VAL DDR Excludes self refresh code.

FSBL_TPM_EXCLUDE_VAL Excludes TPM related code.

FSBL_PL_LOAD_FROM_OCM_EXCLUDE_VAL Excludes the code to load bitstream in chunks from OCM.

FSBL_UNPROVISIONED_AUTH_SIGN_EXCLUDE_VA
L

Excludes the code to load authenticated partitions as non-secure when
EFUSEs are not programmed and when boot header is not
authenticated.

See "I’m unable to build FSBL due to size issues, how can I reduce its footprint?" section in FSBL
wiki page for more information.

Enabling Debug Prints

See FSBL wiki page for more information on debugging FSBL.

Fallback and MultiBoot Flow
In the Zynq® UltraScale+™ MPSoC, the CSU bootROM supports MultiBoot and fallback boot
image search where the configuration security unit CSU ROM or bootROM searches through the
boot device looking for a valid image to load. The sequence is as follows:

• BootROM searches for a valid image identification string (XLNX as image ID) at offsets of 32
KB in the flash.

• After finding a valid identification value, validates the checksum for the header.

• If the checksum is valid, the bootROM loads the image. This allows for more than one image in
the flash.

In MultiBoot:

• CSU ROM or FSBL or the user application must initiate the boot image search to choose a
different image from which to boot.

• To initiate this image search, CSU ROM or FSBL updates the MultiBoot offset to point to the
intended boot image, and generates a soft reset by writing into the CRL_APB register.

The following figure shows an example of the fallback using the MultiBoot flow.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 72Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/Zynq%2BUltraScale%2BFSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/Zynq%2BUltraScale%2BFSBL
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/Zynq%2BUltraScale%2BFSBL
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=72

Figure 22: Fallback using the MultiBoot Flow

Boot Header

Image 1

.

.

.

.

Boot Header

Image 2

0x100_0000

0x002_0000

0x000_0000
Boot Header 1

Image 1

.

.

.

.

.

Boot Header 2

Image 2

0x100_0000

0x002_0000

0x000_0000

.

.

.

.

0x001_0000

0x000_8000

0x001_8000

Multi-Boot
Offset=1

Multi-Boot
Offset=2

Multi-Boot
Offset=3

Multi-Boot
Offset=4

X14936-071217

Note: The same flow is applicable to both Secure and Non-secure boot methods.

In the example fallback boot flow figure, the following sequence occurs:

• Initially, the CSU bootROM loads the boot image found at 0x000_0000.

• If this image is found to be corrupted or the decryption and authentication fails, CSU
bootROM increments the MultiBoot offset by one and searches for a valid boot image at
0x000_8000 (32 KB offset).

• If the CSU bootROM does not find the valid identification value, it again increments the
MultiBoot offset by 1, and searches for a valid boot image at the next 32 KB aligned address.

• The CSU bootROM repeats this until a valid boot image is found or the image search limit is
reached. In this example flow, the next image is shown at 0x002_0000 corresponding to a
MultiBoot offset value of four.

• In the example MultiBoot flow, to load the second image that is at the address 0x002_0000,
MutiBoot offset is updated to four by FSBL/CSU-ROM. When the MultiBoot offset is
updated, soft reset the system.

The following table shows the MultiBoot image search range for different booting devices.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=73

Table 16: Boot Devices and MultiBoot Image Search Range

Boot Device MultiBoot Image Search Range
QSPI Single (24-bit) 16 MB

QSPI Dual (24-bit) 32 MB

QSPI Single (32-bit) 256 MB

QSPI Dual (32-bit) 512 MB

NAND 128 MB

SD/EMMC 8,191 boot files

USB Not applicable

FSBL Build Process
After authenticating and/or decrypting, the FSBL is loaded into OCM and handed off by the CSU
bootROM. First Stage Boot Loader configures the FPGA with a bitstream (if it exists) and loads
the Standalone (SA) Image or Second Stage Boot Loader image from the non-volatile memory
(NAND/SD/eMMC/QSPI) to RAM(DDR/TCM/OCM). It takes the Cortex-R5F-0/R5F-1 processor
or the Cortex-A53 processor unit out of reset. It supports multiple partitions. Each partition can
be a code image or a bitstream. Each of these partitions, if required, will be authenticated and/or
decrypted.

Note: If you are creating a custom FSBL, you should be aware that the OCM size is 256 KB and is available
to CSU bootROM. The FSBL size is close to 170 KB and it would fit in the OCM. While using the USB boot
mode, you should make sure that the PMU firmware is loaded by the FSBL and not by the CSU bootROM.
This is because the size of boot.bin loaded by the CSU bootROM should be less than 256 KB.

Note: Users can load bitstream from OCM for non-encrypted cases even if DDR is present in the design.
By default, the FSBL_PL_LOAD_FROM_OCM_EXCLUDE_VAL value is set to 0 in xfsbl_config.h,
making the bitstream copy and load from DDR in the non-encrypted cases. By setting the
FSBL_PL_LOAD_FROM_OCM_EXCLUDE_VAL value to 1, the user can ensure that bitstream is loaded
from OCM in chunks and not from DDR. Also, if DDR is not present in the design, the bitstream is loaded
from OCM irrespective of the FSBL_PL_LOAD_FROM_OCM_EXCLUDE_VAL value.

Creating a New Zynq UltraScale+ MPSoC FSBL
Application Project
To create a new Zynq UltraScale+ MPSoC FSBL application in the Vitis software platform, do the
following:

1. Click File → New → Application Project.

The New Application Project dialog box appears.

2. In the Project Name field, type a name for the new project.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=74

3. Select the location for the project. To use the default location as displayed in the Location
field, leave the Use default location check box selected. Otherwise, click to deselect the
check box, then type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C.

8. Select an OS for the targeted application.

9. Click Next.

10. In the Templates dialog box, select the Zynq UltraScale+ MPSoC FSBL template.

11. Click Finish to create your application project and board support package (if it does not exist).

Phases of FSBL Operation
FSBL operation includes the following four stages:

• Initialization

• Boot device initialization

• Partition loading

• Handoff

The following figure shows the stages of FSBL operation:

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=75

Figure 23: Stages of FSBL

CSU
ROM

1.
Initializatio

n

2. Boot
Device

Initializatio
n

3. Partition
Copy,

Validation
4. HandoffApplic

ation

wfe

PDR/RST Handoff to
FSBL

Success

wfe

Error
Error

Error

JTAG
Boot

Error

SLCR RST
(FallBack)

Handof
f

Jtag Boot/
No Image

Partition
Completed

Partition Not
Completed

Fallback
Not Supported

FSBL Stage Diagram

FSBL Block Diagram

1. Initialization
1a. Get Reset Reason
1b. System Initialization
1c. Processor Initialization
1d. DDR Initialization
1e. Board Initialization
1f. Reset Validation

2. Boot Device Installation and
 Header Validation

2a. Primary Boot Device
 Initialization
2b. Header Validation
2c. Secondary Boot Device
 Initialization

XFsbl Initialize()

XFsbl_BootDeviceInitAnd:
Validate()

3. Partition Copy Validation
3a. Partition Header
 Validation
3b. Partition Copy

XFsbl_PartitionLoad()

4. Handoff
4a. PM Init
4b. Protection Config
4c. Handoff to CPUs

XFsbl_Handoff()

X19962-101917

Initialization

Initialization consists of the following four internal stages:

XFsbl_SystemInit

This function powers up PL for 1.0 and 2.0 silicon and removes PS-PL isolation. It initializes
clocks and peripherals as specified in psu-init. This function is not called in APU only reset.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=76

Figure 24: FSBL System Initialization

Stage
1a

xFsbl_SystemInit()

System
Initialization

Home

XFsbl_PowerUpIsland()
XFsbl_IsolationRestore()

PowerupPL(Remove Isolation,
For 1.0 & 2.0 silicon)

psu_init()
*DDR, MIO, CLK, PLL Settings,
Peripheral, SERDES Initialization

Configuration
Successful? no

Error
Lock
Down

yes

In MMUtable for A53 mask
DDR regions “memory”

Stage
1c

X19952-101917

XFsbl_ProcessorInit

Processor initialization will start in this stage. It will set up the Instruction and Data caches, L2
caches, MMU settings, stack pointers in case of A53 and I/D caches, MPU settings, memory
regions, stack pointers, and TCM settings for R5-0. Most of these settings will be performed in
BSP code initialization. IVT vector is changed to the start of OCM for A53 and to start of TCM
(0x0 in lowvec and 0xffff0000 in highvec) in case of R5-0.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=77

Figure 25: Processor Initialization

Stage
1c

Stage
1b

Partition
Initialization

Home

xFsbl_ProcessorInit()

Handoff from
CSUROM main()

· Configure
 Memory
 Regions, SP,
 TCM (in BSP)
· Enable MPU I/D
 Cache (In BSP)
· Copy IVT to
 TCM (0x0)
· Change reset
 address to TCM
 (0x0)

Read Cluster ID

A9? no

yes

· Configure SP
· Enable MMU, I/D
 Cache, L2 Cache
· Change IVT to
 start of OCM

XFsbl_RegisterHandlers()
Enable Exceptions
Register Exception Handlers

Stage
1d

X19954-101917

Initialize DDR

DDR would be initialized in this stage. This function is not called in Master only reset.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=78

Figure 26: DDR Initialization

Stage
1d

Stage
1c

Stage
1e

DDR Initialization

DDR has ECC? no

yes

ECC Initialization
of DDR

yes

Higher DDR
Preset!

Stage
1eno

ECC Initialization
of higher DDR

Stage
1e

X19957-101917

XFsbl_BoardInit

This function performs required board specific initializations. Most importantly, it configures GT
lanes and IIC.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=79

Figure 27: Board Initialization

Stage
1e

Stage
1d

Board Init

no Stage
1f

Initiate I2C driver

Board is
2cu102 or

2cu100

yes

Stage
1f

Configuration
programming I2C

USB
xxxxx

PCIE Reset for
2CU102

X19960-101917

Boot Device Initialization

XFsbl_PrimaryBootDeviceInit

This stage involves reading boot mode register to identify the primary boot device and initialize
the corresponding device. Each boot device driver provides init, copy and release functions which
are initialized to DevOps function pointers in this stage.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=80

Figure 28: Primary Boot Device Initialization

Stage
2a Stage

1c

xFsbl_PrimaryBootDeviceInit()

yes

Home
Primary Boot Device

Initialization

XFsbl_InitWdt()
XFsbl_CsuDmainit()

Initialize
WDT,CSUDMA

drivers

BootMode==
(JTAG || PJTAG0 ||

PJTAG1)
yes

BootMode ==
(QSP124 || QSP132 || SD0

||EMMC||NAND||SD1 ||
SD1 with level shifter)

no Wfe;

QSPI ?

no

Error
Lock
Down

yes
Configure QSPI
In Single/Dual/
Stacked mode

Configuration
Success? no

Error
Lock
Down

NAND ? yes Configuration
Success?

no

no

Error
Lock
Down

SD/eMMC yes Configuration
Success?

no

no

Create boot
image name

yes

yes

no

no

Stage
2b

X19958-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=81

XFsbl_ValidateHeader

Using the copy functions provided, the FSBL reads the boot header attributes and image offset
address. It reads the EFUSE bit to check for authentication. It reads the image header and
validates the image header table. It then reads the Partition Present Device attribute of image
header. A non-zero value indicates a secondary boot device. A zero value indicates that the
secondary boot device is the same as the primary boot device.

Figure 29: Validating Header

Stage
2b Stage

2a

xFsbl_ValidateHeader()

Home
Header

Validation

XFsbl_ReadIma
geHeader() Read

Image Header

no
Error
Lock
Down

Validate Image
header

Populate handoff
parameter to ATF

Success?

no
Image Header

Table Validation
Successful?

yes

yes

Stage
3a

Image Header Validation
Checks
* No partitions present
* Num of partitions supported
* Start of Partition Header
offset Address check
* Image Header Table
Checksum

X19959-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=82

XFsbl_SecondaryBootDeviceInit

This function is called in case of a non-zero value of Partition Present Device attribute of image
header table. It initializes the secondary boot device driver and the secondary boot device would
be used to load all partitions by FSBL.

XFsbl_SetATFHandoffParams

TF-A is assumed to be the next loadable partition after FSBL. It is capable of loading U-Boot and
secure OS and hence, it is passed a handoff structure.

The first partition of an application will have a non-zero execution address. All the remaining
partitions of that application will have 0 as execution address. Hence look for the non-zero
execution address for partition which is not the first one and ensure the CPU is A53.

This function sets the handoff parameters to the Trusted Firmware-A (TFA). The first argument is
taken from the FSBL partition header. A pointer to the handoff structure containing these
parameters is stored in the PMU_GLOBAL.GLOBAL_GEN_STORAGE6 register, which the TF-A
reads. The structure is filled with magic characters 'X', 'L', 'N', and 'X' followed by the total number
of partitions and execution address of each partition.

Partition Loading

XFsbl_PartitionHeaderValidation

Partition header is validated against various checks. All the required partition variables are
updated at this stage. If the partition owner is not FSBL, partition will be ignored and FSBL will
continue loading the other partitions.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=83

Figure 30: Partition Header Validation

Stage
3a Stage

2b

xFsbl_PartitionHeaderValidation()

Partition Header
Validation

XFsbl_ValidateChecksum()
Validate Partition Header

Checksum ?

Partition
Parsing done

yes

Partition
Owner ==

FSBL

yes

Stage
3b

Home

Stage
4

Update Partition
Variables

Error
Lock
Down

no

no Stage
3a

Check partition word
lengths for Plain Encrypted

and Autheticated

yes

XFsbl_thecheckvalidMemoryAddress()
Destination Load Address/Eexcuable address Checkt

* No DDR and address in DDR
* Address not in TCM, DRR, PL DDR

Error
Lock
Down

no

yes

Checksum word
offset, Image header

offset, Data word
offset check

yes

* Checksum type not supported
* Destination Cpu not supported

* Running in lockstep mode and destination cpu is r5-0/r5-1
* Destination Cpu same for 2 Images

* XIP Image and length

no

no

no

yes
xFsbl_ValidatePartitionHeader()

X19951-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=84

XFsbl_PartitionCopy

Partition will be copied to the DDR or TCM or OCM or PMU RAM.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=85

Figure 31: Partition Copy

Stage
3b

Stage
3a

xFsbl_PartitionCopy()

yes

Home

Partition
Copy

If no Load address
specified, else
Adress = Load

adress

PS DDR
Present

Skip
Copying(DDRLess)no

DestinationCPU ==
R5 && Load
address is in

TCM

Destination
Device == PL

no

· Update Load
 address Map it
 to high TCM
· Power up the
 TCMs and
 initialize TCM
 & CC

yes

Running CPU is
R5 AND Partition is

Non secure Partition
AND Application
address overlaps

with IVT

Copy overlapping
Part of Partition to a

local buffer

yes

Trigger PMU0 IPI
and wait until PMU
Microblaze goes to
sleep before PMU

FW download

Destn Dev =
PMU

Copy
Successful?

yes

Stage
3a

PSOnly Reset no

yes

Stage
3a

no

no

yes

X19950-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=86

XFsbl_PartitionValidation

Partition will be validated based on the partition attributes. If checksum bit is enabled, then the
partition will be validated first for checksum correctness and then, based on the authentication
flag, it would be authenticated. If encryption flag is set, then the partition will be decrypted and
then copied to the destination.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=87

Figure 32: Partition Validation Function

Xsecure_AesDecrypt()
Decrypt Image from DDR/

TCMP/PMU_RAM
To DDR/TCM/PMU_RAM

Stage
3c

Stage
3b

Checksum
enabled?

Stage xFsbl_PartitionValidation()

Checksum
Validation
Sucessful?

yes no

Home

Authenticaion
Enabled?

yes no
XFabl_Authentication()

Authentication Validation
Successful?

yes
no

Partition
Validation

(PS Image II
PMU firmware) &&

(Encrypted) ?
yes

no
yes

Decryption
Successful ?

Error
Xxx
xxxx

no

FsblHookBefore
BitstreamDownload

yes

Initialize PCAP
Interface

For 3.0 Ps version &
above Powerup PL

Encrypted
bitstream?

Xsecure_AesDecrypt()
Send bitstream via

CSUDMA_AES_to PCAP
yes

Send bitstream to
PCAP through

CSUDMA

PL Done
Successful?

Wait until PL Done no
Error
Xxx
xxxx

Remove the Isolation
for PS-PL

Provide PS-PL
reset

FSBL Hook after
Bitstream download

Stage
4

PL Image?

yes

no

no

X19949-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=88

Handoff

In this stage, protection_config functions from psu_init will be executed and then, any
handoff functionality is executed. Also PS-PL isolation is removed unconditionally. R5 will be
brought out of reset if there is any partition supposed to run on its cores. R5-0/R5-1 will be
configured to boot in lowvec mode or highvec mode as per the settings provided by you while
building the boot image. The handoff address in lowvec mode is 0x0 and 0xffff0000 in
highvec mode. Lowvec/Highvec information should be specified by you while building the boot
image. After all the other PS images are done, then the running CPU will be handed off with an
update of the PC value. If there is no image to hand off for the running the CPU, FSBL will be in
wfe loop.

Any running processor cannot pass any parameters to any other processor. Any communication
between various partitions can happen by reading from (or writing to) the PMU global registers.

Handoff on the running processor involves updating Program Counter (PC) of the running
processor, as is done in the case of APU Reset. Handoff to other processors involves updating
their PCs and bringing the processors out of reset.

XFsbl_PmInit

This function initializes and configures the Inter Processor Interrupts (IPI). It then writes the PM
configuration object address to an IPI buffer and triggers an IPI to the target. The PMU firmware
then reads and configures the device nodes as specified in the configuration object.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=89

Figure 33: PM Initialization

4a

Stage
3c

PM_INIT

Is PS-only
Reset

Remove PS-PL
isolation

Is APV-only
Reset

PM Init

4b

4c

yes

no

no

yes

X19946-101917

Protection Configuration

In this stage, protection_config functions from psu_init will be executed. The application
of protection happens in this stage.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=90

Figure 34: Protection Configuration

Disable tamper
responses

4b

4a

Protection Config

Is protection
byte met

psu-apply xxxxx3
psu-ocm-protection

4c

Stage

psu-protection
psu-protection mode

Enable tamper
response

yes

no

X19947-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=91

Handoff

Handoff on the running processor involves updating Program Counter (PC) of the running
processor, as is done in the case of APU Reset. Handoff to other processors involves updating
their PCs and bringing the processors out of reset. A53 FSBL will bring R5 out of reset if there is
any partition to run on it. R5 will be configured to boot in lowvec mode or highvec mode as per
the settings provided by you while building the boot image. The handoff address in lowvec mode
is 0x0 and 0xffff0000 in highvec mode.

You must specify Lowvec/Highvec information while building the boot image. After all the other
PS images are done, then running the CPU image will be handed off to that cpu with an update
on the PC value. If there no image for the running CPU, it will be in wfe loop.

Figure 35: Handoff

Stage
4c

Stage
4b

xFsbl_Handoff()

Home

Handoff

Copy Arm
predefined code

to 0xffff0000

PS Image present? yes

· Update Reset
 vector address
 at 0xFFFFFF00
· Take CPU out of
 reset

Running CPU
handoff image

present ?

no wfe

Disable
exceptions

yes

R5 ? no Update PC

yes

HANDOFF

· Copy the original
 vector table to
 TCM if required
· Update PC

X19948-101917

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=92

Supported Handoffs

The following table shows the various combinations of handoffs that are supported in FSBL.

Table 17: Supported Handoffs

FSBL Application Processor Cores Execution Address
64-bit 64-bit All (i.e. A53-0, A53-1, A53-2, A53-3) Any Address

64-bit 32-bit A53-1, A53-2, A53-3 0x0

32-bit 32-bit A53-0 Any Address

32-bit 32-bit A53-1, A53-2, A53-3 0x0

32-bit 64-bit A53-1, A53-2, A53-3 Any Address

Error Lock Down

XFsbl_ErrorLockDown function handles errors in FSBL. This function is called whenever the
return value of a function is unsuccessful. This function updates error status register and then
loops indefinitely, if fallback is not supported.

In case the boot mode supports fallback, MultiBoot offset register is updated and then waits for a
WDT reset to occur. On reboot, bootROM and FSBL read the image from the new address
calculated from MultiBoot offset, thus loading a new image.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=93

Figure 36: Error Lock Down Function

XFsbl_ErrorLockDown()

Home

Update Error
Status Register

BootMode ==
(QSP124 || QSP132 || SD0

||EMMC|NAND|SD1 ||
SD1 with level shifter)

no

yes

Fallback not
supported by this

bootmode

XFsbl_HookBefor
eFallback() FSBL

Hook Before
Fallback

yes

Update Multiboot
Address register

wfe

SLCR Reset
X19953-101917

Miscellaneous Functions

The following functions are available in FSBL:

XFsbl_PrintArray

This function prints entire array in bytes as specified by the debug type.

void XFsbl_PrintArray (u32 DebugType, const u8 Buf[], u32 Len, const char
*Str);

Table 18: XFsbl_PrintArray Parameters in FSBL

Parameters Description
DebugType Printing of the array is performed as defined by the debug

type.

Buf Pointer to the buffer to be printed

Len Length of the bytes to be printed

Str Pointer to the data that is printed

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=94

XFsbl_Strcpy

This function to copy the source string to the destination string.

char *XFsbl_Strcpy(char *DestPtr, const char *SrcPtr)

Table 19: XFsbl_Strcpy Parameters in FSBL

Parameters Description
DestPtr Pointer to the buffer to be printed

SrcPtr Pointer to the buffer containing the source string

XFsbl_Strcat

This function to append the second string to the first string.

char* XFsbl_Strcat(char* Str1Ptr, const char* Str2Ptr)

Table 20: XFsbl_Strcat Parameters in FSBL

Parameters Description
Str1Ptr Pointer to the original string to which string pointed to by

Str2Ptr would be appended

Str2Ptr Pointer to the second string

XFsbl_Strcmp

This function compares strings.

s32 XFsbl_Strcmp(const char* Str1Ptr, const char* Str2Ptr)

Table 21: XFsbl_Strcmp Parameters in FSBL

Parameters Description
Str1Ptr Pointer to the first string

Str2Ptr Pointer to the second string

XFsbl_MemCpy

This function copies the memory contents pointed to by SrcPtr to the memory pointed to by
DestPtr. Len is number of bytes to be copied.

void* XFsbl_MemCpy(void * DestPtr, const void * SrcPtr, u32 Len)

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=95

Table 22: XFsbl_MemCpy Parameters in FSBL

Parameters Description
SrcPtr Pointer to the memory contents to be copied

DestPtr Pointer to the destination

Len Length of the bytes to be printed

XFsbl_PowerUpIsland

This function checks the power state of one or more power islands and powers them up if
required.

u32 XFsbl_PowerUpIsland(u32 PwrIslandMask)

Table 23: XFsbl_PowerUpIsland Parameters in FSBL

Parameters Description
PwrIslandMask Mask of island that needs to be powered up

XFsbl_IsolationRestore

This function requests isolation restore through the PMU firmware.

u32 XFsbl_IsolationRestore(u32 IsolationMask);

Table 24: XFsbl_IsolationRestore Parameters in FSBL

Parameters Description
IsolationMask Mask of the entries for which isolation is to be restored

XFsbl_SetTlbAttributes

This function sets the memory attributes for a section in the translation table.

void XFsbl_SetTlbAttributes(INTPTR Addr, UINTPTR attrib);

Table 25: XFsbl_SetTlbAttributes Parameters in FSBL

Parameters Description
Addr Address for which the attributes are to be set

Attrib Attributes for the memory region

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=96

XFsbl_GetSiliconIdName

This function reads the CSU_ID_CODE register and calculates the SvdId of the device. It returns
the corresponding deviceID name.

const char *XFsbl_GetSiliconIdName(void);

XFsbl_GetProcEng

This function determines and returns the engine type. Currently only CG, EG, and EV engine
types are supported.

const char *XFsbl_GetProcEng(void);

XFsbl_CheckSupportedCpu

This function checks if a given CPU is supported by this variant of Silicon. Currently it checks if it
is CG part and disallows handoff to A53_2/3 cores.

u32 XFsbl_CheckSupportedCpu(u32 CpuId);

Table 26: XFsbl_CheckSupportedCpu Parameters in FSBL

Parameters Description
Cpuld Checks if the processor is A53_2 or A53_3 or not.

XFsbl_AdmaCopy

This function copies data memory to memory using ADMA. You must take care of cache
invalidation and flushing. ADMA also should be configured to simple DMA before calling this
function.

u32 XFsbl_AdmaCopy(void * DestPtr, void * SrcPtr, u32 Size);

Table 27: XFsbl_AdmaCopy Parameters in FSBL

Parameters Description
DestPtr Pointer to the destination buffer to which data needs to be

copied

SrcPtr Pointer to the source buffer from which data needs to be
copied

Size Number of bytes of data that needs to be copied

XFsbl_GetDrvNumSD

This function is used to obtain drive number based on design and boot mode.

u32 XFsbl_GetDrvNumSD(u32 DeviceFlags);

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=97

Table 28: XFsbl_GetDrvNumSD Parameters in FSBL

Parameters Description
Device flags Contains the boot mode information, that is, one of SD0,

SD1, eMMC, or SD1-LS boot modes

XFsbl_MakeSdFileName

This function returns the file name of the boot image. The name is deduced from the parameters.

void XFsbl_MakeSdFileName(char*XFsbl_SdEmmcFileName, u32 MultiBootReg, u32
DrvNum);

Table 29: XFsbl_MakeSdFileName Parameters in FSBL

Parameters Description
XFsbl_SdEmmcFileName Contains the final file name

Multiboot reg The value of the MultiBoot register gets appended to the file
name, if its value is non zero

DrvNum Differentiates between SD0 and SD1 logical drives

Hooks in FSBL

Hooks are the functions that can be defined by you. FSBL provides blank functions and executes
them from certain strategic locations. The following table shows the currently available hooks.

Table 30: Hooks in FSBL

Hook Purpose/Location Hook Function Name
Before PL bitstream loading XFsbl_HookBeforeBSDownload()

After PL bitstream loading XFsbl_HookAfterBSDownload()

Before (the first) Handoff (to any application) XFsbl_HookBeforeHandoff()

Before fallback XFsbl_HookBeforeFallback()

To add more initialization code, in addition to that in psu_init
or to replace psu_init with custom initialization

XFsbl_HookPsuInit(()

See FSBL wiki page for more information on FSBL.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 98Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842019/Zynq+UltraScale+FSBL
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=98

Using the Ethernet-Based Recovery Tool
The SOM solution stack includes an Ethernet-based recovery mode that can be used with an
application on a host PC to provide a full factory QSPI image reset/reload mechanism. The
recovery tool will be maintained in a reserved section of the QSPI memory. Ethernet-based
recovery was selected over USB as many security minded customers prefer to disable the USB
but are using Ethernet in their applications. The Ethernet recovery application is an application
that runs a simplified Ethernet stack for interacting with a customer/engineer’s host machine (for
example, a laptop) to allow a manual update/overwrite of Image A and Image B on QSPI on SOM.

Ethernet-based recovery requires no incremental tools on your PC besides a web browser. Your
PC must have the new firmware binary file in its local file-system. You should be able to handle
downloading the associated Xilinx factory boot file updates from a Xilinx repository, and the on-
target firmware will handle the mapping of a given file to physical address and the act of writing
to flash. Image recovery utility uses a fixed IP address of 192.168.0.111.

The Ethernet-based recovery tool is capable of reading the sideband control EEPROMs to verify
the make and model of the SOM. The Ethernet factory fallback/recovery process is initiated by
holding the FWUEN button during a power on reset sequence. The tool requires the firmware
update button to be depressed to over-write any firmware contents. It updates the
corresponding A/B persistent registers to an appropriate state.

To use the Ethernet-based recovery tool, follow these steps:

1. Hold the firmware update enable (FWUEN) button when powering on the device.

2. Connect the PC to the KV260 Starter Kit via Ethernet as shown in the following figure.

3. Set the PC to a static IP that is on the same subnet as the recovery tool (192.168.0.xyz), but
not the same IP address.

4. Use a web-browser (for example, Chrome or Firefox) to enter the URL http://192.168.0.111
for access to the Ethernet-based recovery tool.

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 99Send Feedback

http://192.168.0.111
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=99

5. Use the GUI to update either the A or B boot firmware partitions with a boot.bin file from
the file system on the PC.

The Ethernet recovery tool interface is shown in the following figure.

Figure 37: Ethernet Recovery Tool

Chapter 7: System Boot and Configuration

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=100

Chapter 8

Security Features
This chapter details the Zynq® UltraScale+™ MPSoC features that you can leverage to address
security during boot time and run time of an application. The Secure Boot mechanism is
described in detail in this link to the Security chapter of the Zynq UltraScale+ Device Technical
Reference Manual (UG1085).

The system protection units (SPU) provide the following hardware features for run-time security
of an application running on Zynq UltraScale+ MPSoCs:

• Xilinx Memory Protection Unit

• Xilinx Peripheral Protection Unit

• System Memory Management Unit

• A53 Memory Management Unit

• R5 Memory Protection Unit

One of the runtime security features is access controls on the PMU and CSU global registers
from Linux. These registers are classified into two lists: The white list (accessible all the time by
default) and the black list (accessible only when a compile time flag is set). For more details, see
CSU/PMU Register Access.

Boot Time Security
This section details the various boot image formats for authentication and encryption.

IMPORTANT! For Zynq MPSoC, when RSA_EN eFUSE is not programmed and BOOT.BIN  does not have
BH_AUTH enabled, FSBL can load bin as non-secure even if the partitions are authenticated. It is a new
feature in 2021.1, which is disabled by default. To enable it, set
FSBL_UNPROVISIONED_AUTH_SIGN_EXCLUDE_VAL to 0 in xfsbl_config.h

Encryption
Zynq UltraScale+ MPSoCs has a 256-bit AES-GCM hardware engine that supports confidentiality
of your boot images, and can also be used post-boot to encrypt and decrypt data.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=101

The AES cryptographic engine has access to a diverse set of key sources. For more information
on the key sources, see Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The red key is used to encrypt the image. During the generation of the boot file (BOOT.bin), the
red key, and the initialization vector (IV) must be provided to the Bootgen tool in .nky file
format.

PMU firmware can be loaded by CSU bootROM or FSBL.

IMPORTANT! If both the FSBL and PMU firmware are encrypted, the PMU firmware must be loaded by
the FSBL (and not the CSU bootROM) to avoid reusing the AES Key/IV pair. For more information, see
Xilinx Answer 70622.

The following BIF file is an example encrypted image, where PMU firmware is loaded by FSBL:

the_ROM_image:
{
[aeskeyfile] bbram.nky [keysrc_encryption] bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = pmu, encryption=aes] pmufw.elf
}

BIF File with BBRAM Red Key

The following BIF file sample shows the red key stored in BBRAM:

the_ROM_image: { [aeskeyfile] bbram.nky
[keysrc_encryption] bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

BIF File with eFUSE Red Key

The following BIF file sample shows the red key stored in eFUSE.

the_ROM_image: { [aeskeyfile] efuse.nky
[keysrc_encryption] efuse_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 102Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/answers/70622.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=102

BIF File with an Operational Key

For creating a boot image using Bootgen with an operational key (op key), you must provide the
tool with the operational key, along with the red key and IV in an .nky file. Bootgen places this
operational key in a header and encrypts it with the device red key. The result is what is called an
encrypted secure header. The main advantage of this is that it minimizes the use of the device
key, thus limiting its exposure. For more details, refer to “Minimizing Use of the AES Boot Key
(OP Key Option)” in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

the_ROM_image:
{
[aeskeyfile] bbram.nky [fsbl_config] opt_key [keysrc_encryption]
bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

Using Op Key to Protect the Device Key in a Development Environment

The following steps provide a solution in a scenario where two development teams Team-A
(secure team), which manages the secret red key and Team-B (non-secure team) work
collaboratively to build an encrypted image without sharing the secret red key. Team-A manages
the secret red key. Team-B builds encrypted images for development and test. However, it does
not have access to the secret red key.

Team-A encrypts the boot loader with the device key (using the Op Key option) and delivers the
encrypted bootloader to Team-B. Team-B encrypts all the other partitions using the Op Key.

Team-B takes the encrypted partitions that they created and the encrypted boot loader they
received from the Team-A and uses Bootgen to ‘stitch’ everything together into a single
boot.bin.

The following procedures describe the steps to build an image:

Procedure 1

In the initial step, Team-A encrypts the boot loader with the device key using the opt_key option,
delivers the encrypted boot loader to Team-B. Now, Team-B can create the complete image at a
go with all the partitions and the encrypted boot loader using the operational key as device key.

1. Encrypt boot loader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 103Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=103

Example stage1.bif:

stage1:
{
[aeskeyfile] aes.nky
[fsbl_config] opt_key
[keysrc_encryption] bbram_red_key
[bootloader,destination_cpu=a53-0,encryption=aes]fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;

2. Attach the encrypted boot loader and rest of the partitions with the operational key as device
key to form a complete image:

bootgen -arch zynqmp -image stage2a.bif -o final.bin -w on -log error

Example of stage2.bif:

stage2:
{
[aeskeyfile] aes-opt.nky
[bootimage]fsbl_e.bin
[destination_cpu=a53-0,encryption=aes]hello.elf
[destination_cpu=a53-1,encryption=aes]hello1.elf
}

Example aes-opt.nky for stage2:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

Procedure 2

In the initial step, Team-A encrypts the boot loader with the device key using the opt_key option
and delivers the encrypted boot loader to Team-B. Now, Team-B can create encrypted images for
each partition independently, using the operational key as the device key. Finally, Team-B can use
Bootgen to stitch all the encrypted partitions and the encrypted boot loader, to get the complete
image.

1. Encrypt boot loader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=104

Example stage1.bif:

stage1:
{
[aeskeyfile] aes.nky
[fsbl_config] opt_key
[keysrc_encryption] bbram_red_key
[bootloader,destination_cpu=a53-0,encryption=aes]fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;

2. Encrypt the rest of the partitions with operational key as device key:

bootgen -arch zynqmp -image stage2a.bif -o hello_e.bin -w on -log error

Example of stage2a.bif:

stage2a:
{
[aeskeyfile] aes-opt.nky
[destination_cpu=a53-0,encryption=aes]hello.elf
}
bootgen -arch zynqmp -image stage2b.bif -o hello1_e.bin -w on -log error

Example of stage2b.bif:

stage2b:
{
[aeskeyfile] aes-opt.nky
[destination_cpu=a53-1,encryption=aes]hello1.elf

Example of aes-opt.nky for stage2a and stage2b:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

3. Use Bootgen to stitch the above to form a complete image:

Example of stage3.bif:

stage3:
{
[bootimage]fsbl_e.bin [bootimage]hello_e.bin [bootimage]hello1_e.bin
}

Note: Key Opt of aes.nky is same as Key 0 in aes-opt.nky and IV 0 must be same in both nky files.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=105

BIF File for Black Key Stored in eFUSE

For customers who would like to have the device key stored encrypted when not in use, the
physical unclonable function (PUF) can be used. Here, the actual red key is encrypted with the
PUF key encryption key (KEK), which is an encryption key that is generated by the PUF. The
device will decrypt the black key to get the actual red key, so you need to provide the KEK details
in BIF, such as shutter value, KEK IV to Bootgen. The black key can be stored in either eFUSE or
the Boot Header. Shutter value indicates the time for which the oscillator values can be captured
for PUF. This value must always be 0x100005E.

For more details, refer to “Storing Keys in Encrypted Form (Black)” in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

The following BIF example shows storage of the black key in eFUSE.

the_ROM_image:
{
[pskfile]PSK.pem
[sskfile]SSK.pem
[aeskeyfile]red.nky
[keysrc_encryption] efuse_blk_key
[fsbl_config] shutter=0x0100005E
[auth_params] ppk_select=0
[bootloader, encryption = aes, authentication = rsa,
destination_cpu=a53-0]fsbl.elf
[bh_key_iv] black_key_iv.txt
}

BIF File for Black Key Stored in Boot Header

The following BIF file sample shows boot header black key encryption:

the_ROM_image:
{
[aeskeyfile] redkey.nky
[keysrc_encryption] bh_blk_key
[bh_keyfile] blackkey.txt
[bh_key_iv] black_key_iv.txt
[fsbl_config] pufhd_bh , puf4kmode , shutter=0x0100005E, bh_auth_enable
[pskfile] PSK.pem
[sskfile] SSK.pem
[bootloader,authentication=rsa , encryption=aes,
destination_cpu=a53-0]fsbl.elf
[puf_file]hlprdata4k.txt
}

Note: Authentication of boot image is compulsory for using black key encryption.

To generate or program the eFUSEs with the back key, see Programming BBRAM and eFUSEs
(XAPP1319).

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 106Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=106

BIF File for Obfuscated Form (Gray) Key Stored in eFUSE

If you would like to have the device key store in obfuscated form, you can encrypt the actual red
key with the family key which is an encryption key. Device will decrypt the obfuscated key to get
the actual red key. Hence, you need to provide the required inputs to Bootgen. The obfuscated
key can be stored in either eFUSE or the Boot Header.

For more details, see Storing Keys in Obfuscated Form (Gray) section in the Zynq UltraScale+
Device Technical Reference Manual (UG1085).

Note: The family key is the same for all devices within a given Zynq UltraScale+ MPSoCs family. This
solution allows you to distribute the obfuscated key to contract manufacturer's without disclosing the
actual user key.

The following example shows storage of the obfuscated key in eFUSE:

the_ROM_image:
{
[aeskeyfile] red.nky
[keysrc_encryption] efuse_gry_key
[bh_key_iv] bhkeyiv.txt
[bootloader, encryption=aes, destination_cpu=a53-0] fsbl.elf
}

The following example shows storage of the obfuscated form (gray) key in boot header:

the_ROM_image:
{
[aeskeyfile] red.nky [keysrc_encryption] bh_gry_key [bh_key_iv]
bhkeyiv.txt
[bh_keyfile] bhkey.txt
[bootloader, encryption=aes, destination_cpu=a53-0] fsbl.elf
}

To Generate Obfuscated Key with Family Key:

Use Xilinx tools (Bootgen) to create the Obfuscated key. However, the family key is not
distributed with the Xilinx development tools. It is provided separately. The family key received
from Xilinx should be provided in the bif as shown in the example below.

IMPORTANT! To receive the family key, please contact secure.solutions@xilinx.com.

Sample bif to generate Obfuscated key:

all:
{
[aeskeyfile] aes.nky
[familykey] familyKey.cfg
[bh_key_iv] bhiv.txt
}

For more information, see Bootgen User Guide (UG1283)

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 107Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
mailto:secure.solutions@xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=107

Using Bootgen to Generate Keys

If you are using Bootgen to create keys, NIST approved KDF is used, which is Counter Mode KDF
with CMAC as the PRF.

With a Single Key/IV pair:

• If seed is specified - Key Generation is based on Seed.

• If seed is NOT specified - Key Generation is based on Key0.

IMPORTANT! For production devices, make sure that the Seed or Key0 has been generated by a
cryptographically strong generator such as a true random number generator.

If an empty file is mentioned, Bootgen generates a seed with time based randomization. This is
not a standard like the KDF. This seed will in turn be the input for KDF to generate the Key/IV
pairs.

BIF File with Multiple AESKEY Files

The following BIF file samples show the encryptions using aeskey files:

One AES Key / Partition

You may specify multiple .nky files, one for each partition in the image. The partitions are
encrypted using the key that is specified before the partition.

sample_bif:
{
[aeskeyfile] test1.nky
[bootloader, encryption=aes] fsbl.elf
[aeskeyfile] test2.nky
[encryption=aes] hello.elf
[aeskeyfile] test3.nky
[encryption=aes] app.elf
}

The fsbl.elf partition is encrypted using the keys from test1.nky file. If we assume that the
hello.elf file has two partitions since it has two loadable sections, then both the partitions
are encrypted using keys from test2.nky file. The app.elf partition is encrypted using keys
from test3.nky file.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=108

One AES Key / Each Partition (Multiple Loadable Sections Scenario)

You may specify multiple .nky files, one for each partition in the image. The partitions are
encrypted using the key that is specified before the partition. You are allowed to have unique key
files for each of the partition created due to multiple loadable sections by having key file names
appended with ‘.1’, ‘.2’...’.n’ in the same directory of the key file meant for that partition.

sample_bif:
{
[aeskeyfile] test1.nky
[bootloader, encryption=aes] fsbl.elf
[aeskeyfile] test2.nky
[encryption=aes] hello.elf
[aeskeyfile] test3.nky
[encryption=aes] app.elf
}

The fsbl.elf partition is encrypted using the keys from test1.nky file. Assume that the
hello.elf file has three partitions since it has three loadable sections, and hello.elf.0 is
encrypted using the keys from test2.nky file, hello.elf.1 is encrypted using the keys from
test2.1.nky, and hello.elf.2 is encrypted using the keys from test2.2.nky file. The
app.elf partition is encrypted using keys from test3.nky file.

Using the same .nky file across multiple partitions, reuses the AES Key and AES Key/IV Pair in
each partition. Using the AES key across multiple partitions increases the exposure of the key
and violates NIST. 800-38D. To avoid the re-use of AES Key/IV pair, Bootgen increments the IV
with the partition number. To avoid the re-use of both AES Key and AES Key/IV pair, Bootgen
allows you to provide multiple .nky files, one for each partition.

IMPORTANT! To avoid key re-use, support for single nky file across multiple partitions will be deprecated.

CAUTION! Using a single .nky  file with multiple partitions means that the same key is being used in
each partition, which violates NIST. 800-38D. A warning is issued in the current release with the plan to
generate an error in future releases.

Note: Key0/IV0 - should be the same in all the nky files.

If you specify multiple keys and if the number of keys are less than the number of blocks to be
encrypted, the Bootgen is ERRORED OUT.

If you need to specify multiple Key/IV pairs, you must specify (number-of-blocks+1) pairs. The
extra Key/IV pair is for SH. Ex: If blocks=4;8;16 - you have to specify 4+1=5 Key/IV pairs.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=109

Authentication
The SHA hardware accelerator included in the Zynq UltraScale+ MPSoC implements the SHA-3
algorithm and produces a 384-bit digest. It is used together with the RSA-4096 accelerator to
provide image authentication These blocks (SHA-3/384, and RSA) are hardened and part of
crypto interface block (CIB). You can use authentication by itself or in conjunction with
encryption.

Authentication flow treats the FSBL as raw data, where it makes no difference whether the
image is encrypted or not. There are two level of keys: primary key (PK) and secondary Key (SK).

Each key has two complementary parts: secret key and public key:

• PK contains primary public key (PPK) and primary secret key (PSK).

• SK contains secondary public key (SPK) and secondary secret key (SSK).

The hardened RSA block in the CIB is a Montgomery multiplier for acceleration of the math
required for RSA. The hardware accelerator can be used for signature generation or verification.
The ROM code only supports signature verification. Secret keys are only used in the signature
generation stage when the certificate is generated by Bootgen.

IMPORTANT! Signature generation is not done on the device, but in software during preparation of the
boot image.

To better understand the format of the authentication certificate, see Bootgen User Guide
(UG1283).

As with all asymmetric algorithms, the private (secret) keys (PSK and SSK) are used to sign while
the public versions (PPK and SPK) are used to verify (authenticate). The equations for each
signature (SPK, boot header, and boot image) are listed here:

• SPK signature. The 512 bytes of the SPK signature is generated by the following calculation:

SPK signature = RSA(PSK, padding || SHA(SPK+ auth_header)).

• Boot header signature. The 512 bytes of the boot header signature is generated by the
following calculation:

Boot header signature = RSA(SSK, padding || SHA(boot header)).

• Boot image signature. The 512 bytes of the boot image signature is generated by the
following calculation:

BI signature = RSA(SSK, padding || SHA(PFW + FSBL + authentication
certificate)).

Note: For SHA-3 authentication, Xilinx uses Keccak SHA3 to calculate hash on boot header, PPK hash and
boot image. NIST-SHA3 is used for all other partitions which are not loaded by ROM. The difference
between the two is padding (10*1 vs 0110*1). Request XPT475 from your Xilinx representative for details
on the NIST variances.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 110Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=110

Bootgen supports RSA-4096 signature generation only. The modulus, exponentiation and
precalculated R^2 Mod N are required. Software is supported only for RSA public key encryption,
for encrypting the signature RSA engine requires modulus, exponentiation and pre-calculated
R^2 Mod N, all these are extracted from keys.

BIF File with SHA-3 Boot Header Authentication and PPK0

The following BIF file sample supports the BH RSA option. This option supports integration and
test prior to the system being fielded. For more details, see “Integration and Test Support (BH
RSA Option)” in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The BIF file is for SHA-3 boot header authentication, where actual PPK hash is not compared
with the eFUSE stored value.

the_ROM_image: {
[fsbl_config] bh_auth_enable
[auth_params] ppk_select=0; spk_id=0x00000000
[pskfile] primary_4096.pem
[sskfile] secondary_4096.pem
[bootloader, authentication=rsa, destination_cpu=a53-0] fsbl.elf
[pmufw_image, authentication=rsa] xpfw.elf
}

BIF File with SHA-3 eFUSE RSA Authentication and PPK0

The following BIF file sample shows eFUSE RSA authentication using PPK0 and SHA-3.

the_ROM_image:
{
[auth_params]ppk_select=0;spk_id=0x00000001
[pskfile]psk.pem
[sskfile]ssk.pem
[bootloader, authentication = rsa, destination_cpu=a53-0]zynqmp_fsbl.elf
[destination_cpu = a53-0, authentication = rsa]Application.elf
}

Enhanced RSA Key Revocation Support
The RSA key provides the ability to revoke the secondary keys of one partition without revoking
them for all partitions.

Note: Primary key should be the same across all partitions.

This is achieved by using USER_FUSE0 to USER_FUSE7 eFuses (one can revoke up to 256 keys, if
all are not required for their usage) with the new BIF parameter spk_select.

The following BIF file sample shows enhanced user fuse revocation:

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 111Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=111

Image header and FSBL uses different SSK's for authentication (ssk1.pem and ssk2.pem
respectively) with the following bif input.

the_ROM_image: {
[auth_params]ppk_select = 0
[pskfile]psk.pem
[sskfile]ssk1.pem
[bootloader, authentication = rsa, spk_select = spk-efuse, spk_id =
x00000001, sskfile = ssk2.pem]zynqmp_fsbl.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = user-
efuse,spk_id = 0x1, sskfile = ssk3.pem]Application1.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = spk-efuse,
spk_id = 0x00000001, sskfile = ssk4.pem]Application2.elf
}

Same SSK will be used for both Image header and FSBL (ssk2.pem), if separate SSK is not
mentioned.

the_ROM_image: {
[auth_params]ppk_select = 0 [pskfile]psk.pem
[bootloader, authentication = rsa, spk_select = spk-efuse, spk_id =
0x00000001, sskfile = ssk2.pem]zynqmp_fsbl.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = user-efuse,
spk_id = 1, sskfile = ssk3.pem]Application1.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = spk-efuse,
spk_id = 0x00000001, sskfile = ssk4.pem]Application2.elf
}

spk_select = spk-efuse indicates that spk_id eFuse will be used for that partition.

spk_select = user-efuse indicates that user eFuse will be used for that partition.
Partitions loaded by CSU ROM will always use spk_efuse.

Note: The spk_id eFuse specifies which key is valid. Hence, the ROM checks the entire field of spk_id
eFuse against the SPK ID to make sure it is a bit for bit match.

Valid range of spk_id for spk_select user-efuse is 0x1 to 0x100 (in decimal 1 to 256). The
user eFuse specifies which key ID is not valid (has been revoked). Hence, the firmware (non-
ROM) checks to see if a given user eFuse that represents the SPK ID has been programmed.

Bitstream Authentication Using External
Memory

Authentication of a bitstream is different from all other partitions. The FSBL can be wholly
contained within the OCM, and therefore authenticated and decrypted inside of the device. For
the bitstream, the size of the file is so large that it cannot be wholly contained inside the device
and external memory must be used. The use of external memory creates a challenge to maintain
security because an adversary may have access to this external memory.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=112

The following section describes how the bitstream is authenticated securely using external
memory.

Bootgen
When bitstream is requested for authentication, Bootgen divides the whole bitstream into 8 MB
blocks and has an authentication certificate for each block.

If a bitstream is not in multiples of 8 MB, the last block contains the remaining bitstream data.

Figure 38: Bitstream Blocks

Boot Header

FSBL

FSBL AC

8MB block 1

8MB block 2

.
PL Bitstream Data

.

.

LastBlock(remaining)

Block1 AC

Block2 AC
.
.
.

Last Block AC

Whole
Bitstream

Authentication
certificates of
bitstream

X19220-110320

When authentication and encryption are both enabled, encryption is first done on the bitstream.
Then Bootgen divides the encrypted data into blocks and places an authentication certificate for
each block.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=113

Software
To securely authenticate the bitstream partition, FSBL uses the TF-A section's OCM memory to
copy the bitstream in chunks from FLASH or DDR.

IMPORTANT! While creating a boot image, the bitstream partition should be before the TF-A partition.
Otherwise, TF-A memory is over-written while processing the bitstream partition.

The workflow for the DDR and DDR-less systems is nearly identical. The only difference is that
for systems with the DDR, FSBL copies the entire bitstream partition (bitstream and
authentication certificates) to the DDR from the FLASH devices, because DDR is faster to
access. FSBL then, each time, copies a chunk of bitstream from the DDR. For the DDR-less
systems, FSBL copies a chunk of bitstream directly from the FLASH devices.

The following is the software workflow for authenticating the bitstream:

1. FSBL identifies the availability of the DDR on the system based on the XFSBL_PS_DDR
macro. FSBL has two buffers in OCM, ReadBuffer buffer of size 56 KB and HashsOfChunks[]
to store intermediate hashs calculated for each 56 KB of 8 MB blocks.

2. FSBL copies a 56 KB chunk from the first 8 MB block to ReadBuffer.

3. FSBL calculates hash on 56 KB and stores in HashsOfChunks.

4. FSBL repeats the previous steps until the entire 8 MB of block is completed.

Note: 56 KB is taken for performance; it can be of any size.

5. FSBL authenticates the bitstream.

6. Once the authentication is successful, FSBL starts copying 56 KB starting from the first block
which is located in DDR/FLASH to ReadBuffer, calculates the hash, and then compares it
with the hash stored at HashsOfChunks.

7. If hash comparison is successful, FSBL transmits data to PCAP through DMA (for
unencrypted bitstream) or AES (if encryption is enabled).

8. FSBL repeats the previous two steps until the entire 8 MB block is completed.

9. Repeats the entire process for all the blocks of bitstream.

Note: If there is any failure at any stage, PL is reset and FSBL is exited.

The bitstream is directly routed to PCAP through CSU DMA by configuring secure stream switch.

For a DDR system, the whole encrypted bitstream is copied to DDR. For DDR-less system,
decryption is copied to OCM(TF-A section) in chunks.

Note: Xilinx recommends that you have a bitstream partition immediately after the FSBL partition in the
boot image.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=114

Run-Time Security
Run-time security involves protecting the system against incorrectly programmed or malicious
devices corrupting the system memory or causing a system failure.

To protect the system, it is important to secure memory and the peripherals during a software
execution. The Zynq UltraScale+ MPSoCs provide memory and peripheral protection through the
following blocks:

• Trusted Firmware-A

• Xilinx Memory Protection Unit

• Xilinx Peripheral Protection Unit

• System Memory Management Unit

• A53 Memory Management Unit

• R5 Memory Protection Unit

One of the runtime security features is access controls on the PMU and CSU global registers
from Linux. These registers are classified into two lists:

• The white list which is accessible all the time by default.

• The black list which is accessible only when a compile time flag is set.

Trusted Firmware-A
The Zynq UltraScale+ MPSoC incorporates the standard execution model advocated for Armv8
cores. This model runs the normal operating system at a less privileged level, requiring it to
request access to security-sensitive hardware or registers using a proxy software called a secure
monitor. The specific secure monitor provided by Xilinx for the Zynq UltraScale+ MPSoC device
is a part of Linaro Trusted Firmware-A (TF-A). Xilinx neither requires nor provides a Trusted OS
However, the TF-A provided by Xilinx does include hooks that allow customers to add their own
Trusted OS and Trusted applications in order to implement a Trusted Execution Environment. TF-
A is the secure monitor that provides switching between the secure and the non-secure world.
See this whitepaper for more information.

The primary purpose of TF-A is to ensure that the system modules (drivers, applications) are
isolated from security resources. For example, Linux should be prevented from accessing the
region where a private key is stored in the SoC. Likewise, the driver for a crypto block does not
need to know the current session key; the session key could be programmed by the key
negotiation algorithm and stored in a secure location within the crypto block.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 115Send Feedback

https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.xilinx.com/support/documentation/white_papers/wp516-security-apps.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=115

Another usage of TF-A is to prevent any user space application from directly accessing the
hardware cryptographic engine. Instead, a user space application can make a call to the kernel
where the data to be processed is copied to kernel space. Afterwards, the driver will copy the
data from the kernel's virtual memory to physical address. Later, the driver will make a call to TF-
A and then to the PMU/CSU to perform cryptographic operations on the physical address. For
more information, see WP512.

PSCI is the interface from non-secure software to firmware implementing power management
use-cases (for example, secondary CPU boot, hotplug, and idle). It might be necessary for
supervisory systems to perform actions, such as restoring context and switches to the power
state of core. Non-secure software can call TF-A runtime services using the Arm secure monitor
call (SMC) instruction.

In the Arm architecture, synchronous control transfers between the non-secure state to a secure
state are handled through SMC exceptions, which are generated by the SMC instruction. These
are handled by the secure monitor. The operation of the secure monitor is determined by the
parameters passed in through registers.

Two types of calls are defined:

• Fast calls to execute atomic secure operations

• Standard calls to start preemptive secure operations

Two calling conventions for the SMC instruction defines two function identifiers for the SMC
instruction define two calling conventions:

• SMC32: A 32-bit interface that either 32-bit or 64-bit client code can use. SMC32 passes up
to six 32-bit arguments.

• SMC64: A 64-bit interface used only by 64-bit client code that passes up to six 64-bit
arguments.

You define the SMC function identifiers based upon the calling convention. When you define the
SMC function identifier, you pass that identifier into every SMC call in register R0 or W0, which
determines the following:

• Call type

• Calling convention

• Secure function to invoke

TF-A implements a framework for configuring and managing interrupts generated in either
security state. It implements a subset of the trusted board boot requirements (TBBR) and the
platform design document (PDD) for Arm reference platforms.

The cold boot path is where the TBBR sequence starts when the platform is powered on, and
runs up to the stage where it hands-off control to firmware running in the non-secure world in
DRAM. The cold boot path starts when you physically turn on the platform.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 116Send Feedback

https://www.xilinx.com/support/documentation/white_papers/wp512-accel-crypto.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=116

• You chose one of the CPUs released from reset as the primary CPU, and the remaining CPUs
are considered secondary CPUs.

• The primary CPU is chosen through platform-specific means. The cold boot path is mainly
executed by the primary CPU, other than essential CPU initialization executed by all CPUs.

• The secondary CPUs are kept in a safe platform-specific state until the primary CPU has
performed enough initialization to boot them.

For a warm boot, the CPU jumps to a platform-specific address in the same processor mode as it
was when released from reset.

TF-A Functions
The following table lists the TF-A functions:

Note: bl31 is equivalent to the TF-A, which in this case is the secure monitor.

Table 31: TF-A Functions

TF-A Functions Description
bl31_arch_setup(); Generic architectural setup from EL3.

bl31_platform_setup(); Platform setup in BL1.

bl31_lib_init(); Simple function to initialize all BL31 helper libraries.

cm_init(); Context management library initialization routine.

dcsw_op_all(DCCSW); Cleans caches before re-entering the non-secure software
world.

(*bl32_init)(); Function pointer to initialize the BL32 image.

runtime_svc_init(); Calls the initialization routine in the descriptor exported by a
runtime service. After a descriptor is validated, its start and
end owning entity numbers and the call type are combined
to form a unique oen. The unique oen is an index into the
rt_svc_descs_indices array. This index stores the index of the
runtime service descriptor.

validate_rt_svc_desc(); Simple routine to sanity check a runtime service descriptor
before it is used.

get_unique_oen(); Gets a unique oen.

bl31_prepare_next_image_entry(); Programs EL3 registers and performs other setup to enable
entry into the next image after BL31 at the next ERET.

bl31_get_next_image_type(); Returns the next_image_type.

bl31_plat_get_next_image_ep_info (image_type); Returns a reference to the entry_point_info structure
corresponding to the image that runs in the specified
security state.

get_security_state () Gets the security state.

cm_init_context() Initializes a cpu_context for the first use by the current CPU,
and sets the initial entry point state as specified by the
entry_point_info structure.

get_scr_el3_from_routing_model() Returns the cached copy of the SCR_EL3 which contains the
routing model (expressed through the IRQ and FIQ bits) for
a security state that is stored through a previous call to
set_routing_model().

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=117

Table 31: TF-A Functions (cont'd)

TF-A Functions Description
cm_prepare_el3_exit() Prepares the CPU system registers for first entry into the

secure or the non-secure software world.
• If execution is requested to EL2 or hyp mode SCTLR_EL2

is initialized.
• If execution is requested to the non-secure EL1 or svc

mode, and the CPU supports EL2; then EL2 is disabled by
configuring all necessary EL2 registers.

For all entries, the EL1 registers are initialized from the
cpu_context.

cm_get_context(security_state); Gets the context of the security state.

el1_sysregs_context_restore Restores the context of the system registers.

cm_set_next_context Programs the context used for exception return. This
initializes the SP_EL3 to a pointer to a cpu_context set for the
required security state.

bl31_register_bl32_init Initializes the pointer to BL32 init function.

bl31_set_next_image_type Accessor function to help runtime services determine which
image to execute after BL31.

For more information about TF-A, see Trusted Firmware-A documentation.

FPGA Manager Solution
The FPGA Manager in the Zynq UltraScale+ MPSoC provides an interface to download different
types of bitstreams (full, partial, authenticated, encrypted and so on) during runtime from Linux
environment. The key features of the FPGA Manager are as follows:

• Full bitstream loading

• Partial Reconfiguration (partial bitstream loading)

• Encrypted full/partial bitsream loading

• Authenticated full/partial bitstream loading

• Authenticated and encrypted full/partial bitstream loading

• Readback of configuration registers

• Readback of bitstream (configuration data)

FPGA Manager Architecture
The following figure shows the architecture of the FPGA Manager.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 118Send Feedback

https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=118

Figure 39: FPGA Manager Architecture Block Diagram

Linux FPGA Manager (kernel)

ATF

EEMI/SCMI/SVC

PMUFW

IPI

xilfpga

xilfpga APIs

FPGA/PL

X22151-121818

Execution Flow

FPGA manager provides an abstraction for the user to load bitstream using Linux. The xilfpga
library initializes the PCAP, CSUDMA and other hardware. For more details about xilfpga, see the
XilFPGA section in the OS and Libraries Document Collection (UG643).

To load a bitstream, the FPGA manager allocates the required memory and invokes the EEMI API
using the FPGA LOAD API ID. This request is a blocking call. The FPGA Manger waits for
response from the TF-A and response is provided to the fpga core layer which passes it to the
application. This is described in the following figure:

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=119

Figure 40: FPGA Manager Flow

fpgautil -b system.bit
Application Layer

FPGA Manager Core Framework Linux Kernel — EL1 NS

ZYNQMP FPGA Manager driver

ZYNQMP Firmware driver

ATF

PMUFW

Xilfpga Library

ATF (BL31) — EL3

PMUFW and XILFPGA

Write Request

SMC CALL

IPI

EEMI Request

X22152-110320

Xilinx Memory Protection Unit
The Xilinx memory protection unit (XMPU) is a region-based memory protection unit. For more
details, see “System Protection Unit” chapter in the Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

Protecting Memory with XMPU
Isolation of memory is fundamental to any secure or functionally safe system. The XMPU gives
users the ability to partition user-defined regions of memory and allocate them to specific
isolated subsystems.

To understand more about XMPU features and functionality, refer to “System Protection Unit”
chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 120Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=120

Configuring XMPU Registers
The XMPU is configurable either one-time or through TrustZone access from a secure master
(PMU, APU TrustZone secure master, or RPU when configured as secure master). At boot time,
the FSBL configures the XMPU and its configuration can be locked such that it can only be
reconfigured at next power-on reset. If the configuration is not locked, then XMPU can be
reconfigured any number of times by secure master accesses. If you choose to configure the
XMPU dynamically, you must also consider many aspects including the idling of active devices
and the AXI bus.

For more information on using the XMPU please see Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320).

Xilinx Peripheral Protection Unit
The XPPU allows protecting peripherals, message buffers, inter-processor interrupts (IPI),
communications, and Quad SPI flash memory. To understand more about Xilinx peripheral
protection unit (XPPU) features and functionality, see this link to the “Xilinx Peripheral Protection
Unit” section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

For more information on using the XMPU please see Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320).

System Memory Management Unit
The system memory management unit (SMMU) provides isolation to I/O and DMA capable
devices by virtualizing their address space.. The SMMU provides address translation for an I/O
device to identify more than its actual addressing capability. In absence of memory isolation, I/O
devices can corrupt system memory. The SMMU provides device isolation to prevent DMA
attacks. To offer isolation and memory protection, it restricts device access for DMA-capable I/O
to a pre-assigned physical space.

To understand more about SMMU features and functionality, see this link to the “System
Memory Management Unit” section of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 121Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxXilinxPeripheralProtectionUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemMemoryManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=121

A53 Memory Management Unit
The memory management unit (MMU) controls table-walk hardware that accesses translation
tables in main memory. The MMU translates virtual addresses to physical addresses and provides
configurable 1-stage or 2-stage address translation. The MMU provides fine-grained memory
system control through a set of virtual-to-physical address mappings and memory attributes held
in page tables. These are loaded into the translation lookaside buffer (TLB) when a location is
accessed.

To understand more about MMU features and functionality, see this link to the “Memory
Management Unit” section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

R5 Memory Protection Unit
The memory protection unit (MPU) enables you to partition memory into regions and set
individual protection attributes for each region. When the MPU is disabled, no access permission
checks are performed, and memory attributes are assigned according to the default memory map.
The MPU has a maximum of 16 regions.

To understand more about MPU features and functionality, see this link to the “Memory
Protection Unit” section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

TrustZone
TrustZone provides state isolation, which can divide peripherals, memory, and applications into a
secure and non-secure world. See Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320) for
details and the TRM.

Chapter 8: Security Features

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 122Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxMemoryManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxMemoryProtectionUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=122

Chapter 9

Platform Management
Zynq® UltraScale+™ MPSoCs are designed for high performance and power-sensitive
applications in a wide range of markets. The system power consumption depends on how
intelligently software manages the various subsystems – turning them on and off only when they
are needed and, also at a finer level, trading off performance for power. This chapter describes
the features available to manage power consumption, and how to control the various power
modes using software.

Platform Management in PS
To increase the scalability in the platform management unit (PMU), the Zynq UltraScale+ MPSoC
supports multiple power domains such as:

• Full Power Domain

• Low Power Domain

• Battery Power Domain

• PL Power Domain

For details on the PMU and the optional PMU firmware (PMU firmware) functionality, see the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

For more information on dynamically changing the PS clocks, see Chapter 14: Clock and
Frequency Management.

The PS block offers high levels of functionality and performance. At the same time, there is a
strong need to optimize the power consumption of this block with respect to the functionality
and performance that is necessary at each stage of the operation.

The Zynq UltraScale+ MPSoC has multiple power rails. Each rail can be turned off independently,
or can use a different voltage. Many of the blocks on a specific power rail implement power-
gating, which allows blocks to be gated off independently.

Examples of these power-gated domains are the: Arm® Cortex®-A53 and the Cortex®-R5F
processors, GPU pixel processors (PP), large RAMs, and individual USBs.

The following figure shows a block diagram of the platform management at the PS level.

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 123Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=123

Figure 41: Platform Management at the PS Level

SoC Debug

Quadcore APU L2
RAM

GPU

Interconnect IPI

IOU CSU PMU

eFuse
AMS

BBRAM RTC

ADMA

SLCR

PLLs

Dual
R5

TCM

GIC RPU

O
C
M

USB

OSC
PS

PL

DAP, RPU Debug

BPU

Low power domain

Battery power domain

Full power domain

X19226-071317

From the power perspective, Zynq UltraScale+ MPSoCs offers the following modes of operation
at the PS level:

• Full-power operation mode

• Low-power operation mode

• Deep-sleep mode

• Shutdown mode

• Battery-power mode

The following sections describe these modes.

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=124

Full-Power Operation Mode
In the full-power operation mode (shown as full power domain in the figure above), the entire
system is up and running. Total power dissipation depends on the number of components that
are running: their states and their frequencies. In this mode, dynamic power will likely dominate
the total power dissipation.

To optimize static and dynamic power in full-power mode, all large modules have their own
power islands to allow them to be shut down when they are not being used. To understand about
full-power operation mode, see this link to the “Platform Management Unit” chapter in the Zynq
UltraScale+ Device Technical Reference Manual (UG1085).

Low-Power Operation Mode
In the low-power operation mode, a subset of the PS (shown as low-power domain in the figure
above) is powered up that includes: the PMU, RPU, CSU, and the IOU.

In this mode, the ability to change system frequency allows power dissipation to be tuned. The
CSU must be running continuously to monitor the system security against SEU and tampering. In
this mode, the ability to change system frequency allows power dissipation to be tuned.

The low-power mode includes all lower-domain peripherals. Among the blocks within the low-
power mode, PLLs, dual Cortex-R5F, USBs, and the TCM and OCM block RAMs offer power
gating.

Note: SATA, PCIe®, and DisplayPort blocks are within the full power domain (FPD).

You can control power gating to different blocks through software by configuring the LPD_SLCR
registers. See the SLCR_Registers link in the Zynq UltraScale+ Device Register Reference (UG1087)
for more information on LPD_SLCR register.

Deep-Sleep Operation Mode
Deep-Sleep is a special mode in which the PS is suspended and waiting a wake-up signal. The
wake can be triggered by the MIO, the USB, or the RTC.

Upon wake, the PS does not have to go through the boot process, and the security state of the
system is preserved. The device consumes the lowest power during this mode while still
maintaining its boot and security state.

In this mode, all the blocks outside the low-power domain, such as the system monitor and PLLs,
are powered down. In LPD, Cortex-R5F is powered down. Because this mode has to preserve the
context, TCM and OCM are in a retention state.

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 125Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPowerManagement
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=125

Shutdown Mode
Shutdown mode powers down the entire APU core. This mode is applicable to APU only. During
shutdown, the entire processor state, including its caches, is completely lost; therefore, software
is required to save all states before requesting the PMU to power down the APU core.

When a CPU is shutdown, it is expected that any interrupt from a peripheral that is associated
with that CPU to initiate its power up; therefore, the interrupt lines to an APU core are also
routed to the PMU interrupt controller, and are enabled when the APU core is powered down.

The Embedded Energy Management Interface EEMI API Reference Guide (UG1200) describe the
APIs to invoke shutdown.

For more details, see this link to the “Platform Management Unit Programming Model” section in
the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Battery-Powered Mode
When the system is OFF, limited functionality within the PS must stay ON by operating on a
battery. The following features operate within the battery-powered domain PS:

• Battery-backed RAM (BBRAM) to hold key for secure configuration

• Real-time clock (RTC) including the crystal I/O

The Zynq UltraScale+ MPSoC includes only one battery-powered domain and only the functions
those are implemented in the PS can be battery backed-up. The required I/O for the battery-
powered domain includes the battery power pads and the I/O pads for the RTC crystal.

Power Management Framework
The Embedded Energy Management Interface EEMI API Reference Guide (UG1200) describes how to
use the power API functions.

Note: There is no difference between bare metal, FreeRTOS, or Linux-specific power management Xilinx
EEMI API offerings.

Wake Up Mechanisms
To understand about wake up mechanisms, see this link to the “Platform Management Unit
Operation” section of “Chapter 6, Platform Management Unit” of theZynq UltraScale+ Device
Technical Reference Manual (UG1085).

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPlatformManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=126

Platform Management for Memory
The Zynq UltraScale+ MPSoCs include large RAMs like L2 cache, OCM, and TCM. These RAMs
support various power management features such as: clock gating, power gating, and memory
retention modes.

• TCM and OCM support independent power gating and retention modes.

• The L2 cache controller supports dynamic clock gating, retention, and shutdown modes to
reduce power consumption at a finer granularity.

DDR Controller
The DDR controller implements the following mechanisms to reduce its power consumption:

• Clock Stop: When enabled, the DDR PHY can stop the clocks to the DRAM.

• For DDR2 and DDR3, this feature is only effective in self-refresh mode.

• For LPDDR2, this feature becomes effective during idle periods, power-down mode, self-
refresh mode, and deep power-down mode.

• Pre-Charge Power Down: When enabled, the DDRC dynamically uses pre-charge power
down mode to reduce power consumption during idle periods. Normal operation continues
when a new request is received by the controller.

• Self-Refresh: The DDR controller can dynamically put the DRAM into self-refresh mode
during idle periods. Normal operation continues when a new request is received by the
controller.

In this mode, DRAM contents are maintained even when the DDRC core logic is fully powered
down; this allows stopping the DDR3X clock and the DCI clock that controls the DDR
termination.

Platform Management for Interconnects
The Interconnect lays across multiple power rails and power islands which can be on or off at
different times. To ease the implementation, in most cases, the clocks for two power domains
that communicate with one another must be asynchronous; consequently, requiring
synchronizers on their interconnection.

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=127

To ease timing, the power domain is placed exactly at the clock crossing. The synchronizer must
be implemented as two separate pieces with each placed in one of the two domains that are
connected through the synchronizer, creating a bridge.

The bridge consists of a slave interface and a master interface with each lying entirely within a
single power and clock domain. The clock frequencies at the interfaces can vary independent of
each other, and each half can be reset independent of the other half.

Level shifters or clamping, or both, must be implemented between the two halves of the bridge
for multi-voltage implementation or power-off.

Also, the bridge keeps track of open transactions, as follows:

• When the bridge receives a power-down request from the PMU, it logs that request.

• All new transactions return an error while the previously open transactions are being
processed as usual until the transaction counter becomes 0. At that point, the bridge
acknowledges to the PMU that it is safe to shut down the master or slave connected to the
bridge.

• The entire Interconnect shuts down only when all bridges within that interconnect are idle.

For more details, see this link to the “PMU Interconnect” sub-section in the “Platform
Management Unit” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

PMU Firmware
Every system configuration that is supported by Xilinx includes PMU firmware in addition to the
functions of power-up and sleep management. The PMU can execute user programs that
implement advanced system monitoring and power management algorithms. In this mode, an
application or a real-time processor copies the power management program into the PMU
internal RAM through an inbound LPD switch. The PMU executes software that implements the
required reset, power management, system monitoring, and interrupt controls within all Xilinx
supported system configurations.

For more details, see this link to the “Platform Management Unit Programming Model” section in
“Chapter 6” of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

You can use the Vitis software platform to create custom PMU firmware. It provides the source
code for the PMU firmware template and the necessary library support. For details on how to
create a Vitis project, see Chapter 5: Software Development Flow.

Chapter 9: Platform Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 128Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPMUInterconnect
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=128

Chapter 10

Platform Management Unit
Firmware

The Platform Management Unit (PMU) in Zynq® UltraScale+™ MPSoCs is located within the
Low-power sub-system. The PMU consists of a MicroBlaze™ processor which loads executable
code from 32 KB ROM and 128 KB RAM into flat memory space. The PMU controls the power-
up, reset, and monitoring of resources within the system including inter-processor interrupts and
power management registers. The ROM is preloaded with PMU bootROM (PBR) which performs
pre-boot tasks and enters a service mode. PMU_FW must be loaded to provide advanced system
functionality for each of the Xilinx® supported use-cases. This chapter explains the features and
functionality of PMU firmware developed for Zynq UltraScale+ MPSoC.

Features
The following are the key features of PMU firmware:

• Provides modular functionality: PMU firmware is designed to be modular. It enables you to
add a new functionality in the form of a module

• Provides easy customization of modules

• Easily configurable to include only the required functionality for a user application

• Support communication with other components in the system over IPI (Inter-Processor
Interrupt)

• Run time configurability for EM module

• Support for various Power Management features

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=129

PMU Firmware Architecture
The following figure shows the architecture block diagram of PMU firmware. PMU firmware is
designed to be modular and enables adding new functionality in the form of modules. Each
functionally distinct feature is designed as a module so that the PMU firmware can be configured
to include only the required functionality for a user application. This type of modular design
allows easy addition of new features and optimizes memory footprint by disabling unused
modules.

PMU firmware can be divided into base firmware and modules. PMU Base Firmware does
initialization of modules, registering events for the modules, and provides all the common
functions that may be required by the modules. These common functions can be categorized into
the following APIs:

1. PMU firmware Core APIs

a. Scheduler

b. Event Manager

c. IPI Manager

2. PMU firmware General APIs

a. BSP/Utility APIs

b. Reset Services APIs

c. ROM Services APIs

These APIs can be used by the modules in PMU firmware to perform the specified actions as
required.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=130

Figure 42: PMU firmware Architecture Block diagram

Execution Flow
The initialization in PMU firmware takes place in a normal context. Interrupts are disabled to
avoid unintended interruptions and prevent usage of the system resources before they are
properly initialized. After initialization completes, interrupts are enabled and the required tasks
are scheduled to be executed. The system enters in to a sleep state. The system wakes up only
when an event occurs or the scheduled tasks are triggered and the corresponding handlers are
executed. The following figure shows the state transitions for PMU firmware.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=131

Figure 43: State Transitions for PMU firmware in Main Loop

Main Loop

[Active]
Execute Triggered
Tasks

[Active]
Execute Interrupt
Handlers

Wake on Interrupt

Other Wakes

[Sleep]

Main Loop

[Active]
Execute Triggered
Tasks

[Active]
Execute Interrupt
Handlers

[Sleep]

X24857-120120

PMU firmware execution flow consists of the following three phases:

• Initialization phase: This phase consists of PMU firmware starting up, performing self-tests
and validations, initializing the hardware, creating and initializing modules. Interrupts are
disabled during this phase and are enabled at the end.

• Post initialization: In this phase, PMU firmware enters service mode, wherein it enters into
sleep and waits for an interrupt.

• Waking up: PMU firmware enters the interrupt context and services the interrupt. After
completing this task, it goes back to sleep.

The following figure shows the execution flow for PMU firmware.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=132

Figure 44: Execution Context View for PMU firmware

Interrupt ContextMain Loop

Start Up

Create Modules

Initialize Modules

Enable Interrupts

Sleep

Execute Triggered
Tasks

Interrupt
Handler

-Dispatch Events to registered
 modules
-Modules execute the handlers

-Dispatch IPI to registered
 modules
-Modules execute IPI handlers

PIT:
-Flag tasks for execution

interrupt

reti

interrupt

reti

X24856-120120

Handling Inter-Process Interrupts in PMU
firmware

IPI is a key interface between PMU firmware and non-PMU entities on the SoC. PMU includes
four Inter-Processor Interrupts (IPI) assigned to it and one set of buffers. PMU firmware uses
IPI-0 and associated buffers for communication by default, which is initiated by other masters on
SoC to PMU. PMU firmware uses IPI-1 and associated buffers for callbacks from PMU to other
masters and for communication initiated by PMU firmware.

The following figure shows the IPI handling stack with interfaces between different components
involved in this process. PMU firmware uses IPI driver to send and receive the messages. An IPI
manager layer in Base Firmware is implemented over the driver and it takes care of dispatching
the IPI message to the registered module handlers based on IPI ID in the first word of the
message. The following table displays the message format for IPI.

Table 32: IPI Message Format

Word Content Description
0 Header <target_module_id, api_id>

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=133

Table 32: IPI Message Format (cont'd)

Word Content Description
1 Payload Module dependent payload

2

3

4

5

6 Reserved Reserved - for future use

7 Checksum

IPI-1 is used for the callbacks from PMU to other masters and for communication initiated by
PMU firmware. Currently, PM and EM modules use IPIs and this can be taken as reference for
implementing custom modules which require IPI messaging.

Figure 45: IPI Handler Stack with Interfaces

Core Framework

IPI Manager

IPI Driver

Module

GetSource

Write Buffer
TriggerIPI

Read Buffer
GetIpiMask

GetMsg
SendMsg

Dispatch IPI

X22155-121818

PMU firmware provides wrapper APIs around IPI driver functions to send and receive IPI
messages. During initialization, PMU firmware initializes the IPI driver and enables IPI interrupt
from the masters which are IPI assigned.

Send IPI Message
XPfw_IpiWriteMessage() API is used to send IPI message to target. This function internally
calls the IPI driver write API with buffer type as Message buffer.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=134

Parameters

Table 33: Send IPI Message

Parameter Description
ModPtr Module pointer from where the IPI message is being sent. In IPI

message, target_module_id field will be updated with the Module IPI ID
information which is present in Module pointer.

DestCpuMask Destination target IPI ID

MsgPtr Message Pointer

MsgLen Message Length

Return

XST_SUCCESS: If message is sent successfully.

XST_FAILURE: If message fails.

Send IPI Response
XPfw_IpiWriteResponse() API is used to send the response to the master which sent an IPI
message. This function internally calls the IPI driver write API with buffer type as Response
buffer.

Parameters

Table 34: Send IPI Response

Parameter Description
ModPtr Module pointer to check which module received this IPI response

SrcCpuMask Source IPI ID to read IPI response

MsgPtr Response Message Pointer

MsgLen Response Message Length

Return

XST_SUCCESS: If IPI response is read successfully.

XST_FAILURE: If response fails.

Read IPI Message
XPfw_IpiReadMessage() is used to read the IPI message received when IPI interrupt comes.
This function internally calls the IPI driver read API with buffer type as Message buffer.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=135

Parameters

Table 35: Read IPI Message

Parameter Description
SrcCpuMask Source IPI ID to read the IPI message

MsgPtr Message Pointer

MsgLen Message Length

Return

XST_SUCCESS: If IPI message is read successfully.

XST_FAILURE: If message fails.

Read IPI Response
XPfw_IpiReadResponse() is used to read the IPI response for the message sent. This
function internally calls the IPI driver read API with buffer type as response buffer.

Parameters

Table 36: Read IPI Response

Parameter Description
ModPtr Module pointer to check which module received this IPI response

SrcCpuMask Source IPI ID to read IPI response

MsgPtr Response Message Pointer

MsgLen Response Message Length

Return

XST_SUCCESS: If IPI response is read successfully.

XST_FAILURE: If response fails.

Triggering an IPI
XPfw_IpiTrigger() is used to trigger an IPI to the destination. This function internally calls
the IPI driver trigger. This function should be called after the IPI message writes IPI buffer.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=136

Parameters

Table 37: Triggering an IPI

Parameter Description
DestCpuMask Destination target IPI ID

Return

XST_SUCCESS: If IPI is triggered successfully.

XST_FAILURE: If trigger fails.

Note: Vivado® allows you to enable or disable the IPI. To do so, select MPSoC IP → Re-customize IP → 
Switch To Advanced Mode → Advanced Configuration → Inter Processor Interrupt (IPI) Configuration → 
IPI-Master Mapping. However, it is not recommended that you disable IPI channels for APU or RPU for the
PMU firmware PM module to work as expected because in the default configuration, PM assumes that
both APU and RPU IPI channels are enabled.

PMU Firmware Modules
PMU firmware consists of the following modules:

1. Error Management (EM)

2. Power Management (PM)

3. Scheduler

4. Safety Test Library (STL)

PMU firmware has a module data structure (XPfw_Module_t) which contains the information
about the module. This data structure is defined for each module when the module is created.
The following table shows its members.

Table 38: Module Data Structure Members

Member Range Additional Information
ModId 0.. 31

CfgInitHandler Init handler function pointer Default to NULL

IpiHandler Handler for IPI manager Default to NULL

EventHandler Handler for registered events of the
module

Default to NULL

IpiId 16-bit IPI ID Unique to each module

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=137

PMU firmware also has a core data structure which contains the list and the details of all
modules. The following table shows its members.

Table 39: Core Data Structure Members

Member Range Additional Information
ModList array 0.. 31 Module list array (of 32 elements) of

Module structure

Scheduler Scheduler structure Scheduler task owned by the module

ModCount 0.. 31

IsReady Core is ready/dead

Mode Safety Diagnostics mode/Normal mode

Base PMU firmware supports a few APIs that are used by these modules. Also, if you want to
create a custom module, these APIs can be used from xpfw_core.h.

Creating a Module
XPfw_CoreCreateMod() API is called during the startup to create a module. PMU firmware
can have maximum of 32 modules. This function checks if the module count reached the
maximum count. If not, it fills in the details to core structure ModList and returns this module
data structure to the caller. Otherwise, it returns NULL.

Setting up Handlers for the Module
Each module can be provided with three handlers which are called during the respective phases
as described below:

Table 40: Module Handlers

Module
Handler Purpose API for Registering the Handler Execution

context
Init Called during the init of the core to

configure the module, register for
events or add scheduler tasks. This
can be used to load the
configuration data into the module
if required.

XPfw_CoreSetCfgHandler(const XPfw_Module_t
*ModPtr,
XPfwModCfgInitHandler_tCfgHandler);

StartUp

Event Handler Called when an event occurs
(module should have registered for
this event, preferably during the init
phase

XPfw_CoreSetEventHandler(const
XPfw_Module_t *ModPtr,
XPfwModEventHandler_t EventHandler);

Interrupt

IPI Handler Called when an IPI message with
respective module-id arrives

XPfw_CoreSetIpiHandler(const XPfw_Module_t
*ModPtr, XPfwModIpiHandler_t IpiHandler,
u16 IpiId);

Interrupt

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=138

PMU Firmware Build Flags
In PMU firmware, each module can be enabled/disabled based on your requirement. This is
achieved by using build flags. The following table describes the important build flags in PMU
firmware and its usage. Please see xpfw_config.h file in PMU firmware sources for a complete
list of build flags.

Table 41: PMU Firmware Build Flags

Flag Description Prerequisites Default
Setting

XPFW_DEBUG_DETAILED Enables detailed debug prints in PMU
firmware.
This feature is supported in 2017.3 release
and above.

Disabled

PM_LOG_LEVEL Enables print based debug functions for
PM module. Possible values are:
• Alerts
• Errors
• Warnings
• Information
Higher numbers include the debug scope
of lower number, i.e. enabling 3
(warnings) also enables 1 (alerts) and 2
(errors).

Disabled

ENABLE_EM Enables Error Management Module. ENABLE_SCHEDULER Disabled

ENABLE_ESCALATION Enables escalation of sub-system restart to
SRST/PS-Only if the first restart attempt
fails.

ENABLE_RECOVERY,
ENABLE_EM,
ENABLE_SCHEDULER

Disabled

ENABLE_RECOVERY Enables WDT based restart of APU sub-
system.

ENABLE_EM, ENABLE_PM,
EMABLE_SCHEDULER

Disabled

ENABLE_PM Enables Power Management Module Enabled

ENABLE_NODE_IDLING Enables idling and reset of nodes before
force shutdown of a sub-system.

Disabled

ENABLE_SCHEDULER Enables Scheduler module Enabled

ENABLE_WDT Enables CSU WDT based restart of system
used by PMU.

ENABLE_SCHEDULER,
ENABLE_EM

Disabled

ENABLE_STL Enables STL Module. None Disabled

ENABLE_RTC_TEST Enables RTC event handler test module. None Disabled

ENABLE_SAFETY Enables CRC calculation for IPI messages. None Disabled

ENABLE_FPGA_LOAD Enables FPGA bit stream loading feature. ENABLE PM Enabled

ENABLE_SECURE Enables security features. ENABLE PM Enabled

IDLE_PERIPHERALS Enables idling peripherals before PS-only
or System reset.

ENABLE PM Disabled

ENABLE_POS Enables Power Off Suspend feature. ENABLE PM Disabled

EFUSE_ACCESS Enables efuse access feature. ENABLE PM Disabled

ENABLE_UNUSED_RPU_
PWR_DWN

Powers down RPU(s) and slaves if they are
not running after receiving PmInitFinalize.

Enabled

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=139

Table 41: PMU Firmware Build Flags (cont'd)

Flag Description Prerequisites Default
Setting

USE_DDR_FOR_APU_RESTART Enables handling of APU restart gracefully
by storing FSBL to DDR during boot and
restoring it back to OCM before
performing APU restart.

ENABLE_SECURE Enabled

Error Management (EM) Module
Error Management Hardware
Zynq UltraScale+ MPSoC has a dedicated error handler to aggregate and handle fatal errors
across the SoC. See the TRM/Arch Spec for more information.

All fatal errors routed to Error Manager can either set to be handled by HW (and trigger a
SRST/PoR/PS error out) or trigger an interrupt to PMU.

Error Management in PMU firmware
Error management module initializes and handles the errors that are generated by hardware and
provides an option for you to customize these handlers. In hardware, there are two error status
registers which hold the type of error that occurred. Also any error can be enabled/disabled from
interrupting the PMU MicroBlaze. For each of the errors, you can decide what action should be
taken when the error occurs. The possible scenarios would be one or a combination of the
following choices:

1. Asserting of PS_ERROR_OUT signal on the device

2. Generation of an interrupt to the PMU processor

3. Generation of a system reset (SRST)

4. Generation of a power-on-reset (POR)

PMU firmware provides APIs to register custom error handlers or assign a default (SRST/PoR/PS
error out) action in response to an Error. When PMU firmware starts, it sets an error action as
interrupt to PMU for some of the errors and PS error out for others as per the ErrorTable[]
structure defined in xpfw_error_manager.c.

Error Management API Calls

This section describes the APIs supported by Error Management module in PMU firmware.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=140

Setting up Error Action

XPfw_EmSetAction() API is used to setup an action for the specified error.

Parameters

Table 42: XPfw_EmSetAction

Parameter Description
ErrorId ErrorId is ID for error as defined in EM Error ID Table.

ActionId ActionId is one of the actions defined in EM Error Action
Table.

ErrorHandler ErrorHandler is the handler to be called in case where action
is interrupt to PMU

Return

XST_SUCCESS: If error action is set properly.

XST_FAILURE: If error action fails.

Removing Error Action

XPfw_EmDisable() API is used to remove error action for the specified error.

Parameters

Table 43: XPfw_EmDisable

Parameter Description
ErrorId ErrorId is ID for error to remove error action

Return

XST_SUCCESS: If successful.

XST_FAILURE: If action fails.

Processing an Error

XPfw_EmProcessError() API processes the errors that occur. If the respective error is
registered with an error handler, then this function will call the respective handler to take
appropriate action.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=141

Parameters

Table 44: XPfw_EmProcessError

Parameter Description
ErrorType Type of error received

(EM_ERR_TYPE_1: For errors in PMU GLOBAL
ERROR_STATUS_1
EM_ERR_TYPE_2: For errors in PMU GLOBAL
ERROR_STATUS_2)

Return

XST_SUCCESS: If successful.

XST_FAILURE: If action fails.

IPI Handling by EM Module

Along with the PM module, error management module also uses IPI-0 channel for message
exchange. APU and RPU 0/1 masters can communicate to this module using IPI. The
target_module_id in IPI message differentiates which module needs to take an action based
on the message received. The target_module_id for IPI handler registered for EM module is
0xE. Currently, PMU firmware supports only the messages shown in the following table using IPI.

Table 45: IPI Messages Supported by PMU firmware

S.No IPI Message IPI Message ID/API ID
1 Set error action 0x1

2 Remove error action 0x2

3 Send errors occurred 0x3

Set Error Action

When this IPI message is received from any target to PMU firmware, PMU firmware sets the
error action for the error ID received in the message. If processing of the message is successful, it
sends SUCCESS (0x0) response to the target. Otherwise FAILURE (0x1) response will be sent.
The message format for the same is as below:

Table 46: Message Format for Error Action

Word Description
0 <target_module_id, api_id>

1 Error ID. See EM Error ID Table for the Error IDs supported.

2 Error Action. See EM Error Action Table for the Error Actions supported.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=142

Remove Error Action

When this IPI message is received from any target to PMU firmware, EM module IPI handler will
remove the error action for the error ID received. And after processing the message, it will send
SUCCESS/FAILURE response to the target respectively. The message format for the same is as
below:

Table 47: Message Format for Removing Error Action

Word Description
0 <target_module_id, api_id>

1 Error ID. See EM Error ID Table for the Error IDs supported.

Send Errors Occurred

PMU firmware saves the errors that occur in the system and sends to the target upon request.
The message format is as below:

Table 48: Message Format for Sending Errors Occurred

Word Description
0 <target_module_id, api_id>

The following table shows the response message sent by PMU firmware.

Table 49: Response Message by PMU Firmware

Word Description
0 <target_module_id, Success/Failure>

1 Error_1 (Bit description is as ERROR_STATUS_1 register in PMU Global registers. If a bit is
set to 1, then it means the respective error as described in ERROR_STATUS_1 has
occurred)

2 Error_2 (Bit description is as ERROR_STATUS_2 register in PMU Global registers. If a bit is
set to 1, then it means the respective error as described in ERROR_STATUS_2 has
occurred)

3 PMU RAM Correctable ECC Count

EM Error ID Table
Table 50: EM Error ID Table

Error ID Error
Number Error Description Default Error

Action
EM_ERR_ID_CSU_ROM 1 Errors logged by CSU bootROM (CBR) PS Error Out

EM_ERR_ID_PMU_PB 2 Errors logged by PMU bootROM (PBR)
in the pre-boot stage

PS Error Out

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=143

Table 50: EM Error ID Table (cont'd)

Error ID Error
Number Error Description Default Error

Action
EM_ERR_ID_PMU_SERVICE 3 Errors logged by PBR in service mode PS Error Out

EM_ERR_ID_PMU_FW 4 Errors logged by PMU firmware PS Error Out

EM_ERR_ID_PMU_UC 5 Un-Correctable errors logged by PMU
HW. This includes PMU ROM validation
Error, PMU TMR Error, uncorrectable
PMU RAM ECC Error, and PMU Local
Register Address Error

PS Error Out

EM_ERR_ID_CSU 6 CSU HW related Errors PS Error Out

EM_ERR_ID_PLL_LOCK 7 Errors set when a PLL looses lock (These
need to be enabled only after the PLL
locks-up)

PS Error Out

EM_ERR_ID_PL 8 PL Generic Errors passed to PS PS Error Out

EM_ERR_ID_TO 9 All Time-out Errors [FPS_TO, LPS_TO] PS Error Out

EM_ERR_ID_AUX3 10 Auxiliary Error 3 PS Error Out

EM_ERR_ID_AUX2 11 Auxiliary Error 2 PS Error Out

EM_ERR_ID_AUX1 12 Auxiliary Error 1 PS Error Out

EM_ERR_ID_AUX0 13 Auxiliary Error 0 PS Error Out

EM_ERR_ID_DFT 14 CSU System Watch-Dog Timer Error System Reset

EM_ERR_ID_CLK_MON 15 Clock Monitor Error PS Error Out

EM_ERR_ID_XMPU 16 XPMU Errors [LPS XMPU, FPS XPMU] Interrupt to PMU

EM_ERR_ID_PWR_SUPPLY 17 Supply Detection Failure Errors PS Error Out

EM_ERR_ID_FPD_SWDT 18 FPD System Watch-Dog Timer Error Interrupt to PMU if
ENABLE_RECO
VERY flag is defined
and FSBL runs on APU.
Otherwise, System
Reset

EM_ERR_ID_LPD_SWDT 19 LPD System Watch-Dog Timer Error Interrupt to PMU if
ENABLE_RECO
VERY flag is defined
and FSBL runs on RPU.
Otherwise, System
Reset

EM_ERR_ID_RPU_CCF 20 Asserted if any of the RPU CCF errors
are generated

PS Error Out

EM_ERR_ID_RPU_LS 21 Asserted if any of the RPU CCF errors
are generated

Interrupt to PMU

EM_ERR_ID_FPD_TEMP 22 FPD Temperature Shutdown Alert PS Error Out

EM_ERR_ID_LPD_TEMP 23 LPD Temperature Shutdown Alert PS Error Out

EM_ERR_ID_RPU1 24 RPU1 Error including both Correctable
and Uncorrectable Errors

PS Error Out

EM_ERR_ID_RPU0 25 RPU0 Error including both Correctable
and Uncorrectable Errors

PS Error Out

EM_ERR_ID_OCM_ECC 26 OCM Uncorrectable ECC Error PS Error Out

EM_ERR_ID_DDR_ECC 27 DDR Uncorrectable ECC Error PS Error Out

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=144

EM Error Action Table
Table 51: EM Error Action Table

Error Action Error Action
Number Error Action Description

EM_ACTION_POR 1 Trigger a Power-On-Reset

EM_ACTION_SRST 2 Trigger a System Reset

EM_ACTION_CUSTOM 3 Call the custom handler registered as ErrorHandler
parameter

EM_ACTION_PSERR 4 Trigger a PS-Error Out action

PMU Firmware Signals PLL Lock Errors on
PS_ERROR_OUT
When EM module is enabled, it is recommended to enable SCHEDULER also. During FSBL
execution of psu_init, it is expected to get the PLL lock errors. To avoid these errors during
EM module initialization, PMU firmware will not enable PLL Lock errors. It waits for psu_init
completion by FSBL using a scheduler task. After FSBL completes execution of psu_init, PMU
firmware will enable all PLL Lock errors.

In xpfw_error_management.c, you can see the following default behavior of the PMU
firmware for PLL Lock Errors:

[EM_ERR_ID_PLL_LOCK] = { .Type = EM_ERR_TYPE_2, .RegMask =
PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK, .Action = EM_ACTION_NONE, .Handler
=
NullHandler},

where, PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK is #defined with 0X00001F00
value, which means that all the PLL Lock Errors are enabled. Hence, if the design do not use any
PLL/PLLs that are not locked, this triggers the PS_ERROR_OUT signal. It means that the
PMU_GLOBAL.ERROR_STATUS_2 register (bits [12:8]) signals that one or more PLLs are NOT
locked and that triggers the PS_ERROR_OUT signal.

To analyze further and see if this is really an issue is to fully understand the status of the PLL in
the design. For example, if the design only uses IO_PLL and DDR_PLL and
PMU_GLOBAL.ERROR_STATUS_2 register signals 0x1600 value, it means that the RPU_PLL,
APU_PLL, and Video_PLL Lock errors have occurred. Looking at a few more registers, you can
really understand the status of the PLLs.

PLL_STATUS

• PLL_STATUS (CRL_APB) = FF5E0040: 00000019

• PLL_STATUS (CRF_APB) = FD1A0044: 0000003A

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=145

Table 52: PLL_STATUS

PLL STATUS ERROR_STATUS_2
IOPLL is locked and stable Bit [8] is for IO_PLL = 0

RPLL is stabled and NOT locked (which means bypassed) Bit [9] is for RPU_PLL = 1

APPL is stabled and NOT locked (which means bypassed) Bit [10] is for APU_PLL = 1

DPLL is locked and stable Bit [11] is for DDR_PLL = 0

VPLL is stabled and NOT locked (which means bypassed) Bit [12] is for Video_PLL = 1

Hence, if the design only uses IO_PLL and DDR_PLL, then it is not really an error to have
RPU_PLL, APU_PLL and Video_PLL in NOT locked status.

Xilinx recommends you to customize the PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK
to cover only the PLL of interest so that you can have a meaningful PS_ERROR_OUT signal.

Example:

#define PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK ((u32)0X00000900U) will only
signal on PS_ERROR_OUT IO_PLL and DDR_PLL errors.

Power Management (PM) Module
Zynq UltraScale+ MPSoC Power Management framework is based on an implementation of the
Embedded Energy Management Interface (EEMI). This framework allows software components
running across different processing units (PUs) on a chip or device to issue or respond to requests
for power management.

The Power Management module is implemented within the PMU firmware as an event-driven
module. Events processed by the Power Management module are called power management
events. All power management events are triggered via interrupts.

When handling an interrupt the PMU firmware determines whether the associated event shall be
processed by the Power Management module. Accordingly, if the PMU firmware determines that
an event is power management related and if the Power Management module is enabled, the
PMU firmware triggers it to process the event.

For example, all the PS and PL interrupts can be routed to the PMU via the GIC Proxy. When the
application processors (APU or RPU) are temporarily suspended, the PMU handles the GIC Proxy
interrupt and wakes up the application processors to service the original interrupts. The PMU
firmware does not actually service these interrupts, although you are free to customize the PMU
firmware so that these interrupts are serviced by the PMU instead of by the application
processors. For more information, see the ‘Interrupts’ chapter of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=146

When processing a power management event the Power Management controller may exploit the
PMU ROM handlers for particular operations regarding the state control of hardware resources.
Warm restart and FPGA configuration manager are part of Power Management module. PMU
firmware includes XilFPGA and XilSecure libraries to support the functionalities of PL FPGA
configuration and to access secure features respectively. See Chapter 11: Power Management
Framework for more information.

Note: Since the Power Management module uses base firmware APIs such as IPI manager/event manager,
it is not possible to run standalone power management features without PMU firmware. See PM Examples
wiki page for XilPM based design examples.

Scheduler
A scheduler is required by modules like STL in order to support periodic tasks like register
coverage, scrubbing, etc. PMU firmware also uses scheduler for LPD WDT functionality. This will
be explained in the following section. PMU MicroBlaze has 4 PITs (0-3) and Scheduler uses PIT1.
The scheduler supports up to 10 tasks. The following table shows the Scheduler’s task list data
structure with members.

Table 53: Scheduler Data Structure Members

Member Values/Range Additional information
Task ID 0 0.. 9 0 - Highest priority

Interval Task interval in Milliseconds

OwnerId 0.. 9 Modules that owns this task

Status Enabled/Disabled

Callback Function pointer Default to NULL

Note: By default, scheduler functionality is disabled. To enable the same, ENABLE_SCHEDULER build flag
needs to be defined.

Safety Test Library
Safety Test Library (STL) is a collection of software safety mechanisms complementing hardware
safety features for the detection of random hardware (HW) faults. PMU firmware has a
placeholder for STL initialization during PMU firmware startup. This is enabled when
ENABLE_STL build flag is defined. The software library and the safety documentation can be
seen at the Safety Lounge.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 147Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842159/Zynq+UltraScale+MPSoC+Power+Management+-+ZCU102+SW+Design+Examples
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842159/Zynq+UltraScale+MPSoC+Power+Management+-+ZCU102+SW+Design+Examples
https://www.xilinx.com/member/safety.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=147

CSU/PMU Register Access
The following section discusses how to Read/Write the CSU and PMU global registers and
provides a list of White and Black registers.

Register Write

$ echo > /sys/firmware/zynqmp/config_reg

Register Read

$ echo > /sys/firmware/zynqmp/config_reg
$ cat /sys/firmware/zynqmp/config_reg

CSU and PMU global registers are categorized into two lists:

• By default, the White list registers can be accessed all the time. The following is a list of white
registers.

○ CSU Module:

- Csu_status

- Csu_multi_boot

- Csu_tamper_trig

- Csu_ft_status

- Jtag_chain_status

- Idcode

- Version

- Csu_rom_digest(0:11)

- Aes_status

- Pcap_status

○ PMU Global Module:

- Global_control

- Global_Gen_Storage0 - 6

- Pers_Glob_Gen_Storage0-6

- Req_Iso_Status

- Req_SwRst_Status

- Csu_Br_Error

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=148

- Safety_Chk

• The Black list registers can accessed when a compile time flag is set.

Every other register in both the CSU Module and the PMU_GLOBAL Module that is not covered
in the above white list will be a black register. RSA and RSA_CORE module registers are black
registers.

The #define option (SECURE_ACCESS_VAL) provides access to the black list. To access black
list registers, build the PMU firmware with SECURE_ACCESS_VAL flag set.

Timers
Zynq UltraScale+ MPSoCs have two system watchdog timers, one each for full-power domain
(FPD) and low-power domain (LPD). Each of these WDT provides error condition information to
the error manager. EM module can be configured to set a specific error action when FPD or LPD
WDT expires. This section describes the usage of these watchdog timers and the PMU firmware
functionality when these watchdog timers expire.

FPD WDT
FPD WDT can be used to reset the APU or the FPD. PMU firmware error management module
can configure the error action to be taken when the FPD WDT error occurs. PMU firmware
implemented a recovery mechanism for FPD WDT error. This mechanism is disabled by default.
The same can be enabled by defining ENABLE_RECOVERY build flag.

The EM module in PMU firmware sets FPD WDT error action as ‘system reset’ when recovery
mechanism is not enabled. In this case, PMU firmware doesn't initialize and configure the FPD
WDT. It is left for Linux driver to initialize and start the WDT if required. When WDT expires,
system restart happens.

When ENABLE_RECOVERY flag is defined and FSBL runs on APU, PMU firmware sets FPD WDT
error action as ‘interrupt to PMU’ and registers a handler to be called when this error occurs. In
this case, when PMU firmware comes up, it initializes and starts the WDT. It also initializes and
sets the timer mode of TTC to interval mode.

PMU firmware configures FPD WDT expiry time to 60 seconds. And if WDT error occurs, PMU
firmware gets an interrupt and it calls the registered handler. PMU firmware has a restart tracker
structure to track the restart phase and other information for a master. APU and RPU are the
masters currently using this structure. Following are its members:

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=149

Table 54: Restart Tracker Structure Members

Member Description
Master Master whose restart cycle is to be tracked

RestartState Track different phases in restart cycle

RestartScope Restart scope upon FPD WDT error interrupt

WdtBaseAddress Base address for WDT assigned to this master

WdtTimeout Timeout value for WDT

ErrorId Error Id corresponding to the WDT

WdtPtr Pointer to WDT for this master

WdtResetId Wdt reset ID

TtcDeviceId TTC timer device ID

TtcPtr Pointer to TTC for this master

TtcTimeout Timeout to notify master for event

TtcResetId Reset line ID for TTC

When WDT error occurs, WDT error handler is called and PMU firmware performs the following:

1. It checks if master is APU and error ID is FPD WDT. Then, it checks if restart state is in
progress or not. If restart state is not in progress, then it changes the restart state to in
progress.

2. Later, it restarts the WDT so that the PMU firmware knows when the WDT error is not due
to APU application.

3. Then, it idles APU by sending an IPI to TF-A through timer interrupt TTC3_0.

Note: This is only true for Linux, and not for bare metal where there is no TF-A.

4. If the first restart attempt fails, then PMU firmware escalates restart to either system-reset or
PS-only reset if ENABLE_ESCALATION flag is defined. If ENABLE_ESCALATION is not
defined, PMU firmware restarts the APU. Otherwise, PMU firmware performs the following:

• First, PMU firmware checks if PL is configured or not.

• If PL is configured, PMU firmware initiates PS-only restart. Otherwise, it initiates system-
reset.

Note: Ensure that the WDT heartbeat application is running in Linux.

LPD WDT
LPD WDT can be used to reset the RPU. PMU firmware error management module can configure
the error action to be taken when the LPD WDT error occurs. PMU firmware implements a
recovery mechanism for LPD WDT error. This mechanism is disabled by default. The same can be
enabled by defining the ENABLE_RECOVERY build flag.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=150

The EM module in the PMU firmware sets LPD WDT error action as "system reset' when
recovery mechanism is not enabled. In this case, PMU firmware doesn't initialize and configure
the LPD WDT. It is left to the RPU user application to initialize and start the WDT, if required.
When WDT expires, the system restarts.

When ENABLE_RECOVERY flag is defined and FSBL is running on RPU, PMU firmware sets FPD
WDT error action as "interrupt to PMU" and registers a handler to be called when this error
occurs. In this case, when PMU firmware comes up, it initializes and starts the WDT.

PMU firmware configures LPD WDT expiry time to 60s. And if WDT error occurs, PMU firmware
gets an interrupt and it calls the registered handler. PMU firmware maintains a restart tracker
structure for LPD WDT. Refer to Table 10-23 for more information.

When WDT error occurs, the WDT error handler is called and PMU firmware performs the
following actions:

1. It checks if master is RPU and error ID is LPD WDT. Then, it checks if restart state is in
progress or not. If restart state is not in progress, then it changes the restart state to in
progress and restarts the WDT to track the next WDT expiry.

2. It applies AIB isolation for RPU and removes it.

3. If restart scope is set as a subsystem, then it will restart RPU subsystem.

4. If restart scope is set as PS only restart, then PMU firmware will restart PS subsystem.

5. If restart scope is set as system, then it will perform the system restart.

CSU WDT
The CSU WDT is configured to be used by PMU firmware that if PMU firmware application
hangs for some reason, then the system would restart. This functionality is enabled only when
ENABLE_WDT flag is defined.

EM modules sets CSU WDT error action as ‘System Reset’ Initialization of CSU WDT depends on
bringing WDT out of reset which is performed by psu_init from FSBL. FSBL writes the status
of psu_init completion to PMU Global general storage register 5, so that PMU firmware can
check for its completion before initializing CSU WDT. When ENABLE_WDT flag is defined during
PMU firmware initialization, it adds a task to scheduler to be triggered for every 100 milli-
seconds until psu_init completion status is updated by FSBL. After psu_init is completed,
this task will be removed from scheduler tasks list and PMU firmware initializes CSU WDT and
configures it to 90 milli-seconds. It also starts a scheduler task to restart the WDT for every 50
milli-seconds. Whenever CSU WDT error occurs due to PMU firmware code hanging, this error is
handled in hardware to trigger ‘System Reset’ and the system will restart.

Following are the dependencies to use this WDT functionality:

1. EM module needs to be enabled by defining ENABLE_EM flag.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=151

2. ENABLE_WDT flag needs to be defined to use CSU WDT.

3. Scheduler module needs to be enabled by defining ENABLE_SCHEDULER to add a task to
scheduler to check for psu_init completion and to restart WDT periodically.

Configuration Object
The configuration object is a binary data object used to allow updating data structures in the
PMU firmware power management module at boot time. The configuration object must be
copied into memory by a processing unit on the Zynq UltraScale+ MPSoC. The memory region
containing the configuration object must be accessible by the PMU.

The PMU is triggered to load the configuration object via the following API call:

XPm_SetConfiguration(address);

The address argument represents the start address of the memory where the configuration
object is located. The PMU determines the size of the configuration object based on its content.

Once the PMU loads the configuration object it updates its data structures which are used to
manage the states of hardware resources (nodes). Partial configurations are not possible. If the
configuration object does not provide information as defined in this document or provides partial
information, the consistency of PMU firmware power management data cannot be guaranteed.
The creator of the configuration object must ensure the consistency of the information provided
in the configuration object. The PMU does not change the state of nodes once the configuration
object is loaded. The PMU also does not check whether the information about current states of
nodes provided in the configuration object really matches the current state of the hardware.
Current state is a state of a hardware resource at the moment of processing the configuration
object by the PMU.

The configuration object specifies the following:

• List of masters available in the system

• All the slave nodes the master is currently using and current requirement of the master for the
slave configuration

• All the slave nodes the master is allowed to use and default requirement of the master for the
slave configuration

• For each power node, which masters are allowed to request/release/power down

• For each reset line, which masters are allowed to request the change of a reset line value

• Which shutdown mode the master is allowed to request and shutdown timeout value for the
master

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=152

• Which masters are allowed to set configuration after the configuration is already set upon the
system boot by the FSBL

PM Configuration Object Generation
PM Configuration Object is generated as follows:

1. Specify the custom PM framework Configuration using the PCW tool

2. PCW generates the HDF file

3. At build time, the XSA Parser parses the XSA file and insert the configuration object into the
FSBL code

Figure 46: Configuration Object Generation

PCW HDF Parser FSBL

HDF Config Object

Initial Configuration at Boot
The configuration object shall be loaded prior to calling any EEMI API, except the following APIs:

• Get API version

• Set configuration

• Get Chip ID

Until the first configuration object is loaded the PM controller is configured to initially expect the
EEMI API calls from the APU or RPU master, via IPI_APU or IPI_RPU_0 IPI channels, respectively.
In other words, the first configuration object has to be loaded by APU or RPU.

After the first configuration object is loaded, the next loading of the configuration object can be
triggered by a privileged master. Privileged masters are defined in the configuration object that
was loaded the last.

Following are the steps at boot level:

1. FSBL sends the configuration object to PMU with the Set Configuration API

2. PMU parses the configuration object and configures

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=153

3. PMU powers off all the nodes which are unused after all the masters have completed the
initialization

All other requests prior to the first Set Configuration API call will be rejected by PMU firmware.

Figure 47: Initial Configuration at Boot

FSBL PMU

PM Init

Set Configuration (ConfigObj)

PMU Firmware Loading Options
PMU firmware can be loaded by either FSBL or CSU BootROM (CBR). Both these flows are
supported by Xilinx. Loading PMU firmware using FSBL has the following benefits:

• Possible quick boot time, when PMU firmware is loaded after bitstream.

• In use cases where you want two BIN files - stable and upgradable, PMU firmware can be part
of the upgradable (by FSBL) image.

IMPORTANT! CBR loads FSBL. If CBR also loads PMU firmware, it means that the secure headers for
both FSBL and PMU firmware are decrypted with same Key-IV pair, which is a security vulnerability
(security rule is: no two partitions should use the same Key-IV pair). This is addressed in FSBL, not in CBR.
Hence, you should avoid CBR loading PMU firmware in secure (decryption) cases.

For DDR self-refresh over Warm restart, FSBL and PMU firmware must be loaded first (in any order) before
all other images (e.g. bitstream).

For Power Off Suspend, PMU firmware must be loaded first (i.e. by CSU) before FSBL.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=154

Loading PMU Firmware in JTAG Boot Mode
PM operations depend on the configuration object loaded by FSBL from 2017.1 release onwards.
Hence, In JTAG boot mode, it is mandatory to load PMU FW before loading FSBL. In device boot
modes, loading of configuration object to PMU firmware by FSBL is handled both in CBR loading
PMU firmware and FSBL loading PMU firmware options. Use the following steps to boot in JTAG
mode:

1. Disable security gates to view PMU MicroBlaze. PMU MicroBlaze is not visible in xsdb for
Silicon v3.0 and above.

2. Load PMU firmware and run.

3. Load FSBL and run.

4. Continue with U-Boot/Linux/user specific application.

Following is a complete Tcl script:

#Disable Security gates to view PMU MB target
targets -set -filter {name =~ "PSU"}

#By default, JTAGsecurity gates are enabled
#This disables security gates for DAP, PLTAP and PMU.
mwr 0xffca0038 0x1ff
after 500

#Load and run PMU FW
targets -set -filter {name =~ "MicroBlaze PMU"}
dow xpfw.elf
con
after 500

#Reset A53, load and run FSBL
targets -set -filter {name =~ "Cortex-A53 #0"}
rst -processor
dow fsbl_a53.elf
con

#Give FSBL time to run
after 5000
stop

#Other SW...
dow u-boot.elf
dow bl31.elf
con

#Loading bitstream to PL
Targets -set -nocase -filter {name =~ "*PL*"}
fpga download.bit

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=155

Loading PMU Firmware in NON-JTAG Boot Mode
When PMU firmware is loaded in a non-JTAG Boot mode on a 1.0 Silicon, an error message
‘Error: Unhandled IPI received’ may be logged by PMU firmware at startup, which can be safely
ignored. This is due to the IPI0 ISR not being cleared by PMU ROM. This is fixed in 2.0 and later
versions of silicon.

Using FSBL to Load PMU Firmware

1. Build PMU firmware application in the Vitis IDE.

2. Build an FSBL in the Vitis IDE for A53. (R5F can also be used).

3. Create a hello_world example for A53.

4. Select Xilinx → Create Boot Image.

5. Create a new bif file. Choose:

a. Architecture: ZynqMP

b. You will see A53 fsbl and hello_world example by default in partitions. Also, we need
PMU firmware.

c. Click on Add, then provide pmufw.elf path. Also select Partition type as datafile,
Destination device as PS, and Destination CPU as PMU.

d. Click OK.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=156

6. After adding pmufw as partition. Click on pmufw partition and then, click UP.

7. Make sure to select the following partition order:

a. A53 FSBL

b. PMU firmware

c. Hello World application

8. Click on Create Image. You will see BOOT.bin created in a new bootimage folder in your
example project.

9. View the .BIF file to confirm the partition order.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=157

10. Now copy this BOOT.bin into SD card.

11. Boot the ZCU102 board in SD boot mode. You can see the fsbl → pmufw → hello_world
example prints in a sequence.

Using CBR to load PMU Firmware

When PMU firmware is loaded by CBR, it is executed prior to FSBL. So the MIOs, Clocks and
other initializations are not done at this point. Consequently, the PMU firmware banner and
other prints may not be seen prior to FSBL. Post FSBL execution, the PMU firmware prints can
be seen as usual.

To make the CBR load PMU firmware, follow these steps:

1. Change the BOOT.bin boot partitions.

2. Perform the steps listed in Loading PMU Firmware in NON-JTAG Boot Mode.

3. Create a new bif file. Choose the following:

a. Architecture: ZynqMP.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=158

b. You will see A53 fsbl and hello_world example by default in partitions. Also, we need
pmufw.

c. Click Add and then provide the pmufw.elf path. Select the Partition type as pmu
(loaded by bootrom).

d. Click OK.

e. Click on Create Image. You will see BOOT.bin created in a new folder named bootimage
in your example project.

f. You can also view .BIF to confirm the partition order.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=159

g. Now copy this BOOT.bin into SD card.

h. Boot the ZCU102 board in SD boot mode. You can see the pmufw → fsbl → hello_world
example prints in a sequence.

PMU Firmware Usage
This section describes the usage of PMU firmware with examples.

Enable/Disable Modules
This section describes how to enable/disable PMU firmware build flags both in the Vitis software
platform and PetaLinux.

In PetaLinux

1. Create a PetaLinux project.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=160

2. Open <plnx-project-root>/project-spec/meta-user/recipes-bsp/pmu/pmu-
f irmware_%.bbappend file and add the following line:

YAML_COMPILER_FLAGS_append = -DENABLE_EM

The above line enables EM module. To enable any flag, it should be prefixed with '-D'.

3. After any change to the YAML compiler flags, force a clean state before rebuilding the
application.

Custom Module Usage
Each set of user defined routines performing a specific functionality should be designed to be a
module in PMU firmware. These files must be self-contained. However, these files can use
declarations from xpfw_core.h. Each module can register with the following interfaces. If any
of the handler is not needed by the module, it can be skipped from being registered.

• Config Handler: Called during initialization.

• Event Handler: Called when a registered event is triggered.

• IPI Handler: Called when an IPI message arrives with the registered IPI ID

Creating a Custom Module

To create a custom module, add the following code to PMU firmware:

/* IPI Handler */
static void CustomIpiHandler(const XPfw_Module_t *ModPtr, u32 IpiNum, u32
SrcMask,
const u32* Payload, u8 Len)
{
 /**
* Code to handle the IPI message received
*/
}

/* CfgInit Handler */
static void CustomCfgInit(const XPfw_Module_t *ModPtr, const u32 *CfgData,
u32 Len)
{
 /**
* Code to configure the module, register for events or add scheduler tasks
*/
}

/* Event Handler */
static void CustomEventHandler(const XPfw_Module_t *ModPtr, u32 EventId)
{
 /**
* Code to handle the events received
*/
}

/*
* Create a Mod and assign the Handlers. We will call this function

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=161

* from XPfw_UserStartup()
*/
void ModCustomInit(void)
{
 const XPfw_Module_t *CustomModPtr = XPfw_CoreCreateMod();
 (void) XPfw_CoreSetCfgHandler(CustomModPtr, CustomCfgInit);
 (void) XPfw_CoreSetEventHandler(CustomModPtr, CustomEventHandler);
 (void) XPfw_CoreSetIpiHandler(CustomModPtr, CustomIpiHandler, (u16)IPI_ID);
}

Registering for an Event

All interrupts that come into PMU are exposed to user as Events with specific EVENTIDs defined
in xpfw_events.h. Any module can register for an event (usually in CfgHandler) and the module's
EventHandler will be called when an event is triggered.

To register for an RTC Event:

Status = XPfw_CoreRegisterEvent(ModPtr,XPFW_EV_RTC_SECONDS);

Example of an EventHandler:

void RtcEventHandler(const XPfw_Module_t *ModPtr, u32 EventId)
{
 xil_printf("MOD%d:EVENTID: %d\r\n", ModPtr->ModId, EventId);
 if(XPFW_EV_RTC_SECONDS == EventId){
 /* Ack the Int in RTC Module */
 Xil_Out32(RTC_RTC_INT_STATUS,1U);
 xil_printf("RTC: %d \r\n", Xil_In32(RTC_CURRENT_TIME));
 }
}

Error Management Usage
This sections describes the usage of the EM module to configure the error action to be taken for
the errors that comes to PMU firmware (the errors generated in the system which are mapped to
PMU MB).

Example for Error Management (Custom Handler)

For this example, OCM uncorrectable error (EM_ERR_ID_OCM_ECC) is considered. The default
error action for this error is set to PS Error Out. In the following example, a custom handler is
registered for this error in PMU firmware and the handler in this case just prints out the error
message. In a more realistic case, the corrupted memory may be reloaded, but this example is
just limited to clearing the error and printing a message.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=162

Adding the Error Handler for OCM Uncorrectable ECC in PMU firmware:

+++ b/lib/sw_apps/zynqmp_pmufw/src/xpfw_mod_em.c
@@ -140,6 +140,14 @@ void FpdSwdtHandler(u8 ErrorId)
 XPfw_RecoveryHandler(ErrorId);
 }
+/* OCM Uncorrectable Error Handler */
+static void OcmErrHandler(u8 ErrorId)
+{
+ XPfw_Printf(DEBUG_DETAILED, "EM: OCM ECC error detected\n");
+ /* Clear the Error Status in OCM registers */
+ XPfw_Write32(0xFF960004, 0x80);
+}
+ /* CfgInit Handler */
 static void EmCfgInit(const XPfw_Module_t *ModPtr, const u32 *CfgData,
 u32 Len)
@@ -162,6 +170,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_CUSTOM, OcmErrHandler);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

To inject OCM Uncorrectable ECC error using debugger (xsdb):

;# Enable ECC UE interrupt in OCM_IEN
mwr -force 0xFF96000C [expr 1<<7]

;# Write to Fault Injection Data 0 Register OCM_FI_D0
;# Errors will be injected in the bits which are set, here its bit0, bit1
mwr -force 0xFF96004C 3

;# Enable ECC and Fault Injection
mwr -force 0xFF960014 1
;
Clear the Count Register : OCM_FI_CNTR
mwr -force 0xFF960074 0
;# Now write data to OCM for the fault to be injected
Since OCM does a RMW for 32-bit transactions, it should trigger error here
mwr -force 0xFFFE0000 0x1234

;# Read back to trigger error again
mrd -force 0xFFFE0000

Example for Error Management (PoR as a Response to Error)

Some error may be too fatal and the system recovery from those errors may not be feasible
without doing a Reset of entire system. In such cases PoR or SRST can be used as actions. In this
example we use PoR reset as a response to the OCM ECC double-bit error.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=163

Here is the code that adds the PoR as action:

@@ -162,6 +162,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_POR, NULL);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

The Tcl script to inject OCM ECC error is same as the one for above example. Once you trigger
the error, a PoR occurs and you may see that all processors are in reset state similar to how they
would be in a fresh power-on state. PMU RAM also gets cleared off during a PoR. Hence, PMU
firmware needs to be reloaded.

Example for Error Management (PS Error out as a Response to
Error)

If you need to communicate outside of system when any error occurs, PS ERROR OUT response
can be set for that respective error. So, when that error occurs, error will be propagated outside
and PS_ERROUT signal LED will glow. In this example we use PS ERROR OUT as a response to
the OCM ECC double-bit error.

Following is the code that adds the PS ERROR OUT as action:

@@ -162,6 +162,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_PSERR, NULL);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

The Tcl script to inject OCM ECC error is same as the one for above example. Once you trigger
the error, a PS_ERROUT LED will glow on board.

IPI Messaging Usage
This section describes the usage of IPI messaging from PMU firmware to RPU0 and RPU0 to
PMU firmware. PMU firmware, while initializing IPI driver, also enables IPI interrupt from the IPI
channel assigned master.

From PMU Firmware to RPU0

See Zynq UltraScale Plus MPSoC - IPI Messaging Example for more information.

Note: You need to enable EM module in PMU firmware to run this example.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 164Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841941/Zynq+UltraScale+MPSoC+-+IPI+Messaging+Example
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=164

From RPU0 to PMU Firmware

See Zynq UltraScale Plus MPSoC - IPI Messaging Example for IPI messaging example from RPU
to PMU.

IMPORTANT! Since the example in the wiki page shows how to trigger IPI from PMU to RPU0 and vice
versa, to trigger an IPI to/from APU or RPU1, you need to change the destination CPU mask to the
intended master.

Adding a Task to Scheduler
Tasks are functions which take void arguments and return void. Currently PMU firmware has no
way to check that the task returns in a pre-determined time, so this needs to be ensured by the
task design. Let us consider a task which prints out a message:

void TaskPrintMsg(void)
{
xil_printf("Task has been triggered\r\n");
}

If we want to schedule the above task to occur every 500ms, the following code can be used.
The TaskModPtr is a pointer for module which is scheduling the task.

Status = XPfw_CoreScheduleTask(TaskModPtr, 500U, TaskPrintMsg);
if(XST_SUCCESS == Status) {
xil_printf("Task has been added successfully !\r\n");
}
else {
xil_printf(Ërror: Failed to add Task !\r\n");
}

Reading FPD Locked Status from RPU
Register 0xFFD600F0 is a local register to PMU firmware, in which bit 31 displays whether FPD
is locked or not locked. (If bit 31 is set to 1, then FPD is locked. It remains isolated until POR is
asserted). You can verify the FPD locked status by reading this register through PMU firmware.
This can be achieved by an MMIO read call to PMU firmware. Use the following steps to read
FPD locked status from R5:

1. Create an empty application for R5 processor. Enable xilpm library in BSP settings.

2. Create a new.c file in the project and add the following code:

#include "xipipsu.h"
#include "pm_api_sys.h"
#define IPI_DEVICE_IDXPAR_XIPIPSU_0_DEVICE_ID
#define IPI_PMU_PM_INT_MASKXPAR_XIPIPS_TARGET_PSU_PMU_0_CH0_MASK

#define MMIO_READ_API_ID20U
#define FPD_LOCK_STATUS_REG0xFFD600F0

int main(void)

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 165Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841941/Zynq+UltraScale+MPSoC+-+IPI+Messaging+Example
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=165

{
XIpiPsu IpiInstance; XIpiPsu_Config *Config; s32 Status;
u32 Value;

/* Initialize IPI peripheral */
Config = XIpiPsu_LookupConfig(IPI_DEVICE_ID); if (Config == NULL) {
xil_printf("Config Null\r\n"); goto END;
}

Status = XIpiPsu_CfgInitialize(&IpiInstance, Config, Config-
>BaseAddress);
if (0x0U != Status) { xil_printf("Config init failed\r\n"); goto END;
}

/* Initialize the XilPM library */ Status = XPm_InitXilpm(&IpiInstance);
if (0x0U != Status) {
xil_printf("XilPM init failed\r\n"); goto END;
}
/* Read using XPm_MmioRead() */
Status = XPm_MmioRead(FPD_LOCK_STATUS_REG, &Value); if (0x0U != Status)
{
xil_printf("XilPM MMIO Read failed\r\n"); goto END;
}
xil_printf("Value read from 0x%x: 0x%x\r\n",FPD_LOCK_STATUS_REG, Value);

END:
xil_printf("Exit from main\r\n");
}

Note: This application must be run after FSBL is successfully executed. This application cannot run
successfully, if FSBL fails to send configuration object to PMU firmware.

PMU Firmware Memory Layout and Footprint
This section contains the approximate details of PMU firmware Memory Layout and also the
Memory Footprint with various modules enabled.

In PMU RAM, some part is reserved for PBR leaving around 125.7 KB for PMU firmware. The
following figure shows the memory layout of PMU RAM.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=166

Figure 48: PMU Firmware Memory Layout

128K PMU RAM

32'hFFDC_0000

xxx
xxx
xxx

Reserved: Never Cleared

Stack

xxx

ROM Extension table
_XpbrServExtTbl

Reserved for Firmware

MicroBlaze Reserved

__fw_hw_exception_vector

__fw_interrupt_vector

__fw_sw_exception_vector

__fw_start_vector
0xffdc_0000

fw_start: 0xffdc_0050

0x00

0x08

0x10

0x20

128656 Bytes

1024 Bytes

32 Bytes

244 Bytes

0xffdd_f6e0

0xffdd_fae0
0xffdd_fb00

0xffdd_ff00

0xffdd_fff4
0xffdd_fff8
0xffdd_fffc

0xffdd_0000

X22156-092820

In PMU firmware, only PM module is enabled by default along with Base Firmware and all the
other modules are disabled. See the PMU Firmware Build Flags section to know about the
default setting of a module.

Note: All the metrics are with compilation optimized for size -Os. This optimization setting is enabled by
default in the Vitis IDE. To disable the same, follow the steps mentioned in Enable/Disable Modules
section.

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=167

Table 55: PMU Firmware Metrics

S.No Feature/Component
Size

Occupied
(KB)

Free
Space
(KB)

Additional Notes Remarks

1 PMU firmware without
detailed debug prints
enabled

111.4 16.6 This is with base PMU firmware and
PM module.

2 PMU firmware with detailed
debug prints enabled

115.4 12.6 Detailed debug prints are enabled
when XPFW_DEBUG_DETAILED flag is
defined.

This estimation
is with
combination of
(1) and (2)

3 PMU firmware with Error
Management Module
enabled

114.4 13.6 Error Management module is enabled
when ENABLE_EM and
ENABLE_SCHEDULER flags are defined.

This estimation
is with
combination of
(1) and (3)

4 PMU firmware with Restart
functionality enabled

117.1 10.9 Restart functionality is enabled when
ENABLE_RECOVERY,
ENABLE_ESCALATION and
CHECK_HEALTHY_BOOT flags are
defined along with EMABLE_EM and
ENABLE_SCHEDULER flags.

This estimation
is with
combination of
(1) and (4)

Dependencies
RECOMMENDED: It is recommended to have all the software components (FSBL, PMU firmware, TF-A,
U-Boot and Linux) of the same release tag (e.g.: 2017.3).

Chapter 10: Platform Management Unit Firmware

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=168

Chapter 11

Power Management Framework

Introduction
The Zynq® UltraScale+™ MPSoC is the industry's first heterogeneous multiprocessor SoC
(MPSoC) that combines multiple user programmable processors, FPGA, and advanced power
management capabilities.

Modern power efficient designs requires usage of complex system architectures with several
hardware options to reduce power consumption as well as usage of a specialized CPU to handle
all power management requests coming from multiple masters to power on, power off resources
and handle power state transitions. The challenge is to provide an intelligent software framework
that complies to industry standard (IEEEP2415) and is able to handle all requests coming from
multiple CPUs running different operating systems.

Xilinx has created the Power Management Framework (PMF) to support a flexible power
management control through the platform management unit (PMU).

This Power Management Framework handles several use case scenarios. For example, Linux
provides basic power management capabilities such as idle, hotplug, suspend, resume, and
wakeup. The kernel relies on the underlining APIs to execute power management decisions, but
most RTOSes do not have this capability. Therefore they rely on user implementation, which is
made easier with use of the Power Management Framework.

Industrial applications such as embedded vision, Advanced Driver Assistance, surveillance,
portable medical, and Internet of Things (IoT) are ramping up their demand for

high-performance heterogeneous SoCs, but they have a tight power budget. Some of the
applications are battery operated, and battery life is a concern. Some others such as cloud and
data center have demanding cooling and energy cost, not including their need to reduce
environmental cost. All of these applications benefit from a flexible power management solution.

Key Features
The following are the key features of the Power Management Framework.

• Provides centralized power state information through use of a Platform Management Unit
(PMU)

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=169

• Supports Embedded Energy Management Interface (EEMI) APIs (IEEE P2415)

• Manages power state of all devices

• Provides support for Linux power management, including:

○ Linux device tree power management

○ TF-A/PSCI power management support

○ Idle

○ Hotplug

○ Suspend

○ Resume

○ Wakeup process management

• Provides direct control of the following power management features with more than 24 APIs:

○ Processor unit suspend and wake up management

○ Memories and peripherals management

Power Management Software Architecture
The Zynq UltraScale+ MPSoC architecture employs a dedicated programmable unit (PMU) that
controls the power-up, power-down, monitor, and wakeup mechanisms of all system resources.
The customer benefits from a system that is better equipped on handling power management
administration for a multiprocessor heterogeneous system. However, it is inherently more
complex. The goal of the Power Management Framework is to abstract this complexity, exposing
only the APIs you need to be aware of to meet your power budget goal.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=170

Figure 49: Power Management Framework

Power Management Framework (PMF)

RPU User Application

RTOS & Bare Metal

XilPM APIs

EEMI APIs

PMU Firmware Bare-Metal

PM firmware
EEMI APIs

APU User Application

Linux

ATF/PSCI

Bare Metal & OSes

XilPM APIs

RPU PMU APU

EEMI APIs

PM
request

PM state

PM
request

PM state

X19504-100620

The intention of the EEMI is to provide a common API that allows all software components to
power manage cores and peripherals. At a high level, EEMI allows you to specify a high-level
power management goal such as suspending a complex processor cluster or just a single core.
The underlying implementation is then free to autonomously implement an optimal power-saving
approach.

The Linux device tree provides a common description format for each device and its power
characteristics. Linux also provides basic power management capabilities such as idle, hotplug,
suspend, resume, and wakeup. The kernel relies on the underlining APIs to execute power
management decisions.

You can also create your own power management applications using the XilPM library, which
provides access to more than 24 APIs.

Zynq UltraScale+ MPSoC Power Management
Overview

The Zynq UltraScale+ MPSoC power management framework is a set of power management
options, based upon an implementation of the Embedded Energy Management Interface (EEMI).
The power management framework allows software components running across different
processing units (PUs) on a chip or device to issue or respond to requests for power
management.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=171

Zynq UltraScale+ MPSoC Power Management
Hardware Architecture
The Zynq UltraScale+ MPSoC is divided into four major power domains:

• Full power domain (FPD): Contains the Arm® Cortex®-A53 application processor unit (APU) as
well as a number of peripherals typically used by the APU.

• Low power domain (LPD): Contains the Arm Cortex®-R5F real-time processor unit (RPU), the
platform management unit (PMU), and the configuration security unit (CSU), as well as the
remaining on-chip peripherals.

• Programmable logic (PL) power domain: Contains the PL.

• Battery-power domain: Contains the real-time clock (RTC) as well as battery-backed RAM
(BBRAM).

Other power domains listed in the following figure are not actively managed by the power
framework. Designs that want to take advantage of the Power Management switching of power
domains must keep some power rails discrete. This allows individual rails to be powered off with
the power domain switching logic. For more details, see the “PCB Power Distribution and
Migration in UltraScale+ FPGAs” in the UltraScale Architecture PCB Design User Guide (UG583).

The following diagram illustrates the Zynq UltraScale+ MPSoC power domains and islands.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 172Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=172

Figure 50: Zynq UltraScale+ MPSoC Power Domain and Islands

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=173

Because of the heterogeneous multi-core architecture of the Zynq UltraScale+ MPSoC, no single
processor can make autonomous decisions about power states of individual components or
subsystems.

Instead, a collaborative approach is taken, where a power management API delegates all power
management control to the platform management unit (PMU). It is the key component
coordinating the power management requests received from the other processing units (PUs),
such as the APU or the RPU, and the coordination and execution from other processing units
through the power management API.

IMPORTANT! In the EEMI implementation for Zynq UltraScale+ MPSoC, the platform management unit
(PMU) serves as the power management controller for the different processor units (PUs), such as the APU
and the RPU. These APU/RPU act as a power management (PM) master node and make power
management requests. Based on those requests, the PMU controls the power states of all PM slave nodes
as well as the PM masters. Unless otherwise specified, the terms "PMU" and "power management
controller" are interchangeable.

The Zynq UltraScale+ MPSoC also supports inter-processor interrupts (IPIs), which are used as
the basis for power-management related communication between the different processors. See
this link to the “Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085) for more detail on this topic.

Zynq UltraScale+ MPSoC Power Management
Software Architecture
To enable multiple processing units to cooperate in terms of power management, the software
framework for the Zynq UltraScale+ MPSoC provides an implementation of the power
management API for managing heterogeneous multiprocessing systems.

The following figure illustrates the API-based power management software architecture.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 174Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=174

Figure 51: API-Based Power Management Software Architecture

PMU PMM

APU

OS/Application(s)

PM-API

RPU

RTOS/Application(s)

PM-API

MicroBlaze

Application(s)

PM-API

PM Masters

PM-API
PM Controller

PM Slaves Memory_A Memory_B Peripheral_A Peripheral_B

IPI - communication IPI - c
ommunication

Power state

control

Power state control

Power state control

X19503-071317

Power Management Framework Overview
The Zynq UltraScale+ MPSoC power management framework (PMF) is based on an
implementation of EEMI, see the Embedded Energy Management Interface EEMI API Reference
Guide (UG1200). It includes APIs that consist of functions available to the processor units (PUs)
to send messages to the power management controller, as well as callback functions in for the
power management controller to send messages to the PUs. The APIs can be grouped into the
following functional categories:

• Suspending and waking up PUs

• Slave device power management, such as memories and peripherals

• Miscellaneous

• Direct-access

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 175Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=175

API Calls and Responses
Power Management Communication using IPIs

In the Zynq UltraScale+ MPSoC, the power management communication layer is implemented
using inter-processor interrupts (IPIs), provided by the IPI block. See this link to the “Interrupts”
chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for more details on
IPIs.

Each PU has a dedicated IPI channel with the power management controller, consisting of an
interrupt and a payload buffer. The buffer passes the API ID and up to five arguments. The IPI
interrupt to the target triggers the processing of the API, as follows:

• When calling an API function, a PU generates an IPI to the power management unit (PMU),
prompting the execution of necessary power management action.

• The PMU performs each PM action atomically, meaning that the action cannot be interrupted.

• To support PM callbacks, which are used for notifications from the PMU to a PU, each PU
implements handling of these callback IPIs.

Acknowledge Mechanism
The Zynq UltraScale+ MPSoC power management framework (PMF) supports blocking and non-
blocking acknowledges. In most API calls that offer an acknowledge argument, the caller can
choose one of the following three acknowledge options:

• REQUEST_ACK_NO: No acknowledge requested

• REQUEST_ACK_BLOCKING: Blocking acknowledge requested

• REQUEST_ACK_NON_BLOCKING: Non-blocking acknowledge using callback requested

Multiple power management API calls are serialized because each processor unit (PU) uses a
single IPI channel for the API calls. After one request is sent to the power management
controller, the next one can be issued only after the power management controller has
completed servicing the first one. Therefore, no matter which acknowledge mechanism is used,
the caller can be blocked when issuing subsequent requests.

No Acknowledge

If no acknowledge is requested (REQUEST_ACK_NO), the power management controller
processes the request without returning an acknowledge to the caller, otherwise an
acknowledgment is sent.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 176Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=176

Blocking Acknowledge

After initiating a PM request with the (REQUEST_ACK_BLOCKING) specified, a caller remains
blocked as long as the power management controller does not provide the acknowledgment.

The platform management unit (PMU) writes the acknowledge values into the response portion
of the IPI buffer before it clears the IPI interrupt. The caller reads the acknowledge values from
the IPI buffer after the IPI observation register shows that the interrupt is cleared, which is when
PMU has completed servicing the issued IPI. The IPI for the PU is disabled until the PMU is ready
to handle the next request.

Non-Blocking Acknowledge

After initiating a PM request with the (REQUEST_ACK_NON_BLOCKING) specified, a caller does
not wait for the platform management unit (PMU) to process that request. Moreover, the caller is
free to perform some other activities while waiting for the acknowledge from the PMU.

After the PMU completes servicing the request, it writes the acknowledge values into the IPI
buffer. Next, the PMU triggers the IPI to the caller PU to interrupt its activities, and to inform it
about the sent acknowledge.

Non-blocking acknowledges are implemented using a callback function that is implemented by
the calling PU, see XPm_NotifyCb Callback.

For more information about XPm_NotifyCb, see XilPM Library in the OS and Libraries Document
Collection (UG643).

Power Management Framework Layers
There are different API layers in the power management framework (PMF) implementation for
Zynq UltraScale+ MPSoCs, which are, as follows:

• Xilpm: This is a library layer used for standalone applications in the different processing units,
such as the APU and RPU.

• TF-A: The Trusted Firmware-A (TF-A) contains its own implementation of the client-side PM
framework. It is currently used by Linux operating systems.

• PMU firmware: The power management unit firmware (PMUFW) runs on the power
management unit (PMU) and implements of the power management API.

For more details, see this link in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The following figure shows the interaction between the APU, the RPU, and the PMF APIs.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 177Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DG8.407200
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=177

Figure 52: API Layers Used with Bare-Metal Applications Only

RPU

Bare metal application

xilpm

PM-API

PMU

PM-API

APU

Bare metal application

xilpm

PM-API

IPI

X19094-071317

If the APU is running a complete software stack with an operating system, the Xilpm library is not
used. Instead, the TF-A running on EL3 implements the client-side power management API, and
provides a secure monitor call (SMC)-based interface to the upper layers.

The following figure illustrates this behavior. See the Armv8 manuals for more details on the
Armv8 architecture and its different execution modes. It illustrates the PMF layers that are
involved when running a full software stack on the APU.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=178

Figure 53: PM Framework Layers Involved When Running a Full Software Stack on the
APU

APU

RPU

OS

ATF

PM-API

EL0/1

EL3

SMC

Bare metal application

xilpm

PM-API

PMU

PM-API

IPI

X19093-071317

Typical Power Management API Call Flow
Any entity involved in power management is referred to as a node. The following sections
describe how the power management framework (PMF) works with slave nodes allocated to the
APU and the RPU.

Generally, the APU or the RPU inform the power management controller about their usage of a
slave node, by requesting for it. They then inform the power management controller about the
capability requirement needed from the slave node. At this point, the power management
controller powers up the slave node so that it can be initialized by the APU or the RPU.

Requesting and Releasing Slave Nodes

When a PU requires a slave node, either peripheral or memory, it must request that slave node
using the power management API. After the slave node has performed its function and is no
longer required, it may be released, allowing the slave node to be powered off.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=179

The following figure shows the call flow for a use-case in which the APU and the RPU are sharing
an OCM memory bank, ocm0.

Figure 54: PM Framework Call Sequence for APU and RPU Sharing an OCM Memory
Bank

APU

pm_request_node
(nodelD=ocm0,
cap=full, ack=1)

PMC + PSM RPU ocm0

pm_release_node
(node=ocm0, latency=0)

pm_self_suspend
(nodelD=APU 0,
latency=MAX)

WFI interrupt

pm_request_node
(nodeID=ocm0,
cap=full, ack=1)

pm_release_node
(node=ocm0, latency=0)

RUN

POWER
DOWN

RUN RUN OFF

ON

OFF

X20022-111020

Note: The ocm0 memory remains powered on after the APU calls XStatus XPm_ReleaseNode, because
the RPU has also requested the same slave node. It is after the RPU also releases the ocm0 node that the
PMU powers off the ocm0 memory.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=180

Processor Unit Suspend and Resume

To allow a processor unit (PU) to be powered off, as opposed to just entering an idle state, an
external entity is required to take care of the power-down and power-up transitions. For the
Zynq UltraScale+ MPSoC, the platform management unit (PMU) is the responsible entity for
performing all power state changes.

The processor unit (PU) notifies the PMU that a power state transition is being requested. The
following figure illustrates the process.

Figure 55: APU Suspend and Resume Procedure

PMU OCM DDR L2$

RUN ON

APU_0 APU_1/2/
3 Peripheral

ON ON RUN POWER
DOWN

ON

save context
save context

self_suspend
(nodeID-APU_0, latency=MAX)

configure

set_wakeup_source
(targetID=APU, nodeID=Periheral, enable=true)

set_requirement
(nodeID=OCM, capabilities=context, ack=0)

WFI Interrupt

Interrupt

restore context

restore context

serve interrupt

ON ON RUN

Retention Power
Down

Power
Down

X20023-110217

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=181

The Self-Suspending a CPU/PU section in Implementing Power Management on a Processor Unit
provides more details on the suspend or resume procedure. Each PU usually depends on a
number of slave nodes to be able to operate.

Sub-system Power Management
Isolation Configuration

The Zynq UltraScale+ MPSoC can be partitioned into sub-systems, so that they can be managed
independently by the power management framework. For example, you can define a Linux sub-
system and a Real-time sub-system. The Linux sub-system may include the APU (as the PM
master) and a number of peripherals (as the PM slaves). The Real-time sub-system may include
the RPU and a number of other peripherals. Each sub-system can be powered up, powered
down, restarted or suspended without affecting the other sub-systems. A sub-system has only
one PM Master, and may include both FPD and LPD peripherals.

You can create your own sub-systems using the Vivado® PCW tool. The following figure shows
the PCW screen shots of a valid configuration, which contains only an APU sub-system and no
RPU sub-systems.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=182

Figure 56: PCW Configuration

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=183

Figure 57: PCW Configuration Contd

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=184

Figure 58: PCW Configuration Contd

Note: The PCW tool is also used to isolate some peripherals from each other for security purposes. See
Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209) and Zynq UltraScale+ MPSoC Processing System
LogiCORE IP Product Guide (PG201) for details on how to set up isolation between peripherals.

Configuration Object

The sub-system configuration is captured in a Configuration Object, which is generated by the
Vivado and PetaLinux toolchain. The Configuration Object contains:

• The PM Masters that are present in the system (APU and/or RPU). Any PM Master not
specified in the Configuration Object will be powered down by the PMU.

• Configurable permissions for each PM Master, such as:

○ Which PM Master can use which PM Slave (A PM Master can use all the PM Slaves that
belong in the same sub-system.)

○ Access to MMIO address regions.

○ Access to peripheral reset lines.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 185Send Feedback

https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/ZynqMPSoC-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=185

• Pre-allocated PM Slaves. The PM Master can use these PM Slaves without requesting for
them first. These PM Slaves are needed by the PM Master in order to boot. The toolchain
makes sure that the APU can access the L2 cache and DDR banks without first requesting for
them. The same is true for the RPU accessing all the TCM banks.

During boot, the Configuration Object is passed from the FSBL to the PMU firmware. For more
details, see the Configuration Object.

Note: Isolation is not required for the Configuration Object to be created. You can create subsystems to
customize the Configuration Object and then uncheck the isolation checkbox.

Power Management Initialization

Power management is disabled during boot and all the peripherals are powered up at this time.
That is because it is often necessary to allow for possible, and temporary, inter-dependencies
between peripherals during boot and initialization. When FSBL is finished with initializing the
peripherals and loading the application binaries, it passes the Configuration Object to the PMU.
The PMU is now aware of all the sub-systems and their associated PM Masters and PM Slaves.
PM Masters and PM Slaves that are not included in the Configuration Object are never used, and
are powered down by the PMU.

A PM Master is not likely to use all the PM Slaves at all times. Therefore, a PM Slave should be
powered up only when it is being used. The PM Master must notify the PMU before and after
using a PM Slave. This functionality is implemented in the PetaLinux kernel. This requirement
hinders developers starting with a new RPU application, when the focus is on functionality and
not power optimization. Therefore, it is convenient for the PMU to also support PM-incapable
Masters that do not provide notifications when they are using the PM Slaves. This is done by
keeping all the PM Slaves in the sub-system powered up until the PM Master sends the
PmInitFinalize request to the PMU. A PM-incapable Master will never send this request,
which means that its PM Slaves will remain powered up at all times or until this PM Master itself
is powered down.

A PM-capable Master sends this request after initializing the sub-system. The PMU then begins
powering down the PM Slaves in this sub-system whenever they are not being used.

As a result, when there is an RPU master present in the system but it is not running any
application, the PMU firmware will consider it as a PM incapable master and hence will never
power down the RPU and its slaves. From the 2018.3 release and onwards, this behavior is fixed
and allows you to power down unused RPUs. This change is protected by the compilation flag
ENABLE_UNUSED_RPU_PWR_DWN and is enabled by default. When this flag is enabled, the
unused RPU and allocated slaves will be powered down if not in use.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=186

Table 56: Power Management Initialization

Boot Mode APU Image RPU Image RPU Mode
ENABLE_UN
USED_RPU_P
WR_DWN_VA

L

RPU0/TCM0
State

RPU1/ TCM1
State

JTAG Don’t Care Don’t Care Don’t Care Don’t Care ON ON

Non-JTAG Boot
modes

Don’t Care Don’t Care Don’t Care 0 ON ON

Linux or PM
aware app that
calls
PM_INIT_FINALI
ZE

RPU app in
boot image

Lock step mode 1 ON OFF

RPU0 app in
boot image

Split mode 1 ON OFF

RPU1 app in
boot image

Split mode 1 OFF ON

Both RPU apps
in boot image

Split mode 1 ON ON

RPU app not in
boot image

1 OFF OFF

Bare Metal app
that does not
call
PM_INIT_FINALI
ZE

Don’t Care Don’t Care Don’t Care ON ON

Note: If you do not want to power down RPU/TCM by default, set the
ENABLE_UNUSED_RPU_PWR_DWN flag to 0 while compiling the PMU firmware. For the JTAG boot
mode there is no impact on behavior change even though ENABLE_UNUSED_RPU_PWR_DWN flag is 1.

Note: Sub-systems may overlap each other. This means that some PM Slaves may belong to more than one
sub-system (for example, DDR, OCM, and so on). If a PM Slave is in more than one sub-system, the PMU
does not power down this PM Slave until it has been released by all its PM Masters, or until all these PM
Masters have powered down themselves.

Default Configuration

By default, Isolation Configuration is disabled, and the tool chain generates a configuration with
three sub-systems. Each has a PM Master: APU, R5-0 and R5-1. All three sub-systems contain all
the PM Slaves (meaning that the sub-systems completely overlap each other.) This is the default
configuration generated by PCW when the “Enable Isolation” box is unchecked. The default
PetaLinux kernel configuration is PM-capable, but R5-0 and R5-1 must be also running “PM-
capable” applications, or be powered down. Otherwise, the PMU will not power down any PM
Slaves.

Note: You can create a configuration that does not allow the processors to boot and run. If you are a
beginner, use the APU-only configuration as described in Isolation Configuration section and customize it
as necessary.

RPU Lock-step vs. Split Mode

The toolchain infers the RPU run modes from the PCW Isolation Configuration as follows:

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=187

• No RPU present in any subsystem: Configuration Object contains no RPU.

• Only R5-0 present in subsystem(s): Configuration Object contains R5-0 running in lock-step
mode.

• Both R5-0 and R5-1 in subsystems: Configuration Object contains R5-0 and R5-1 running in
split mode.

• Only R5-1 present in subsystem(s): Configuration Object contains R5-1 running in split mode.

The default Configuration Object contains two RPU PM Masters: R5-0 and R5-1, and the PMU
assumes that the R5-0 and R5-1 are running in split mode. However, the boot image actually
determines whether the RPU runs in lock-step or split mode at boot time. The RPU run mode
from the boot image must match the number of RPU PM Masters in the Configuration Object.
Otherwise, the power management framework will not work properly.

Note: If you intend to use the R5 in lock-step mode, you need to ensure that the Isolation Configuration is
enabled in PCW, and only R5-0 (not R5-1) is present in a subsystem.

Sharing Devices
Sharing access to devices between APU and RPU is possible but must always be done with great
care. The access and operation of a device depend on its clock (if applicable), its configuration
and its power state (on, off, retention, and so on.) The PMU makes sure the device is in the
lowest power state that will satisfy the requirement of all the PM Masters, but it is up to the APU
and RPU to set up the clock and configuration of the device.

Extra care must be taken when a device is shared between the APU running Linux and the RPU.
Linux is not aware that another entity might be using one of its devices, and will clock-gate,
power-gate and disable the device whenever it is not being used. The options available are:

• Disable Linux runtime power management of the device. See https://www.kernel.org/doc/
Documentation/ABI/testing/sysfs-devices-power. This will keep the device running even
when Linux is not using it, but the device will still be clock-gated and disabled when Linux
goes to sleep.

• Implement a special driver for the device.

Any devices not used by the APU should be removed from the device tree.

Using the API for Power Management
This chapter contains detailed instructions on how to use the Xilinx® power management
framework (PMF) APIs to carry out common power management tasks.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 188Send Feedback

ttps://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-power
ttps://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-power
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=188

Implementing Power Management on a Processor
Unit
The Xilpm library provides the functions that the standalone applications executing on a
processor can use to initiate the power management API calls.

See the SDK Online Help (UG782) for information on how to include the Xilpm library in a project.

Initializing the Xilpm Library

Before initiating any power management API calls, you must initialize the Xilpm library by calling
XPm_InitXilpm, and passing a pointer to a properly initialized inter-processor interrupt (IPI)
driver instance.

See this link to the “Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085). for more information regarding IPIs.

Working with Slave Devices

The Zynq UltraScale+ MPSoC power management framework (PMF) contains functions
dedicated to managing slave devices (also referred to as PM slaves), such as memories and
peripherals. Processor units (PUs) use these functions to inform the power management
controller about the requirements (such as capabilities and wake-up latencies) for those devices.
The power management controller manages the system so that each device resides in the lowest
possible power state, meeting the requirements from all eligible PUs.

Requesting and Releasing a Node

A PU uses the XPm_RequestNode API to request the access to a slave device and assert its
requirements on that device. The power management controller manages the requested device's
power-on and active state, provided the PU and the slave belong to the same sub-system.

After a device is no longer used, the PU typically calls the XPm_ReleaseNode function to allow
the PM controller to re-evaluate the power state of that device, and potentially place it into a
low-power state. It also then allows other PUs to request that device.

Changing Requirements

When a PU is using a PM slave, its requirement on the slave's capability may change. For
example, an interface port may go into a low power state, or even be completely powered off, if
the interface is not being used. The PU may use XPm_SetRequirement to change the
capability requirement of the PM slave. Typically, the PU would not release the PM slave if it will
be changing the requirement again in the future.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 189Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=189

The following example call changes the requirement for the node argument to require wake-
interrupts only:

XPm_SetRequirement(node, PM_CAP_WAKEUP, 0, REQUEST_ACK_NO);

IMPORTANT! Setting requirements of a node to zero is not equivalent to releasing the PM slave. By
releasing the PM slave, a PU may be allowing other PUs to use the device exclusively.

When multiple PUs share a PM slave (this applies mostly to memories), the power management
controller selects a power state of the PM slave that satisfies all requirements of the requesting
PUs.

The requirements on a PM slave include capability as well as latency requirements. Capability
requirements may include a top capability state, some intermediate capability states, an inactive
state (but with the configuration retained), and the off state. Latency requirement specifies the
maximum time allowed for the PM slave to switch to the top capability state from any other
state. If this time limit cannot be met, the power management controller will leave the PM slave
in the top capability state regardless of other capability requirements.

Self-Suspending a CPU/PU

A PU can be a cluster of CPUs. The APU is a PU, that has four CPUs. An RPU has two CPUs, but
it is considered as two PUs when running in the split mode, and one PU when it is running in the
lock-step mode.

To suspend itself, a CPU must inform the power management controller about its intent by calling
the XPM_SelfSuspend function. The following actions then occur:

• After the XPm_SelfSuspend() call is processed, none of the future interrupts can prevent
the CPU from entering a sleep state. To manage such behavior in the case of the APU and
RPU, after the XPm_SelfSuspend() call has completed, all of the interrupts to a CPU are
directed to the power management controller as GIC wake interrupts.

• The power management controller then waits for the CPU to finalize the suspend procedure.
The PU informs the power management controller that it is ready to enter a sleep state by
calling XPm_SuspendFinalize.

• The XPm_SuspendFinalize() function is architecture-dependent. It ensures that any
outstanding power management API call is processed, then executes the architecture-specific
suspend sequence, which also signals the suspend completion to the power management
controller.

• For Arm® processors such as the APU and RPU, the XPm_SuspendFinalize() function
uses the wait for interrupt (WFI) instruction, which suspends the CPU and triggers an
interrupt to the power management controller.

• When the suspend completion is signaled to the power management controller, the power
management controller places the CPU into reset, and may power down the power island of
the CPU, provided that no other component within the island is currently active.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=190

• Interrupts enabled through the GIC interface of the CPU are redirected to the power
management controller (PMC) as a GIC wake interrupt assigned to that particular CPU.
Because the interrupts are redirected, the CPU can only be woken up using the power
management controller.

• Suspending a PU requires suspending all of its CPUs individually.

Resuming Execution

A CPU can be woken up either by a wake interrupt triggered by a hardware resource or by an
explicit wake request using the XPM_RequestWakeup API.

The CPU starts executing from the resume address provided with the XPm_SelfSuspend call.

Setting up a Wake-up Source

The power management controller can power down the entire FPD if none of the FPD devices
are in use and existing latency requirements allow this action. If the FPD is powered off and the
APU is to be woken up by an interrupt triggered by a device in the LPD, the GIC Proxy must be
configured to allow propagation of FPD wake events. The APU can ensure this by calling
XPM_SetWakeUpSource for all devices that might need to issue wake interrupts.

Hence, prior to suspending, the APU must call XPm_SetWakeupSource(NODE_APU, node,
1) to add the required slaves as a wake-up source. The APU can then set the requirements to
zero for all slaves it is using. After the APU finalizes its suspend procedure, and provided that no
other PU is using any resource in the FPD, the PM controller powers off the entire FPD and
configures the GIC proxy to enable propagation of the wake event of the LPD slaves.

Aborting a Suspend Procedure

If a PU decides to abort the suspend procedure after calling the XPM_SetSelfSuspend
function, it must inform the power management controller about the aborted suspend by calling
the XPm_AbortSuspend function.

Handling PM Slaves During the Suspend Procedure

A PU that suspends itself must inform the power management controller about its changed
requirements on the peripherals and memories in use. If a PU fails inform the power management
controller, all of the used devices remain powered on. Typically, for memories you must ensure
that their context is preserved by using the following function:

XPm_SetRequirement(node, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);

When setting requirements for a PM slave during the suspend procedure; after calling
XPM_SelfSuspend, the setting is deferred until the CPU finishes the suspend. This deference
ensures that devices that are needed for completing the suspend procedure can enter a low
power state after the calling CPU finishes suspend.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=191

A common example is instruction memory, which a CPU can access until the end of a suspend.
After the CPU suspends a memory, that memory can be placed into retention. All deferred
requirements reverse automatically before the respective CPU is woken up.

When an entire PU suspends, the last awake CPU within the PU must manage the changes to the
devices.

Example Code for Suspending an APU/RPU

There the following is an example of source code for suspending the APU or RPU:

/* Base address of vector table (reset-vector) */ extern void
*_vector_table;
/* Inform PM controller that APU_0 intends to suspend */
XPm_SelfSuspend(NODE_APU_0, MAX_LATENCY, 0, (u64)&_vector_table);
/**
* Set requirements for OCM banks to preserve their context.
* The PM controller will defer putting OCMs into retention until the
suspend is finalized
*/
XPm_SetRequirement(NODE_OCM_BANK_0, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_1, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_2, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_3, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);

/* Flush data cache */ Xil_DCacheFlush();
/* Inform PM controller that suspend procedure is completed */
XPm_SuspendFinalize();

Suspending the Entire FPD Domain

To power-down the entire full power domain, the power management controller must suspend
the APU at a time when none of the FPD devices is in use. After this condition is met, the power
management controller can power-down the FPD automatically. The power management
controller powers down the FPD if no latency requirements constrain this action, otherwise the
FPD remains powered on.

Forcefully Powering Down the FPD

There is the option to force the FPD to power-down by calling the function
XPM_ForcePowerdown. This requires that the requesting PU has proper privileges configured in
the power management controller. The power management controller releases all PM Slaves
used by the APU automatically.

Note: This force method is typically not recommended, especially when running complex operating systems
on the APU because it could result in loss of data or system corruption, due to the OS not suspending itself
gracefully.

IMPORTANT! Use the XPm_RequestSuspend  API.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=192

Interacting with Other Processing Units
Suspending a PU

A PU can request that another PU be suspended by calling XPm_RequestSuspend, and passing
the targeted node name as an argument.

This causes the power management controller to call XPm_InitSuspendCb(), which is a
callback function implemented in the target PU. The target PU then initiates its own suspend
procedure, or call XPm_AbortSuspend and specify the abort reason. For example, you can
request an APU to suspend with the following command:

XPm_RequestSuspend(NODE_APU, REQUEST_ACK_NON_BLOCKING, MAX_LATENCY, 0);

The following diagram shows the general sequence triggered by a call to the
XPM_RequestSuspend.

For more information about XPm_RequestSuspend, XPm_InitSuspendCb, and
XPm_AbortSuspend, see XilPM Library in the OS and Libraries Document Collection (UG643).

Figure 59: APU initiating suspend for the RPU by calling XPm_RequestSuspend

APU

XPm_RequestSuspend
(nodeID=RPU,
latency=MAX)

PMU RPU TCM

RUN RUN RUN ON

XPm_InitSuspendCb
(reason=PU REQ,

latency=MAX)

XPm_SelfSuspend
(nodeID=RPU,
latency=MAX)

XPm_SetRequirement
(nodeID=TCM,

cap=context, ack=0)

XPm_SuspendFinalize

Power
Down Retention

save context

X20024-110217

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 193Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=193

Waking a PU

Additionally, a PU can request the wake-up of one of its CPUs or of another PU by calling
XPm_RequestWakeup.

• When processing the call, the power management controller causes a target CPU or PU to be
awakened.

• If a PU is the target, only one of its CPUs is woken-up by this request.

• The CPU chosen by the power management controller is considered the primary CPU within
the PU.

The following is an example of a wake-up request:

XPm_RequestWakeup(NODE_APU_1, REQUEST_ACK_NO);

For more information about XPm_RequestWakeup, see XilPM Library in the OS and Libraries
Document Collection (UG643).

DDR Self-refresh over Warm Restart
In most systems, the RAM of a computing system is cleared when the system resets or powers
down. Any data that needs to be retained, such as settings and logs, are usually stored in a non-
volatile memory such as flash and battery backed-up RAM. These non-volatile memories are
slower, especially when the amount of data is huge. For some systems, a more preferred solution
is to retain the data in the DRAM, thus effectively using it as a non-volatile memory.

The Zynq UltraScale+ MPSoC software solution supports a feature to put DDR into self-refresh
mode during warm restart (system reset, or PS only reset). This makes the DDR a non-volatile
memory and its contents remain as it is even after a reset.

By default, this feature is disabled. You can enable this feature by enabling the following build
flags during PMUFW and FSBL compilation:

• PMUFW: ENABLE_DDR_SR_WR

• FSBL: XFSBL_ENABLE_DDR_SR

After these build flags are enabled, the PMUFW puts the DDR in self-refresh mode during a
warm restart (PS only or System restart).

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 194Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=194

XilPM Implementation Details
The system layer of the PM framework is implemented on the Zynq UltraScale+ MPSoC using
inter-processor interrupts (IPIs). To issue an EEMI API call, a PU will write the API data (API ID
and arguments) into the IPI request buffer and then trigger the IPI to the PMU.

After the PM controller processes the request it will send the acknowledge depending on the
particular EEMI API and provided arguments.

Payload Mapping for API Calls to PMU
Each EEMI API call is uniquely identified by the following data:

• EEMI API identifier (ID)

• EEMI API arguments

Please see Appendix A for a list of all API identifiers as well as API argument values.

Prior to initiating an IPI to the PMU, the PU shall write the information about the call into the IPI
request buffer. Each data written into the IPI buffer is a 32-bit word. Total size of the payload is
six 32-bit words - one word is reserved for the EEMI API identifier, while the remaining words
are used for the arguments. Writing to the IPI buffer starts from offset zero. The information is
mapped as follows:

• Word [0] EEMI API ID

• Word [1:5] EEMI API arguments

The IPI response buffer is used to return the status of the operation as well as up to 3 values.

• Word [0] success or error code

• Word [1:3] value 1..3

Payload Mapping for API Callbacks from the PMU
The EEMI API includes callback functions, invoked by the PM controller, sent to a PU.

• Word [0]EEMI API Callback ID

• Word [1:5]EEMI API arguments

Refer to the XilPM Library in the OS and Libraries Document Collection (UG643) for a list of all API
identifiers as well as API argument values.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 195Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=195

Issuing EEMI API calls to the PMU
Before issuing an API call to the PMU, a PU must wait until its previous API call is processed by
the PMU. A check for completion of a PMU action can be implemented by reading the
corresponding IPI observation register.

An API call is issued by populating the IPI payload buffer with API data and triggering an IPI
interrupt to the PMU. In case of a blocking API call, the PMU will respond by populating the
response buffer with the status of the operation and up to 3 values. See Appendix B: Additional
Resources and Legal Notices for a list of all the errors that can be sent by the PMU if a PM
operation was unsuccessful. The PU must wait until the PMU has finished processing the API call
prior to reading the response buffer, to ensure that the data in the response buffer is valid.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=196

Figure 60: Example Flow of Issuing API Call to the PMU

XEMI API Call

Previous
API call

processed by
the PMU?

Copy API data into IPI
request buffer

Trigger IPI interrupt

Blocking API call?

API call
processed by

the PMU?

Read response from
the PMU

Return

No

No

Yes

Yes

Yes

X19506-071017

Handling API callbacks from the PMU
The PMU invokes callback functions to the PU by populating the IPI buffers with the API callback
data and triggering an IPI interrupt to the PU. In order to receive such interrupts, the PU must
properly initialize the IPI block and interrupt controller. A single interrupt is dedicated to all
callbacks. For this reason, element 0 of the payload buffer contains the API ID, which the PU
should use to identify the API callback. The PU should then call the respective API callback
function, passing in the arguments obtained from locations 1 to 4 of the IPI request buffer.

An implementation of this behavior can be found in the XilPM library.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=197

Linux
Linux executes on the EL1 level, and the communication between Linux and the TF-A software
layer is realized using SMC calls.

Power management features based on the EEMI API have been ported to the Linux kernel,
ensuring that the Linux-centric power management features utilize the EEMI services provided
by the PMU.

Additionally, the EEMI API can be access directly through debugfs for debugging purposes. Note
that direct access to the EEMI API through debugfs will interfere with the kernel power
management operations and may cause unexpected problems.

All the Linux power management features presented in this chapter are available in the PetaLinux
default configuration.

User Space PM Interface

System Power States

You may request to change the power state of a system or the entire system. The PMU facilitates
the switching of the system or sub-system to the new power state.

Shutdown

You may shutdown the APU sub-system with the standard 'shutdown' command.

To shut down the entire system, the user must shut down all the other sub-systems prior to
shutting down the APU sub-system. For example, use the following command to power down
the PL.

echo pm_release_node 69 > /sys/kernel/debug/zynqmp-firmware/pm

Use this command to power up the PL again:

echo pm_request_node 69 > /sys/kernel/debug/zynqmp-firmware/pm

For information about how to shut down the PL sub-system, see the Libmetal and OpenAMP for
Zynq Devices User Guide (UG1186).

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 198Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=198

Reboot

You can use the reboot command to reset the APU, the PS or the System. By default, the reboot
command resets the system. You can change the scope of the reboot command to APU or PS if
required. To change the reboot scope to APU:

echo subsystem > /sys/firmware/zynqmp/shutdown_scope

To change the reboot scope to PS:

echo ps_only > /sys/firmware/zynqmp/shutdown_scope

To change the reboot scope to System:

echo system > /sys/firmware/zynqmp/shutdown_scope

The reboot scope is set to System again after the reset.

Suspend

The kernel is suspended when the CPU and most of the peripherals are powered down. The
system run states needed to resume from suspend is stored in the DRAM, which is put into self-
refresh mode.

Kernel configurations required:

• Power management options

○ [*] Suspend to RAM and standby

○ [*] User space wakeup sources interface

○ [*] Device power management core functionality

• Device Drivers

○ SoC (System On Chip) specific Drivers

- Xilinx® SoC drivers

- Zynq MPSoC SoC

- [*] Enable Xilinx Zynq MPSoC Power Management driver

- [*] Enable Zynq MPSoC generic PM domains

• Firmware Drivers

○ Zynq MPSoC Firmware Drivers

- -*- Enable Xilinx Zynq MPSoC firmware interface

Note: Any device can prevent the kernel from suspending.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=199

See also https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate.

To suspend the kernel:

$ echo mem > /sys/power/state

Wake-up Source

The kernel resumes from the suspend mode when a wake-up event occurs. The following wake-
up sources can be used:

• UART

If enabled as a wake-up source, a UART input will trigger the kernel to resume from the
suspend mode.

Kernel configurations required:

○ Same as Suspend.

For example, to wake up the APU on UART input:

$ echo enabled > /sys/devices/platform/amba/ff000000.serial/tty/ttyPS0/
power/wakeup

• RTC

If enabled as a wake-up source, the kernel will resume from the suspend mode when the RTC
timer expires. Note that the RTC wake-up source is enabled by default.

Kernel configurations required:

○ Same as Suspend.

For example, to set RTC to wake up the APU after 10 seconds:

$ echo +10 > /sys/class/rtc/rtc0/wakealarm

• GPIO

If enabled as a wake-up source, a GPIO event will trigger the kernel to resume from the
suspend mode.

Kernel configurations required:

○ Device Drivers

- Input device support, [*]

Generic input layer (needed for keyboard, mouse, ...) (INPUT [=y]) [*] Keyboards
(INPUT_KEYBOARD [=y])

[*] GPIO Buttons (CONFIG_KEYBOARD_GPIO=y)

[*] Polled GPIO buttons

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 200Send Feedback

https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=200

For example, to wake up the APU on the GPIO pin:

$ echo enabled > /sys/devices/platform/gpio-keys/power/wakeup

Power Management for the CPU

CPU Hotplug

The user may take one or more APU cores on-line and off-line as needed through the CPU
Hotplug control interface.

Kernel configurations required:

• Kernel Features

○ [*] Support for hot-pluggable CPUs

See also:

• https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

• http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idle-states.txt

For example, to take CPU3 off-line:

$ echo 0 > /sys/devices/system/cpu/cpu3/online

CPU Idle

If enabled, the kernel may cut power to individual APU cores when they are idling. The kernel
configurations required are:

• CPU Power Management

○ CPU Idle

- [*] CPU idle PM support

- Arm CPU Idle Drivers

- [*] Generic Arm/Arm64 CPU idle Driver

See also:

• https://www.kernel.org/doc/Documentation/cpuidle/core.txt

• https://www.kernel.org/doc/Documentation/cpuidle/driver.txt

• https://www.kernel.org/doc/Documentation/cpuidle/governor.txt

• https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 201Send Feedback

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idle-states.txt
https://www.kernel.org/doc/Documentation/cpuidle/core.txt
https://www.kernel.org/doc/Documentation/cpuidle/driver.txt
https://www.kernel.org/doc/Documentation/cpuidle/governor.txt
https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=201

Below is the sysfs interface for cpuidle.

$ ls -lR /sys/devices/system/cpu/cpu0/cpuidle/

/sys/devices/system/cpu/cpu0/cpuidle/:
drwxr-xr-x 2 root root 0 Jun 10 21:55 state0
drwxr-xr-x 2 root root 0 Jun 10 21:55 state1

/sys/devices/system/cpu/cpu0/cpuidle/state0:
-r--r--r-- 1 root root 4096 Jun 10 21:55 desc
-rw-r--r-- 1 root root 4096 Jun 10 21:55 disable
-r--r--r-- 1 root root 4096 Jun 10 21:55 latency
-r--r--r-- 1 root root 4096 Jun 10 21:55 name
-r--r--r-- 1 root root 4096 Jun 10 21:55 power
-r--r--r-- 1 root root 4096 Jun 10 21:55 residency
-r--r--r-- 1 root root 4096 Jun 10 21:55 time
-r--r--r-- 1 root root 4096 Jun 10 21:55 usage

/sys/devices/system/cpu/cpu0/cpuidle/state1:
-r--r--r-- 1 root root 4096 Jun 10 21:55 desc
-rw-r--r-- 1 root root 4096 Jun 10 21:55 disable
-r--r--r-- 1 root root 4096 Jun 10 21:55 latency
-r--r--r-- 1 root root 4096 Jun 10 21:55 name
-r--r--r-- 1 root root 4096 Jun 10 21:55 power
-r--r--r-- 1 root root 4096 Jun 10 21:55 residency
-r--r--r-- 1 root root 4096 Jun 10 21:55 time
-r--r--r-- 1 root root 4096 Jun 10 21:55 usage

where:

• desc: Small description about the idle state (string)

• disable: Option to disable this idle state (bool)

• latency: Latency to exit out of this idle state (in microseconds)

• name: Name of the idle state (string)

• power: Power consumed while in this idle state (in milliwatts)

• time: Total time spent in this idle state (in microseconds)

• usage: Number of times this state was entered (count)

Below is the sysfs interface for cpuidle governors.

$ ls -lR /sys/devices/system/cpu/cpuidle/
/sys/devices/system/cpu/cpuidle/:
-r--r--r-- 1 root root 4096 Jun 10 21:55 current_driver
-r--r--r-- 1 root root 4096 Jun 10 21:55 current_governor_ro

CPU Frequency

If enabled, the CPU cores may switch between different operation clock frequencies. The kernel
configurations required are:

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=202

• CPU Frequency scaling

○ [*] CPU Frequency scaling

○ Default CPUFreq governor

- Userspace

• CPU Power Management

○ [*] CPU Frequency scaling

○ Default CPUFreq governor

- Userspace

- <*> Generic DT based cpufreq driver

Look up the available CPU speeds:

$ cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_cpu_freq

Select the 'userspace' governor for CPU frequency control:

$ echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Look up the current CPU speed (same for all cores):

$ cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_cpu_freq

Change the CPU speed (same for all cores):

$ echo <freq> > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

For details on adding and changing CPU frequencies, see the Linux kernel documentation on
Generic Operating Points.

Power Management for the Devices

Clock Gating

Stop device clocks when they are not being used (also called Common Clock Framework.) The
kernel configurations required are:

• Common Clock Framework

○ [*] Support for Xilinx ZynqMP Ultrascale+ clock controllers

Runtime PM

Power off devices when they are not being used. Note that individual drivers may or may not
support run-time power management. The kernel configurations required are:

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 203Send Feedback

https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=203

• Power management options

○ [*] Suspend to RAM and standby

• Device Drivers

○ SoC (System-on-a-chip) specific drivers

- [*] Xilinx SoC drivers

- [*] Enable Xilinx Zynq MPSoC Power Management driver

- [*] Enable Zynq MPSoC generic PM domains

Global General Storage Registers

Four 32-bit storage registers are available for general use. Their values are not preserved across
after software reboots. The following table lists the global general storage registers.

Table 57: Global General Storage Registers

Device Node MMIO Register MMIO Address Valid Value Range
/sys/firmware/zynqmp/ggs0 GLOBAL_GEN_STORAGE0 0xFFD80030 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs1 GLOBAL_GEN_STORAGE1 0xFFD80034 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs2 GLOBAL_GEN_STORAGE2 0xFFD80038 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs3 GLOBAL_GEN_STORAGE3 0xFFD8003C 0x00000000 - 0xFFFFFFFF

Read the value of a global storage register:

$cat /sys/firmware/zynqmp/ggs0

Write the mask and value of a global storage register:

$echo 0xFFFFFFFF 0x1234ABCD > /sys/firmware/zynqmp/ggs0

Persistent Global General Storage Registers

Four 32-bit persistent global storage registers are available for general use. Their values are
preserved across after software reboots. The lists the persistent global general storage registers.

Table 58: Persistent Global General Storage Registers

Device Node MMIO Register MMIO Address Valid Value Range
/sys/firmware/zynqmp/pggs0 PERS_GLOB_GEN_STORAGE0 0xFFD80050 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs1 PERS_GLOB_GEN_STORAGE1 0xFFD80054 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs2 PERS_GLOB_GEN_STORAGE2 0xFFD80058 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs3 PERS_GLOB_GEN_STORAGE3 0xFFD8005C 0x00000000 -0xFFFFFFFF

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=204

Read the value of a persistent global storage register:

$cat /sys/firmware/zynqmp/pggs0

Write the mask and value of a persistent global storage register:

$echo 0xFFFFFFFF 0x1234ABCD > /sys/firmware/zynqmp/pggs0

Demo
A demo script is included with the PetaLinux pre-built images, which performs a few simple
power management tasks:

• System Suspend

• CPU Hotplug

• CPU Freq

• System Reboot

• System Shutdown

To start the demo, type the following command:

$ hellopm

Debug Interface
The PM platform driver exports a standard debugfs interface to access all EEMI services. The
interface is intended for testing only and does not contain any checking regarding improper
usage, and the number, type and valid ranges of the arguments. The user should be aware that
invoking EEMI services directly via this interface can very easily interfere with the kernel power
management operations, resulting in unexpected behavior or system crash. Zynq MPSoC debugfs
interface is disabled by default in defconfig. It needs to be enabled explicitly as mentioned below.

Kernel configurations required (in this order):

• Kernel hacking

○ Compile-time checks and compiler options

- [*] Debug File system

• Firmware Drivers

○ Zynq MPSoC Firmware Drivers

- [*] Enable Xilinx Zynq MPSoC firmware interface

- [*] Enable Xilinx Zynq MPSoC firmware debug APIs

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=205

You may invoke any EEMI API except for:

• Self Suspend

• System Shutdown

• Force Power Down the APU

• Request Wake-up the APU

Command-line Input

The user may invoke an EEMI service by writing the EEMI API ID, followed by up to four
arguments, to the debugfs interface node.

API ID

Function ID can be EEMI API function name or ID number, type string or type integer,
respectively.

Arguments

The number and type of the arguments directly depend on the selected API function. All
arguments must be provided as integer types and represent the ordinal number for that specific
argument type from the EEMI argument list. For more information about function descriptions,
type and number of arguments see the EEMI API Specification.

Example

The following example shows how to invoke a request_node API call for NODE_USB_0.

$ echo "pm_request_node 22 1 100 1" > /sys/kernel/debug/zynqmp-firmware/pm

Command List

Get API Version

Get the API version.

$ echo pm_get_api_version > /sys/kernel/debug/zynqmp-firmware/pm

Request Suspend

Request another PU to suspend itself.

$ echo pm_request_suspend <node> > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=206

Self Suspend

Notify PMU that this PU is about to suspend itself.

$ echo pm_self_suspend <node> > /sys/kernel/debug/zynqmp-firmware/pm

Force Power Down

Force another PU to power down.

$ echo pm_force_powerdown <node> > /sys/kernel/debug/zynqmp-firmware/pm

Abort Suspend

Notify PMU that the attempt to suspend has been aborted.

$ echo pm_abort_suspend > /sys/kernel/debug/zynqmp-firmware/pm

Request Wake-up

Request another PU to wake up from suspend state.

$ echo pm_request_wakeup <node> <set_address> <address> > /sys/kernel/debug/
zynqmp-firmware/pm

Set Wake-up Source

Set up a node as the wake-up source.

$ echo pm_set_wakeup_source <target> <wkup_node> <enable> > /sys/kernel/
debug/zynqmp-firmware/pm

Request Node

Request to use a node.

$ echo pm_request_node <node> > /sys/kernel/debug/zynqmp-firmware/pm

Release Node

Free a node that is no longer being used.

$ echo pm_release_node <node> > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=207

Set Requirement

Set the power requirement on the node.

$ echo pm_set_requirement <node> <capabilities> > /sys/kernel/debug/zynqmp-
firmware/pm

Set Max Latency

Set the maximum wake-up latency requirement for a node.

$ echo pm_set_max_latency <node> <latency> > /sys/kernel/debug/zynqmp-
firmware/pm

Get Node Status

Get status information of a node. (Any PU can check the status of any node, regardless of the
node assignment.)

$ echo pm_get_node_status <node> > /sys/kernel/debug/zynqmp-firmware/pm

Get Operating Characteristic

Get operating characteristic information of a node.

$ echo pm_get_operating_characteristic <node> > /sys/kernel/debug/zynqmp-
firmware/pm

Reset Assert

Assert/de-assert on specific reset lines.

$ echo pm_reset_assert <reset> <action> > /sys/kernel/debug/zynqmp-
firmware/pm

Reset Get Status

Get the status of the reset line.

$ echo pm_reset_get_status <reset> > /sys/kernel/debug/zynqmp-firmware/pm

Get Chip ID

Get the chip ID.

$ echo pm_get_chipid > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=208

Get Pin Control Functions

Get current selected function for given pin.

$ echo pm_pinctrl_get_function <pin-number> > /sys/kernel/debug/zynqmp-
firmware/pm

Set Pin Control Functions

Set requested function for given pin.

$ echo pm_pinctrl_set_function <pin-number> <function-id> > /sys/kernel/
debug/zynqmp-firmware/pm

Get Configuration Parameters for the Pin

Get value of requested configuration parameter for given pin.

$ echo pm_pinctrl_config_param_get <pin-number> <parameter to get> > /sys/
kernel/debug/zynqmp-firmware/pm

Set Configuration Parameters for the Pin

Set value of requested configuration parameter for given pin.

$ echo pm_pinctrl_config_param_set <pin-number> <parameter to set> <param
value> > /sys/kernel/debug/zynqmp-firmware/pm

Control Device and Configurations

Control device and configurations and get configurations values.

$ echo pm_ioctl <node id> <ioctl id> <arg1> <arg2> > /sys/kernel/debug/
zynqmp-firmware/pm

Table 59: IOCTLs in SDG

IOCTL_ID Name Description
0 IOCTL_GET_RPU_OPER_MODE returns current RPU operating mode (lockstep/split).

1 IOCTL_SET_RPU_OPER_MODE configures RPU operating mode (lockstep/split).

2 IOCTL_RPU_BOOT_ADDR_CONFIG configures RPU boot address

3 IOCTL_TCM_COMB_CONFIG configures TCM to be in split mode or combined
mode

4 IOCTL_SET_TAPDELAY_BYPASS enable/disable tap delay bypass

5 IOCTL_SET_SGMII_MODE enable/disable SGMII mode for the GEM device

6 IOCTL_SD_DLL_RESET resets DLL logic for the SD device

7 IOCTL_SET_SD_TAPDELAY sets input/output tap delay for the SD device

8 IOCTL_SET_PLL_FRAC_MODE sets PLL mode

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=209

Table 59: IOCTLs in SDG (cont'd)

IOCTL_ID Name Description
9 IOCTL_GET_PLL_FRAC_MODE returns current PLL mode

10 IOCTL_SET_PLL_FRAC_DATA sets PLL fraction data

11 IOCTL_GET_PLL_FRAC_DATA returns PLL fraction data value

12 IOCTL_WRITE_GGS writes value to GGS register

13 IOCTL_READ_GGS returns GGS register value

14 IOCTL_WRITE_PGGS writes value to PGGS register

15 IOCTL_READ_PGGS returns PGGS register value

16 IOCTL_ULPI_RESET performs the ULPI reset sequence for resetting the
ULPI transceiver

17 IOCTL_SET_BOOT_HEALTH_STATUS sets healthy bit value to indicate boot health status to
firmware.

18 IOCTL_AFI writes the afi values at given index

Table 60: Description of IOCTLs

IOCTL_
ID Name Descript

ion
Arguments

Node_ID Arg1 Arg2 Return Value
0 IOCTL_GET_RPU_OPER_MO

DE
returns
current
RPU
operating
mode
(lockstep/
split)

unused unused unused Operating
mode

0:
LOCKSTEP
1: SPLIT

1 IOCTL_SET_RPU_OPER_MO
DE

configure
s RPU
operating
mode
(lockstep/
split)

unused Value of operating
mode

0: LOCKSTEP
1: SPLIT

unused unused

2 IOCTL_RPU_BOOT_AD
DR_CONFIG

configure
s RPU
boot
address

NODE_RPU
_0
NODE_RPU
_1

Value to set for
boot address

0: LOVEC/TCM
1: HIVEC/OCM

unused unused

3 IOCTL_TCM_COMB_C
ONFIG

configure
s TCM to
be in split
mode or
combined
mode

unused Value to set (Split/
Combined)

0: SPLIT
1: COMB

unused unused

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=210

Table 60: Description of IOCTLs (cont'd)

IOCTL_
ID Name Descript

ion
Arguments

Node_ID Arg1 Arg2 Return Value
4 IOCTL_SET_TAPDELAY_BYP

ASS
enables/
disables
tap delay
bypass

unused Type of tap delay

0:
NAND_DQS_IN
1:
NAND_DQS_OU
T
- 2: QSPI

Tap-delay
Enable/ Disable

0: DISABLE
1: ENABLE

unused

5 IOCTL_SET_SGMII_MO DE enables/
disables
SGMII
mode for
the GEM
device

NODE_ETH
_0,
NODE_ETH
_1,
NODE_ETH
_2,
NODE_ETH
_3

"GMII mode
Enable/ Disable

0: DISABLE
1: ENABLE

unused unused

6 IOCTL_SD_DLL_RESET resets DLL
logic for
the SD
device

NODE_SD_0
,
NODE_SD_1

SD DLL Reset type

0: ASSERT
1: RELEASE
2: PULSE

unused unused

7 IOCTL_SET_SD_TAPDE LAY sets
input/
output tap
delay for
the SD
device

NODE_SD_0
,
NODE_SD_1

Type of tap delay to
set

0: INPUT
1: OUTPUT

Value to set for
the tap delay

unused

8 IOCTL_SET_PLL_FRAC_
MODE

sets PLL
mode

unused PLL clock ID PLL Mode

0:
FRAC_MOD
E
1:
INT_MODE

unused

9 IOCTL_GET_PLL_FRAC_
MODE

returns
current
PLL mode

unused PLL clock ID unused PLL Mode

0:
FRAC_MOD
E
1:
INT_MODE

10 IOCTL_SET_PLL_FRAC_
DATA

sets PLL
fraction
data

unused PLL clock ID PLL fraction
data

unused

11 IOCTL_GET_PLL_FRAC_
DATA

returns
PLL
fraction
data value

unused PLL clock ID unused PLL fraction
data

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=211

Table 60: Description of IOCTLs (cont'd)

IOCTL_
ID Name Descript

ion
Arguments

Node_ID Arg1 Arg2 Return Value
12 IOCTL_WRITE_GGS writes

value to
GGS
register

unused GGS register index
(0/1/2/3)

Register value
to be written

unused

13 IOCTL_READ_GGS returns
GGS
register
value

unused GGS register index
(0/1/2/3)

unused Register value

14 IOCTL_WRITE_PGGS writes
value to
PGGS
register

unused PGGS register
index (0/1/2/3)

Register value
to be written

unused

15 IOCTL_READ_PGGS returns
PGGS
register
value

unused PGGS register
index (0/1/2/3)

unused Register value

16 IOCTL_ULPI_RESET performs
the ULPI
reset
sequence
for
resetting
the ULPI
transceive
r

unused unused unused unused

17 IOCTL_SET_BOOT_HEA
LTH_STATUS

sets
healthy
bit value
to indicate
boot
health
status to
firmware

unused healthy bit value unused unused

18 IOCTL_AFI writes the
afi values
at given
index

unused AFI register index
(0 to 15)

Register value
to be written

unused

Query Data

Request data from firmware.

$ echo pm_query_data <query id> <arg1> <arg2> <arg3> > /sys/kernel/debug/
zynqmp-firmware/pm

Enable Clock

Enable the clock for a given clock node_id.

$ echo pm_clock_enable <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=212

Disable Clock

Disable the clock for a given clock node_id.

$ echo pm_clock_disable <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Get Clock State

Get the state of clock for a given clock node_id.

$ echo pm_clock_getstate <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Set Clock Divider

Set the divider value of clock for a given clock node id.

$ echo pm_clock_setdivider <clock id> <divider value> > /sys/kernel/debug/
zynqmp-firmware/pm

Get Clock Divider

Get the divider value of clock for a given clock node_id.

$ echo pm_clock_getdivider <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Set Clock Rate

Set the clock rate for a given clock node_id.

$ echo pm_clock_setrate <clock id> <clock rate> > /sys/kernel/debug/zynqmp-
firmware/pm

Get Clock Rate

Get the clock rate for a given clock node_id.

$ echo pm_clock_getrate <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Set Clock Parent

Set the parent clock for a given clock node_id.

$ echo pm_clock_setparent <clock id> <parent clock id> > /sys/kernel/debug/
zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=213

Get Clock Parent

Get the parent clock for a given clock node id.

$ echo pm_clock_getparent <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Note: Clock id definitions are available in the following file of the clock bindings documentation:
Documentation/devicetree/bindings/clock/xlnx,zynqmp-clk.txt

PM Platform Driver
The Zynq UltraScale+ MPSoC power management for Linux is encapsulated in a power
management driver, power domain driver and platform firmware driver. The system-level API
functions are exported and as such, can be called by other Linux modules with GPL compatible
license. The function declarations are available in the following location:

include/linux/firmware/xilinx/zynqmp/firmware.h

The function implementations are available in the following location:

drivers/firmware/xilinx/zynqmp/firmware*.c

Provide the correct node in the Linux device tree for proper driver initialization. The firmware
driver relies on the 'firmware' node to detect the presence of PMU firmware, determine the
calling method (either 'smc' or 'hvc') to the PM-Framework firmware layer and to register the
callback interrupt number.

The ‘firmware’ node contains following properties:

• Compatible: Must contain ‘xlnx,zynqmp-firmware’.

• Method: The method of calling the PM framework firmware. It should be ‘smc’.

Note: Additional information is available in the following txt file of Linux Documentation:
Documentation/devicetree/bindings/firmware/xilinx/xlnx,zynqmp-firmware.txt.

Example:

firmware {
zynqmp_firmware: zynqmp-firmware { compatible = "xlnx,zynqmp-firmware";
method = "smc";
};
};

Note: Power domain driver and power management driver binding details are available in the following files
of Linux Documentation:

• Documentation/devicetree/bindings/soc/xilinx/xlnx,zynqmp-power.txt

• Documentation/devicetree/bindings/power/zynqmp-genpd.txt

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=214

Note: xilPM do not support the following EEMI APIs. For current release, they are only supported for Linux
through TF-A.

• query_data

• ioctl

• clock_enable

• clock_disable

• clock_getstate

• clock_setdivider

• clock_getdivider

• clock_setrate

• clock_getrate

• clock_setparent

• clock_getparent

• pinctrl_request

• pinctrl_release

• pinctrl_set_function

• pinctrl_get_function

• pinctrl_set_config

• pinctrl_get_config

Trusted Firmware-A (TF-A)
The Trusted Firmware-A (TF-A) executes in EL3. It supports the EEMI API for managing the
power state of the slave nodes, by sending PM requests through the IPI-based communication to
the PMU.

TF-A Application Binary Interface
All APU executable layers below EL3 may indirectly communicate with the PMU via the TF-A.
The TF-A receives all calls made from the lower ELs, consolidates all requests and send the
requests to the PMU.

Following Arm's SMC Calling Convention, the PM communication from the non-secure world to
the TF-A is organized as SiP Service Calls, using a predefined SMC function identifier and SMC
sub-range ownership as specified by the calling convention.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=215

Note that the EEMI API implementation for the APU is compliant with the SMC64 calling
convention only.

EEMI API calls made from the OS or hypervisor software level pass the 32-bit API ID as the SMC
Function Identifier, and up to four 32-bit arguments as well. As all PM arguments are 32-bit
values, pairs of two are combined into one 64-bit value.

The TF-A returns up to five 32-bit return values:

• Return status, either success or error and reason

• Additional information from the PM controller

Checking the API Version

Before using the EEMI API to manage the slave nodes, the user must check that EEMI API
version implemented in the TF-A matches the version implemented in the PMU firmware. EEMI
API version is a 32-bit value separated in higher 16 bits of MAJOR and lower 16 bits of MINOR
part. Both fields must be the same between the TF-A and the PMU firmware.

The EEMI version implemented in the TF-A is defined in the local EEMI_API_VERSON flag. The
rich OS may invoke the PM_GET_API_VERSION function to retrieve the EEMI API version from
the PMU. If the versions are different, this call will report an error.

Note: This EEMI API call is version independent; every EEMI version implements it.

Checking the Chip ID

Linux or other rich OS can invoke the PM_GET_CHIPID function via SMC to retrieve the chip ID
information from the PMU.

The return values are:

• CSU idcode register (see TRM).

• CSU version register (see TRM).

For more details, see the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Power State Coordination Interface (PSCI)
Power State Coordination Interface is a standard interface for controlling the system power state
of Arm processors, such as suspend, shutdown, and reboot. For the PSCI specifications, see
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html.

TF-A handles the PSCI requests from Linux. TF-A supports PSCI v0.2 only (with no backward
compatible support for v0.1).

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 216Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=216

The Linux kernel comes with standard support for PSCI. For information regarding the binding
between the kernel and the TF-A/PSCI, see https://www.kernel.org/doc/Documentation/
devicetree/bindings/arm/psci.txt.

Table 61: PSCI v0.2 Functions Supported by the TF-A

Functions Description Supported
PSCI Version Return the version of PSCI implemented. Yes

CPU Suspend Suspend execution on a core or higher level topology node. This call is
intended for use in idle subsystems where the core is expected to return to
execution through a wakeup event.

Yes

CPU On Power up a core. This call is used to power up cores that either:

• Have not yet been booted into the calling supervisory software.

• Have been previously powered down with a CPU_OFF call.

Yes

CPU Off Power down the calling core. This call is intended for use in hotplug. A core
that is powered down by CPU_OFF can only be powered up again in
response to a CPU_ON.

Yes

Affinity Info Enable the caller to request status of an affinity instance. Yes

Migrate (Optional) This is used to ask a uniprocessor Trusted OS to migrate its context to a
specific core.

Yes

Migrate Info Type
(Optional)

This function allows a caller to identify the level of multicore support
present in the Trusted OS.

Yes

Migrate Info Up CPU
(Optional)

For a uniprocessor Trusted OS, this function returns the current resident
core.

Yes

System Off Shut down the system. Yes

System Reset Reset the system. Yes

PSCI Features Introduced in PSCI v1.0.
Query API that allows discovering whether a specific PSCI function is
implemented and its features.

Yes

CPU Freeze (Optional) Introduced in PSCI v1.0.
Places the core into an IMPLEMENTATION DEFINED low-power state.
Unlike CPU_OFF it is still valid for interrupts to be targeted to the core.
However, the core must remain in the low power state until it a CPU_ON
command is issued for it.

No

CPU Default Suspend
(Optional)

Introduced in PSCI v1.0.
Will place a core into an IMPLEMENTATION DEFINED low-power state.
Unlike CPU_SUSPEND the caller need not specify a power state parameter.

No

Node HW State
(Optional)

Introduced in PSCI v1.0.
This function is intended to return the true HW state of a node in the
power domain topology of the system.

Yes

System Suspend
(Optional)

Introduced in PSCI v1.0.
Used to implement suspend to RAM. The semantics are equivalent to a
CPU_SUSPEND to the deepest low-power state.

Yes

PSCI Set Suspend Mode
(Optional)

Introduced in PSCI v1.0.
This function allows setting the mode used by CPU_SUSPEND to coordinate
power states.

No

PSCI Stat Residency
(Optional)

Introduced in PSCI v1.0.
Returns the amount of time the platform has spent in the given power
state since cold boot.

Yes

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 217Send Feedback

https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=217

Table 61: PSCI v0.2 Functions Supported by the TF-A (cont'd)

Functions Description Supported
PSCI Stat Count
(Optional)

Introduced in PSCI v1.0.
Return the number of times the platform has used the given power state
since cold boot.

Yes

PMU Firmware
The EEMI service handlers are implemented in the PMU firmware, as one of the modules called
PM Controller (There are other modules running in the PMU firmware to handle other types of
services). For more details, see the Chapter 10: Platform Management Unit Firmware.

Power Management Events
The PM Controller is event-driven, and all of the operations are triggered by one of the following
events:

• EEMI API events triggered via IPI0 interrupt.

• Wake events triggered via GPI1 interrupt.

• Sleep events triggered via GPI2 interrupt.

• Timer event triggered via PIT2 interrupt.

EEMI API Events

EEMI API events are software-generated events. The events are triggered via IPI interrupt when
a PM master initiates an EEMI API call to the PMU. The PM Controller handles the EEMI request
and may send back an acknowledgment (if one is requested.) An EEMI request often triggers a
change in the power state of a node or a master, with some exceptions.

Wake Events

Wake events are hardware-generated events. They are triggered by a peripheral signaling that a
PM master should be woken-up. All wake events are triggered via the GPI1 interrupt.

The following wake events are supported by the PM controller:

• GIC wake events which signal that a CPU shall be woken up due to an interrupt triggered by a
hardware resource to the associated GIC interface. The following GIC wake events are
supported:

○ APU[3:0]An event for each APU processor

○ RPU[1:0]An event for each RPU processor

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=218

• FPD wake event directed by the GIC Proxy. This wake event is triggered when any of the
wake sources enabled prior to suspending. The purpose of this event is to trigger a wake-up of
APU master when FPD is powered down. If FPD is not powered down, none of the wake
signals would propagate through FPD wake. Instead, the wake would propagate through GIC
wake if the associated interrupt at the GIC is properly enabled. All wake events targeted to
the RPU propagate via the associated GIC wake.

Sleep Events

Sleep events are software-generated events. The events are triggered by a CPU after it finalizes
the suspend procedure with the aim to signal to the PMU that it is ready to be put in a low power
state. All sleep events are triggered via GPI2 interrupt.

The following sleep events are supported:

• APU[3:0]An event for each APU processor

• RPU[1:0]An event for each RPU processor

When the PM controller PM Controller receives the sleep event for a particular CPU, the CPU is
put into a low power state.

Timer Event

Timer event is hardware-generated event. It is triggered by a hardware timer when a period of
time expires. The event is used for power management timeout accounting and it is triggered via
PIT2 interrupt.

General flow of an EEMI API Call
The following diagram illustrates the sequence diagram of a typical API call, starting with the call
initiated by a PM Master (such as another PU):

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=219

Figure 61: EEMI API Call Sequence Diagram

PM Master PMU Firmware PM Controller PMU ROM

IPI

XEMI API event

handler()

return

acknowledge

return

XEMI API call

X20021-110217

The previous diagram shows four actors, where the first one represents the PM Master, i.e. either
the RPU, APU, or a MicroBlaze™ processor core. The remaining 3 actors are the different
software layers of the PMU.

First the PMU firmware receives the IPI interrupt. Once the interrupt has been identified as a
power management related interrupt, the IPI arguments are passed to the Power Management
Module. The PM controller then processes the API call. If necessary it may call the PMU ROM in
order to perform power management actions, such as power on or off a power island, or a power
domain.

Chapter 11: Power Management Framework

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=220

Chapter 12

Reset
The Zynq® UltraScale+™ MPSoC reset block is responsible for handling both internal and
external reset inputs to the system, and to meet the reset requirements for all the peripherals
and the APU and RPU. The reset block generates resets for the programmable logic part of the
device, and allows independent reset assertion for PS and PL blocks.

This chapter explains the reset mechanisms involved in the system reset and the individual
module resets.

System-Level Reset
The Zynq UltraScale+ MPSoCs let you reset individual blocks such as the APU, RPU, or even
individual power domains like the FPD and LPD. There are multiple, system-level reset options,
as follows:

• Power-on reset (POR)

• System reset (SRST_B)

• Debug system reset

For more details on the system-level reset flow, see this link to the “Reset System” chapter in the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Block-Level Resets
The PS-only reset can be implemented as a subset of system-reset; however, the user must
provide software that ensures PS-to-PS AXI transactions are gracefully terminated before
initiating a PS-only reset.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 221Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxResetSystem
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=221

PS-Only Reset
The PS-only reset re-boots the PS while that PL remains active. You can trigger the PS-only reset
by hardware error signal(s) or a software register write. If the PS-only reset is due to an error
signal, then the error can be indicated to the PL also, so that the PL can prepare for the PR
restart.

The PS-only reset sequence can be implemented as follows:

• [ErrorLogic] Error interrupt is asserted whose action requires PS-only reset. This request is
sent to PMU as an interrupt.

• [PMU-FW] Set PMU Error (=>PS-only reset) to indicate to PL.

See the PS Only Reset section in the “Reset System” chapter of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085) describes the PS-only reset sequence.

Note: PS-only reset is not supported in qspi24 mode on systems with a flash size that is greater than 16
MB.

Application Processing Unit Reset
You can independently reset each of the APU CPU core in the software.

The APU MPCore reset can be triggered by FPD, WDT, or a software register write; however,
APU MPCore is reset without gracefully terminating requests to and from the APU. The intent is
that you use the LPD in case of catastrophic failures in the FPD. The APU reset is primarily for
software debug.

The Zynq UltraScale+ Device Technical Reference Manual (UG1085) describes the APU reset
sequence.

APU-Only Reset
APU-only reset is supported in QSPI24, QSPI32, SD0, SD1, SD1-LS, and eMMC boot modes.

Note: The QSPI24 boot mode is not supported by the APU-only restart on systems with flashes greater
than 16 MB in the QSPI single mode and greater than 32 MB in the dual parallel mode.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 222Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=222

Real Time Processing Unit Reset
Each Cortex®-R5F core can be independently reset. In lockstep mode, only the Cortex-R5F_0
needs to be reset to reset both Cortex-R5F cores. It can be triggered by errors or a software
register write. The Cortex-R5F reset can be triggered due to a lockstep error to be able to reset
and restart the RPU. It needs to gracefully terminate Cortex-R5F ingress and egress transactions
before initiating reset of corresponding Cortex-R5F.

Full Power Domain Reset
The FPD-reset resets all of the FPD power domain and can be triggered by errors or a software
register write. If the FPD reset is due to error signal, then the error must be indicated to both the
LPD and the PL.

The FPD reset can be implemented by leveraging the FPD power-up sequence; however, it needs
to gracefully terminate FPD ingress and egress AXI transactions before initiating reset of FPD.
FPD reset sequence can be PL Reset.

The Zynq UltraScale+ MPSoCs has general-purpose output pins from the PMU block that can be
used to reset the blocks in PL. Additionally, GPIO using the EMIO interface can also be used to
reset PL logic blocks. For a detailed description of the reset flow, see the this link to the “Reset
System” chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

For more information on the software APIs for reset, see the PMU firmware in Chapter 9:
Platform Management.

Warm Restart
The Zynq UltraScale+ MPSoC is a highly complex piece of silicon, capable of running multiple
subsystems on the chip simultaneously. As such, Zynq UltraScale+ supports various types of
reset. This varies from the simplest system reset to the much more complicated subsystem
restart. In any system or subsystem that has a processor component and a programmable logic
component, reset must entail both reset to the hardware as well as software. Reset to the
hardware includes the following:

• Resetting of the processor and all peripherals associated with the system/subsystem

• Cleaning up of the memory as needed

• Making sure that the interconnect is in a clean state that is capable of routing traffic.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 223Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf;a=xResetSystem
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=223

Reset to the software results in the processor starting from the reset vector. However, designer
must make sure that a valid and clean code for the system/subsystem is located at the reset
vector in order to bring the system back to a clean running state.

Resets for Zynq UltraScale+ are broadly divided into two categories. They are:

• Full system resets

• Subsystem restarts

Full system resets include the following:

• Power-On-Reset (POR)

• System-reset

• PS-only-reset

Subsystem restarts include APU subsystems and RPU subsystem restarts.

Full system resets are quite straight forward. Hardware is brought back to the reset state and
software starts executing ROM code, with a minor behavior difference between the reset types.
There are subtleties to PS-only reset which will be discussed in later sections.

Subsystem restart is more complicated. A subsystem in Zynq UltraScale+ is composed of all the
components of a particular operating system. The following figure shows both Vivado's view of
the PS as well as example subsystems as defined by the OS. The default IP configuration menu in
Vivado provides a flattened view, consisting of all available PS components. In the example, these
components are partitioned into three separate subsystems, each running an independent
operating system. Each subsystem consists of a processor, list of peripherals and memory. The
example shows the following subsystems:

• RPU based subsystem running uC/OS-II

• RPU based subsystem running FreeRTOS

• APU based subsystem running Linux

Subsystems can be configured in the Isolation Configuration view that is inside the Vivado PCW
(PS Configuration Wizard), when the Advanced Mode check box is enabled.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=224

Figure 62: Vivado IP Configuration Menu

During subsystem restart, the entire subsystem is restarted from a clean state without affecting
the running of the other active subsystems defined in MPSoC. For example, during an APU
subsystem restart, an APU subsystem running Linux is restarted as far back as FSBL, while the
RPU subsystem running FreeRTOS and uC/OS-II continues to function undisturbed. Similarly for
a RPU subsystem restart, an APU subsystem continues to function undisturbed.

Subsystem restarts are managed by the platform management unit (PMU). To restart each
subsystem, PMU must first ensure that all on-going AXI-transactions are terminated and that no
new transactions are issued. In the subsystems shown in the following figure, the interconnects
that connects the components of the subsystem, are not explicitly shown. However, each
subsystem includes multiple interconnects and the same interconnects are used by all three
subsystems. If the PMU firmware resets all the components in a subsystem while leaving
unfinished transactions in the interconnect, the AXI master and slave might both be in the reset
state. However, the unfinished AXI transactions will remain in the interconnect, thus blocking all
subsequent traffic. Stuck transactions in the interconnect causes the system to freeze as these
connections are shared. It is therefore imperative that the PMU ensures all transactions are
completely finished before resetting each and every components in the subsystem, including the
processor.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=225

Figure 63: Subsystem Components for Various Operating Systems

Before releasing the processor from reset, the PMU must ensure that the code in the reset vector
will result in a clean system restart. In the case of the RPU subsystem running standalone
applications, this means either loading a clean copy of the application elf or making sure that the
application code is re-entrant. In the case of the APU subsystem running Linux, this means
starting from a re-entrant copy of FSBL.

Note: The on-chip memory (OCM) module contains 256 KB of RAM starting at 0xFFFC0000. The OCM is
mainly used by the FSBL and TF-A components. The FSBL uses the OCM region from 0xFFFC0000 to
0xFFFE9FFF. The last 512B of this region is used by the FSBL to share the handoff parameters
corresponding to applications that the TF-A hands off. The TF-A uses the rest of the OCM i.e. from
0xFFFEA000 to 0xFFFFFFFF.

The current implementation of a warm reset requires the FSBL to be in the OCM to support the PMU
firmware hand off to (already existing) the FSBL without actually restarting. Hence, the OCM is completely
used and no other application is allowed to use it when a warm restart is enabled.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=226

Supported Use Cases
APU Subsystem Restart
For an APU subsystem only restart, you must define the APU subsystem using PCW in the
Vivado design tools. The PMU executes the function to restart the APU subsystem. First, the
PMU idles all components in the APU subsystem. When all is quiet, the PMU will reset each
component, including the APU processors. When the reset is released, it will re-execute the FSBL
code in the OCM. The task carried out by the FSBL for restart differs only slightly than that of
the POR.

Note: The FSBL is re-entrant. Hence, the APU can simply re-execute the FSBL without having to reload a
clean copy.

The following figure shows the APU subsystem restart process.

Figure 64: APU Subsystem Restart Process

The start of this flow diagram represents a clean running state. Linux, RPU, PMU, and CSU
subsystems are in running status. The health of the APU subsystem is monitored by an APU
WDT (watchdog timer). Linux runs a background application which periodically boosts the
watchdog to prevent it from timing out. If an APU subsystem hangs, the WDT times out. The
timeout interrupts the PMU and results in an APU subsystem restart. Alternatively, you can
invoke the APU subsystem restart by directly calling for it in Linux.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=227

Implementation

To support any subsystem restart, a subsystem must first be defined in the Vivado design tools
using the Isolation Configuration view. For an APU subsystem running Linux, the following APU
subsystem are required in addition to the default PMU subsystem:

• A secure APU system for running the FSBL and TF-A

• A non-secure APU subsystem for running Linux.

See Sub-system Power Management for more information on subsystem configuration and an
example of the APU only subsystem.

IMPORTANT! While APU subsystem consists solely of PS components, it is often the case that APU
subsystem also includes IP peripherals implemented in PL. Unfortunately, isolation configuration menu
does not include features to assign PL IPs to different subsystems. As a result, all IPs instantiated in Vivado
are added to the generated device tree source (DTS) file. In order to properly define the APU subsystem, all
PL IPs that do not belong in the APU subsystem need to be manually removed from the DTS file.
Otherwise, drivers for all the soft IPs will be enabled for Linux, and APU will attempt to manage all the soft
IPs even when the APU is going through a warm restart.

IMPORTANT! During a subsystem restart, all components in the subsystem must be in the idle state,
followed by reset. This is implemented for supported components in the PS. For all IPs in PL of a subsystem
that are AXI slaves, no additional tasks are required to idle them. You may supply code to reset these slaves
if desired. For PL IPs that are AXI masters, you must provide the necessary code to stop and complete all
AXI transactions from the master as well as to reset it. See Idle and Reset of Peripherals for details on
adding the idle and reset code.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
Building Software for detailed instructions on building the software.

RPU Subsystem Restart
RPU as Master

For an RPU subsystem only restart, you must define the RPU subsystem using PCW in the Xilinx
Vivado® Design Suite. The PMU executes the function to restart the RPU subsystem. First, the
PMU checks if master is RPU and FSBL was initially running on RPU. Then PMU will idle all
components in the RPU subsystem. When all is quiet, the PMU will reset each component,
including the RPU processors. When the reset is released, it will re-execute the FSBL code. FSBL
for subsystem restart loads only RPU partitions without interrupting other subsystems.

Note: RPU only subsystem restart is supported only with FSBL running on RPU just as APU only restart.
Here the FSBL is re-entrant. Hence, the RPU can simply re-execute the FSBL without having to reload a
clean copy.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=228

Once all the subsystems have started and represent a clean running state, the health of the RPU
subsystem can be monitored using an LPD WDT (watchdog timer) by an application running on
RPU. This application must take care of boosting the watchdog to prevent it from timing out. If
an RPU subsystem hangs, this WDT times out and interrupts the PMU which results in RPU
subsystem restart. For more information, see the LPD WDT section.

Alternatively, you can invoke the RPU subsystem restart by directly calling for it in RPU
application.

Implementation

The implementation is same as APU only subsystem restart except that RPU subsystem must be
defined in the Vivado® Design Suite using the Isolation Configuration view.

Note: To support any subsystem restart, a subsystem must first be defined in the Vivado design tools using
the Isolation Configuration view.

The RPU subsystem requires RPU running an FSBL and RPU application in addition to PMU
subsystem. See Sub-system Power Management for more information on subsystem
configuration and an example of the APU only subsystem.

IMPORTANT! During a subsystem restart, all components in the subsystem must be in the idle state,
followed by reset. This is implemented for supported components in the PS. For all IPs in PL of a subsystem
that are AXI slaves, no additional tasks are required to idle them. You may supply code to reset these slaves
if desired. For PL IPs that are AXI masters, you must provide the necessary code to stop and complete all
AXI transactions from the master as well as to reset it. See Idle and Reset of Peripherals for details on
adding the idle and reset code.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
See Building Software for detailed instructions on building the software.

APU as Master

RPU subsystem restart requires the APU subsystem and one or more RPU subsystems running in
lock-step or split mode. The APU subsystem running Linux is the master of the RPU subsystems
and manages the life cycle of the subsystem using the remoteproc feature of OpenAMP. APU
uses remoteproc to load, start, and stop the RPU application. It also re-syncs the APU subsystem
with RPU subsystem after the restart. APU subsystem can trigger a RPU restart by following
sequence:

1. First, it stops the RPU

2. Loads the new firmware

3. Then, it starts the RPU again.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=229

Many events including user command, RPU watchdog timeout or message from the RPU to APU
via message pipe may trigger the RPU subsystem restart. Then, APU issues remoteproc
command to PMU to start or stop the RPU, and the PMU changes the state of the RPU
subsystem.

The following figure shows the RPU subsystem restart process.

Figure 65: RPU Subsystem Restart

The start of the above diagram represents a clean running state for all subsystems, Linux, RPU,
PMU and CSU. In the flowchart, APU receives a RPU subsystem restart request. When APU
receives the restart request, it uses remoteproc features to stop the RPU subsystem, load new
firmware code, and then starts the RPU subsystem again. The flow chart shows the use of a RPU
WDT. The RPU periodically boosts the watch dog. If the RPU hangs, WDT times out. Linux will
receive the timeout and restarts the RPU subsystem.

Implementation

You must define the RPU subsystem using the Isolation Configuration view in Vivado PCW, and
both PMU and APU subsystems are required. In addition, two configurations are possible for the
RPU subsystem: RPUs in lock step mode or in split mode. See the Isolation Configuration
Consideration wiki page for more information on subsystem configuration. Sharing of peripherals
between subsystems are not supported. Make sure that the peripherals in all subsystems are
mutually exclusive.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 230Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842442
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842442
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=230

IMPORTANT! In the process of subsystem restart, all components in the subsystem must be in the idle
state, followed by reset. This is implemented for supported components in the PS. For all IPs in PL of a
subsystem that are AXI slaves, no additional tasks are required to idle them. User may supply code to reset
the slaves if desired. For PL IPs that are AXI masters, user must provide the necessary code to stop and
complete all AXI transactions from the master as well as to reset it. See Idle and Reset of Peripherals for
details on adding the idle and reset code.

RPU subsystem restart is supported with Linux kernel implementation of remoteproc on APU in
conjunction with OpenAMP library on RPU. It is currently not supported with Linux userspace
OpenAMP library on APU. RPU application must be written in accordance with the OpenAMP
application requirements. See Libmetal and OpenAMP for Zynq Devices User Guide (UG1186) for
more information. Note that the rpmsg is not required for remoteproc. You can employ rpmsg
feature to provide a communication pipe between the two processors. However, remoteproc is
independent of rpmsg. To make remoteproc function properly with subsystem restart, RPU
application needs to include a resource table with static shared memory allocation. Dynamic
shared memory allocation is not supported for subsystem restart. You must implement the steps
outlined in How to Write a Simple OpenAMP Application in Libmetal and OpenAMP for Zynq
Devices User Guide (UG1186) to satisfy the remoteproc requirement, but not beyond that. After
initialization, the RPU application needs to signal to the PMU that it is Power Management (PM)
aware by calling XPm_InitFinalize().

Note: If you call XPm_InitFinalize() too early, then the slaves that are not yet initialized are powered
off. They will be powered up again when the RPU application comes around to initialize them, which will
incur some additional power-up latency. See ZU+ Example - PM Hello World wiki page for more
information on how to write a PM aware RPU application.

Finally, you must ensure that the address of the reserved memory for RPU code is synchronized
across all layers. It must be defined under memory for both APU and RPU subsystems in the
isolation configuration of Vivado. The same address region should be used in the DTS file for
OpenAMP overlay in Linux and again, in resource table and linker script for the RPU application.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
Building Software for detailed instructions on building the software.

PS-Only Reset
For a PS-only restart, the entire processor system is reset while PL continues to function. Prior to
invoking PS-only reset, PMU turns on isolation between PS and PL, thus clamping the signals
between them in well-defined states. After PS-only reset is released, PS executes the standard
boot process starting from the PMU ROM, followed by CSU ROM, then FSBL and so on. During
FSBL, the isolation between PS and PL is removed.

IMPORTANT! As the software has gone through a reset cycle, the state of the hardware IPs in PL which
continue to run during the PS-only reset may become out of sync with the state of the software which
interfaces or controls the IPs. It is your responsibility to make sure that the software and hardware states
are properly re-synchronized. In a PS-only reset, you cannot download the bitstream again.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 231Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842048/ZU+Example+-+PM+Hello+World
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=231

PS-only reset can be initiated by Linux command or watchdog timeout or PMU error
management block. If you are interested in PS-only reset without APU/RPU subsystem restart,
subsystem/isolation configuration is not required. Linux commands for setting reboot type and
reboot will work without additional modifications.

System Reset
In a system-reset, the entire hardware, both PS and PL are reset. After system reset is released,
PS executes the standard boot process starting from the PMU ROM, followed by CSU ROM,
then FSBL and so on. The following table shows the differences between system reset and POR:

Table 62: Differences between POR and System Reset

POR System Reset
Reset persistent registers Preserves persistent registers

Resamples boot mode pins Does not resample boot mode pins

Reset debug states Preserves debug states

Resample eFuse values Requires explicit software action to refresh

Security state determined Security state locked

Clear tamper response Preserves tamper response

Select security key source Security key source locked

Optional LBIST and/or SCAN/CLEAR Does not run LBIST or SCAN/CLEAR

Run MBIST Explicit software action needed to run MBIST

System reset can be initiated by Linux command or watchdog timeout or PMU error
management block. If you are interested in only System reset without APU/RPU subsystem
restart, subsystem/isolation configuration is not required.

Note: System reset is not supported in qspi24 mode on systems with a flash size that is greater than 16
MB.

Idle and Reset of Peripherals
It is necessary to stop/complete any ongoing transaction by any IP or processor of the subsystem
before resetting them. Otherwise, it may lead to hanging of the interconnect and eventually
hanging of the entire system. Also, to ensure proper operation by the IP after reboot, it is best to
reset them and bring them to post bootROM state.

PMU firmware implements peripheral idling and resetting for the PS IPs that can be idled / reset
during the subsystem reset. The IPs that will be attempted to idled/reset is based on isolation
configuration of the Vivado.

Build PMU firmware with the following idling flags to enable subsystem node idling and resetting:

• ENABLE_NODE_IDLING

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=232

• IDLE_PERIPHERALS

Node Reset and Idle

During a subsystem restart, the PMU firmware makes sure that the associated PS peripheral
nodes are idled and brought to reset state. Following is the list of currently supported PS
peripherals that will undergo idle/reset, if they are part of the subsystem that is undergoing reset:

• TTC

• Ethernet/EMAC

• I2C

• SD

• eMMC

• QSPI

• USB

• DP

• SATA

See GPIO reset to PL to understand the implication of GPIO reset.

Note: PS peripherals are idled prior to invoking resets for user invoked reboot of PS-only and system-reset
command.

Custom Hooks
PMU firmware does not keep track of PL peripherals. Hence, there is no idle/reset function
implementation available in the PMU firmware. However, it is necessary to treat those
peripherals in the same the PS peripherals are treated. You can add a custom hook in the
idle_hooks.c file to idle the PL peripherals and reset them. These hooks can be called from
the PmMasterIdleSlaves function in the pm_master.c file of the PMU firmware.

lib/sw_apps/zynqmp_pmufw/src/pm_master.c
:dir:dir -769,6 +769,12 :dir:dir static void PmMasterIdleSlaves(PmMaster*
const master)

PmDbg(DEBUG_DETAILED,"%s\r\n", PmStrNode(master->nid));

+ /*
+ * Custom hook to idle PL peripheral before PS peripheral idle
+ */
+
+ Xpfw_PL_Idle_HookBeforeSlaveIdle(master);
+
while (NULL != req) {
u32 usage = PmSlaveGetUsageStatus(req->slave, master); Node = &req->slave-
>node;
:dir:dir -783,6 +789,11 :dir:dir static void PmMasterIdleSlaves(PmMaster*

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=233

const master)
}
req = req->nextSlave;
}
+
+ /*
+ * Custom hook to idle PL peripheral after PS peripheral idle
+ */
+ Xpfw_PL_Idle_HookAfterSlaveIdle(master);
#endif
}

The Xpfw_PL_Idle_HookBeforeSlaveIdle and Xpfw_PL_Idle_HookAfterSlaveIdle
can contain the code to idle the PL peripherals and reset them if necessary. The implementation
can be either of the following:

• Write AXI registers of PL IPs to bring them to idle state and reset. This is the preferred and a
graceful way to idle PL peripherals.

• Implement a signal based handshake where PMU firmware signals PL to idle all PL IPs. This
implementation should be used when there is no direct control to gracefully stop traffic. For
example, you can use this implementation if there are non DMA PL IPs, which does not have
reset control but are connected through a firewall IP. This implementation also allows stopping
all traffic passing through it unlike the other where each IP needs to be idled individually.

Note: Implementation for these custom hooks is not provided by Xilinx.

GPIO Reset to PL
Vivado configuration allows you to enable fabric resets from PS to PL. The following figure shows
that the Zynq UltraScale+ block outputs pl_resetn0 and pl_resetn1 signals with Fabric
Reset Enabled and the Number of Fabric Resets set to 2, can be used to drive reset pins of PL
components.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=234

Figure 66: Resets from PS to PL

The pl_resetn signals are implemented with PS GPIOs. Pl_resetn pins are released after
bitstream configuration in software using the psu_ps_pl_reset_config_data function. In
the case where a subsystem also uses GPIO for purpose other than reset, the GPIO block is
included in the subsystem definition. The image below shows an example of an APU subsystem
with GPIO as a slave peripheral.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=235

Figure 67: APU Subsystem with GPIO

In the case where GPIO is a subsystem slave peripheral, the entire GPIO component will be reset
as part of the restart process when the subsystem is being restarted. Since pl_resetn are
implemented with GPIOs, pl_resetn will be forced low during subsystem restart. This behavior
may be undesirable if the pl_resent signals are being used to drive PL IPs in subsystems other
than the one being reset. For example, if pl_resetn0 drives resets to PL IP for APU subsystem
and pl_resetn1 drives PL IPs for RPU subsystem.

During APU subsystem restart, both pl_resetn0 and pl_resent1 will be forced into the
reset state. Consequently, PL IPs in RPU subsystem will be reset. This is the wrong behavior since
APU-restart should not affect the RPU subsystem as the GPIO is implicitly shared between the
APU and RPU subsystem via pl_resetn signals. Since sharing of peripherals is not supported
for subsystem restart, pl_resetn causes problems during subsystem reset. The work-around is
to skip idling and resetting GPIO peripheral during any subsystem restart even if the component
is assigned in the subsystem/isolation configuration.

To skip the GPIO reset during the node Idling and reset, build the PMU firmware with following
flag:

REMOVE_GPIO_FROM_NODE_RESET_INFO

Note: GPIO component goes through a reset cycle also during PS-only reset. PMU firmware enables PS-PL
isolation prior to calling PS only reset which locks pl_resetn to High. However, as soon as FSBL removes
the PS-PL isolation, the reset goes Low. FSBL then calls psu_ps_pl_reset_config_data to
reconfigure pl_resetn back to High. This is needed since resetting the PL components allows proper
synchronization of software and hardware states after reset.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=236

Recovering from a Hang System
In an event of system hang, as indicated by FPT WDT timeout, PMU can be used to carry out a
sequence of events to try and recover from the unresponsive condition. By default, when FPD
WDT times out, PMU firmware will not invoke any type of restart. This is so that user can specify
the exact desired behavior. However, Xilinx provides a typical recovery scheme in which PMU
firmware monitors the state of APU subsystem using FPD WDT and restart APU (Linux)
subsystem if the timer expires, indicating problem with Linux.

Since RPU subsystem is managed by Linux using remoteproc, the life-cycle of the RPU subsystem
is completely up to Linux. PMU is not involved in deciding when to restart RPU subsystem(s).
RPU hang recovery can also be implemented with help of either software or hardware watchdog
between APU and RPU subsystems. In that case, the watchdog is configured and handled by
Linux but the heartbeats is provided by RPU application(s). The exact method of deciding when
to restart RPU is up to the user, watchdog is simply one of many possibilities. To enable recovery,
PMU firmware should be built with enabling error management and recovery. Following macros
enable the Recovery feature:

• ENABLE_EM

• ENABLE_RECOVERY

It is also necessary to build TF-A with following flags (see APU Idling for details):

ZYNQMP_WARM_RESTART=1

IMPORTANT! One TTC timer (timer 9) will be reserved for PMU's use when these compile flags are
enabled.

Watchdog Management
The FPD WDT is used for monitoring APU state. Software running on APU periodically touch
FPD WDT to keep it from timing out. The occurrence of WDT timeout indicates an unexpected
condition on the APU which prevents the software from running properly and an APU restart is
invoked. FPD WDT is configured by PMU firmware at initialization stage, but is periodically
serviced by software running on APU.

The default timeout configured for WDT is 60 seconds and can be changed by
RECOVERY_TIMEOUT flag in PMU firmware. When APU subsystem goes into a restart cycle,
FPD WDT is kept running to ensure that the restart lands in a clean running state where software
running on APU is able to touch the WDT again. Therefore, the timeout for the WDT must be
long enough to cover the entire APU subsystem restart cycle to prevent the WDT from timing
out in the middle of restart process. It is advisable to start providing the heartbeat as soon as is

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=237

feasible in Linux. PetaLinux BSP includes recipe to add the watchdog management service in
init.d. As FPD WDT is owned by PMU firmware, it would be unsafe to use full fledged Linux
driver for handling WDT. It is advisable to just pump the heartbeats by writing restart key
(0x1999) to restart register (WDT base + 0x8) of the WDT. It can be done through C program
daemon or it can be part of bash script daemon.

It is recommended to be part of idle thread or similar low priority thread, which if hangs we
should consider the subsystem hang.

The following is the snippet of the single heartbeat stroke to the FPD WDT from command
prompt. This can be included in the bash script which runs periodically.

devmem 0xFD4D0008 32 0x1999

The following wdt-heartbeat application periodically provides the heartbeat to FPD WDT. For
demo purpose this application is launched as daemon. The code from this application can be
implemented in appropriate location such as an idle thread of Linux.

#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define WDT_BASE 0xFD4D0000
#define WDT_RESET_OFFSET 0x8
#define WDT_RESET_KEY 0x1999

#define REG_WRITE(addr, off, val) (*(volatile unsigned int*)(addr
+off)=(val))
#define REG_READ(addr,off) (*(volatile unsigned int*)(addr+off))

void wdt_heartbeat(void)
{
char *virt_addr; int fd;
int map_len = getpagesize();
fd = open("/dev/mem", (O_RDWR | O_SYNC)); virt_addr = mmap(NULL,
map_len, PROT_READ|PROT_WRITE,
MAP_SHARED,
fd, WDT_BASE);

if (virt_addr == MAP_FAILED) perror("mmap failed");

close(fd);

REG_WRITE(virt_addr,WDT_RESET_OFFSET, WDT_RESET_KEY);

munmap((void *)virt_addr, map_len);
}
int main()
{
while(1)
{
wdt_heartbeat(); sleep(2);
}
return 0;
}

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=238

On the expiry of watchdog, PMU firmware receives and handles the WDT interrupt. PMU
firmware idles the subsystem's master CPU i.e., all A53 cores (see APU Idling), and then carries
out APU only restart flow which includes CPU reset and idling and resetting peripherals (see
Peripheral Idling) associated to the subsystem reset.

Note: If ESCALATION is enabled PMU firmware will trigger the appropriate restart flow (which can be
other than APU only restart) as explained in Escalation section.

APU Idling
Each A53 is idled by taking them to the WFI state. This is done through Trusted Firmware-A (TF-
A). For idling CPU, the PMU firmware raises TTC interrupt (timer 9) to TF-A, which issues
software interrupt to each alive A53 core. The respective cores then clears the pending SGI on
itself and put itself into WFI.

The last core just before going into WFI issues pm_system_shutdown (PMU firmware API) to
PMU firmware, which then performs APU only restart flow.

This feature must be enabled in TF-A for recovery to work properly. It can be enabled by building
TF-A with ZYNQMP_WARM_RESTART=1 flag.

Modifying Recovery Scheme

When ENABLE_RECOVERY is turned on, Xilinx provides a recovery implementation in which a
FPD WDT timeout results in the invocation of APU subsystem restart. You can easily modify the
recovery behavior by modifying the code. Alternatively, an example of PMU firmware invoking
system-reset on FPD WDT timeout is detailed in Xilinx Answer: 69423.

Escalation
If current recovery cannot bring the system back to the working state, the system must escalate
to a more severe type of reset on the next WDT expiry in order to try and recover fully. It is up to
you to decide on the escalation scheme. A commonly used scheme starts with APU-restart on
the first watchdog expiration, followed by PS-only reset on the next watchdog expiration, then
finally system-reset.

To enable escalation, PMU firmware must be built with following flags:

ENABLE_ESCALATION
Escalation Scheme

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 239Send Feedback

https://www.xilinx.com/support/answers/69423.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=239

Default Scheme

Default escalation scheme checks for the successful pm_system_shutdown call from TF-A for
APU-only restart which happens when the TF-A is able to successfully idle all active CPUs. If TF-
A is not successful in idling the active cores, WDT will time out again with the WDT_in_Progess
flag set, resulting in do escalation.

Escalation will trigger System level reset. System level reset is defined as PS only reset if PL is
present or System restart if PL is not present.

The following figure shows the flow of the control in case of default escalation scheme.

Figure 68: Flow of Control for Default Escalation Scheme

Is WDT_In_ProgressRaise Interrupt to
PMU Firmware

No
Do

Escalation

Restart WDT

Set WDT_in_Progress flag

Raise IPI request to ATF for Clearing APU
Sleep and

wait for
event

Restart WDT

Clear WDT_in_Progress flagDo APU only
restart

Clear all the pending
interrupts on this core

ATF Raises Sw interrupts
for all Active cores

Is Last Active
Core?

Call Pm System shutdown
call for APU only reset

WFI

Each Active core invoked runs same codeIPI to ATF

IPI to PMU-firmware

Legends

AM Trusted Firmware

Hardware

PMU Firmware

Yes

FPD
WDT

Expired

X21016-060618

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=240

Healthy Bit Scheme

Default scheme for escalation does not guarantee the successful reboot of the system. It only
guarantees the successful role of TF-A to idle the CPU during the recovery. Consider the scenario
in which the FPD_WDT has timed out and APU subsystem restart is called in which TF-A is able
to successfully make the pm_system_shutdown call. However, APU subsystem restart is far
from finished after pm_system_shutdown is called. The restart process can be stuck
elsewhere, such as fsbl, u-boot or Linux init state. If the restart process is stuck in one of the
aforementioned tasks, FPD_WDT will expire again, causing the same cycle to be repeated as long
as TF-A is loaded and functioning. This cycle can continue indefinitely without the system
booting back into a clean running state.

The Healthy Bit scheme solves this problem. In addition to default scheme, the PMU firmware
checks for a Healthy Bit, which is set by Linux on successful booting. On WDT expiry, if Healthy
Bit is set, it indicates that Linux is able to boot into a clean running state, then no escalation is
needed. However, if Healthy Bit is not set, that means the last restart attempt did not
successfully boot into Linux and escalation is needed. There is no need to repeat the same type
of restart. PMU firmware will escalate and call a system level reset.

Healthy Bit scheme is implemented using the bit-29 of PMU global general storage register
(PMU_GLOBAL_GLOBAL_GEN_STORAGE0[29]). PMU firmware clears the bit before starting the
recovery or normal reboot and Linux must set this bit to flag a healthy boot.

PMU global registers are accessed through sysfs interface from Linux. Hence, to set the healthy
bit from the Linux, execute the following command (or include in the code):

echo "0x20000000 0x20000000" > "/sys/devices/platform/firmware/ggs0"

To enable the healthy bit based escalation scheme, build the PMU firmware with the following
flag:

CHECK_HEALTHY_BOOT

The following figure shows the flow of the control in case of the healthy bit escalation scheme.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=241

Figure 69: Healthy Bit Escalation Scheme

Is WDT_In_Progress

Healthy Bit Set?
FPD
WDT

Expired

Raise Interrupt to
PMU Firmware

No Do
EscalationNo

Restart WDT

Yes

Set WDT_in_Progress flag

Raise IPI request to ATF for Clearing APU
Sleep and

wait for
event

Restart WDT

Clear WDT_in_Progress flagDo APU only
restart

Clear all the pending
interrupts on this core

ATF Raises Sw interrupts
for all Active cores

Is Last Active
Core?

Call Pm System shutdown
call for APU only reset

WFI

Each Active core invoked runs same codeIPI to ATF

IPI to PMU-firmware

Legends

AM Trusted Firmware

Hardware

PMU Firmware

Yes

X21015-060618

Customizing Recovery and Escalation Scheme

By default, when FPD WDT times out, PMU FW will not invoke any type of restart. While Xilinx
has provided predefined RECOVERY and ESCALATION behaviors, users can easily customize
different desired schemes.

When FPD _WDT times out, it calls FpdSwdtHandler. If ENABLE_EM is defined,
FpdSwdtHandler calls XPfw_recoveryHandler. It is otherwise an empty function.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=242

In xpfw_mod_em.c,

#ifdef ENABLE_EM
oid FpdSwdtHandler(u8 ErrorId)
{
XPfw_Printf(DEBUG_ERROR,"EM: FPD Watchdog Timer Error (Error ID: %d)\r\n",
ErrorId);
XPfw_RecoveryHandler(ErrorId);
}

#else
void FpdSwdtHandler(u8 ErrorId) { }

Without ENABLE_EM, you can simply update FpdSwdtHandler which will be called at FPD
Timeout. With ENABLE_EM turned on, you need to update XPfw_recoveryHandler.

Similarly, turning on RECOVERY defines the XPfw_RecoveryHandler (see
xpfw_restart.c). Unless RECOVERY is turned on, XPfw_ RecoveryHandler is an empty
function and nothing will happen when FPD_WDT times out.

RecoveryHandler basically follows the flow chart detailed in the Escalation Scheme section.
When FPD_WDT times out, the code follows the progression of orange boxes. If WDT is not
already in progress, Restart WDT, Set WDT_In_Progress flag, Raise TTC (timer 9) interrupt to TF-
A. Then TF-A takes over. It Raises SW interrupt for all active cores, clear pending interrupts, etc.
(see blue boxes). Essentially, PMU restarts and boosts the WDT, then sends a request to TF-A.
TF-A cleanly idles all four APUs and when they all get to WFI (Last Active Core is true), TF-A
issues PMU System Shutdown with APU subsystem as argument back to PMU. When PMU gets
this command, it invokes APU subsystem restart.

If ENABLE_ESCALATION is not set, the code never takes the Do Escalation path. If the
RecoveryHandler hangs for some reason (for example, something went wrong and APU
cannot put all four CPU cores to WFI), it keeps retrying APU restart or hang forever. When
ENABLE_ESCLATION is on and if anything goes wrong during execution of the flowchart, it will
look like WDT is still in progress (since clear WDT_in_progress flag happens only as the last step),
Do Escalation will call SYSTEM_RESET instead of trying APU-restart again and again.

To customize recovery and escalation behavior, use the provided XPfw_recoveryHandler as a
template to provide a customized XPfw_recoveryHandler function.

Building Software
All the software components are built and packaged by Xilinx PetaLinux tool. See PetaLinux wiki
page for more information on how to build and package software components.

Build Flag for Restart Solution

Following build time flags are not set by default and can alter the behavior of the restart in
Zynq UltraScale+ MPSoC:

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 243Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=243

Table 63: Build Time Flags

Component Flag Name Description

PMU firmware

ENABLE_EM Enable error management and
provide WDT interrupt handling.
This is not directly related to
restart solution but needed for
recovery.

ENABLE_RECOVERY Enable Recovery during WDT
expiry

ENABLE_ESCALATION Allow escalation on failure of boot
or recovery

CHECK_HEALTHY_BOOT Use Healthy bit to determine
escalation

IDLE_PERIPHERALS ENABLE_NODE_IDLING Both the flags must be used
together to allow PMU firmware to
attempt peripherals node idling
(and reset).

REMOVE_GPIO_FROM_NODE_RESET_INFO Skips GPIO from the node idling
and resetting list.
This is needed when the system is
using GPIO to provide reset (or
similar) signals to PL or other
peripherals outside current
subsystem.
If this flag is set, GPIO is not reset.

TF-A ZYNQMP_WARM_RESTART=1 Enable WARM RESTART recovery
feature in TF-A that allow the CPU
idling triggered from PMU
firmware.

FSBL FSBL_PROT_BYPASS Skip XMPU/XPPU based
configuration for system except
for DDR and OCM.

Linux CONFIG_SRAM Needed for Remoteproc to work
for load RPU images in the TCM.

Modifying Component Recipes
Each component's recipe can be changed to either include the build time compilation flags or to
include patches for custom code modification/addition. PetaLinux provides meta-user Yocto
based layer for user specific modifications. The layer can be found in project directory project-
spec/meta-user/ location.

PMU Firmware

User specific recipe for PMU firmware can be found in the following location:

dir:project-spec/meta-user/recipes-bsp/pmu/pmu-firmware_%.bbappend (if
doesn't exist please create this file at this path).

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=244

The PMU firmware code can be modified by patches against embeddedsw GitHub repo. Location
for the source code is embeddedsw/tree/master/lib/sw_apps/zynqmp_pmufw. The
patches should be copied to project-spec/meta-user/recipes-bsp/pmu/files
directory and the same patch names should be added pmu-firmware_%.bbappend file.

Example:

If my_changes.patch (against PMU firmware source) is to be added and all the flags explained
in the Build Time Flags in Building Software are to be enabled (set), then project-spec/
meta-user/recipes-bsp/pmu/pmu-firmware_%.bbappend may look like the following
file:

YAML_COMPILER_FLAGS_append = " -O2 -DENABLE_EM -DENABLE_RECOVERY
-DENABLE_ESCALATION -DENABLE_NODE_IDLING -DREMOVE_GPIO_FROM_NODE_RESET_INFO
-DCHECK_HEALTHY_BOOT -DIDLE_PERIPHERALS"

FILESEXTRAPATHS_prepend := "${THISDIR}/files:" SRC_URI_append = " file://
my_changes.patch"

FSBL

User specific recipe for the FSBL can be found in the following location:

dir:project-spec/meta-user/recipes-bsp/fsbl/fsbl_%.bbappend (if does not
exist, please create this file at this path). The FSBL code can be modified by patches against
embeddedsw GitHub repo. Location for the source code is as follows:

embeddedsw/tree/master/lib/sw_apps/zynqmp_fsbl

The patches should be copied to project-spec/meta-user/recipes-bsp/fsbl/files
directory and the same patch names should be added to fsbl_%.bbappend file.

Example:

If my_changes.patch (against the FSBL source) is to be added and all the flags explained in the
Build Time Flags in Building Software are to be enabled (set), then the modified project-
spec/meta-user/recipes-bsp/fsbl/fsbl_%.bbappend file will look like the following
file (XPS_BOARD_ZCU102 flag was already existing):

YAML_COMPILER_FLAGS_append = " -DXPS_BOARD_ZCU102 -DFSBL_PROT_BYPASS"
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
SRC_URI_append = " file://my_changes.patch"

TF-A

User specific recipe for TF-A can be found in the following location:

dirproject-spec/meta-user/recipes-bsp/arm-trusted-firmware/arm-
trusted-firmware_%.bbappend file (if it doesn't exist, create this file in this path). You can
find the ATF files in Git repository for arm trusted firmware.

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 245Send Feedback

https://github.com/xilinx/embeddedsw
https://github.com/Xilinx/arm-trusted-firmware
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=245

Example:

To add warm restart flag to TF-A, project-spec/meta-user/recipes-bsp/arm-
trusted-firmware/arm-trusted-firmware_%.bbappend will look like the following file:

#
Enabling warm restart feature
#
EXTRA_OEMAKE_append = " ZYNQMP_WARM_RESTART=1"

Linux

There are many ways to add /modify Linux configuration. See PetaLinux Tools Documentation:
Reference Guide (UG1144) for the same.

User specific recipe for Linux kernel can be found in the following location:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx_%.bbappend (if it
doesn't exist, create this file at this path).

You can find the Linux files at Git Repository for Linux Example:

To add SRAM config to Linux, create the following bsp.cfg file:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx/bsp.cfg

CONFIG_SRAM=y

Add this file in the following bbapend file of Linux:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx_%.bbappend

SRC_URI += "file://bsp.cfg"
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

Modifying Device Tree

User specific recipe for device tree can be found in the following location:

project-spec/meta-user/recipes-bsp/device-tree/device-tree-generation_
%.bbappend. This file contains the following contents:

SRC_URI_append ="\ file://system-user.dtsi \
"
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 246Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://github.com/Xilinx/linux-xlnx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=246

The content of system-user.dtsi in project-spec/meta-user/recipes-bsp/
device-tree/files directory is as follows:

/include/ "system-conf.dtsi"
/ {
};

This file can be modified to extend the device tree functionality by adding, removing, or
modifying the DTS nodes.

Example: Adding DT node(s) [remoteproc RPU split mode]

The overlay dtsi(s) can be added in files/ directory (remember to update bbappend file
accordingly) and included in system-user.dtsi. For adding remoteproc related entries to
enable RPU subsystem to load, unload, or restart, add a new overlay file called
remoteproc.dtsi.

Note: This is for split mode. Check open amp documentation for lockstep and other possible
configurations.

File: remoteproc.dtsi

/ {

reserved-memory {

#address-cells = <2>;

#size-cells = <2>; ranges;
rproc_0_reserved: rproc:dir3ed000000 { no-map;
reg = <0x0 0x3ed00000 0x0 0x1000000>;

};

};

power-domains {

pd_r5_0: pd_r5_0 {

#power-domain-cells = <0x0>; pd-id = <0x7>;
};

pd_r5_1: pd_r5_1 {

#power-domain-cells = <0x0>; pd-id = <0x8>;
};

pd_tcm_0_a: pd_tcm_0_a {

#power-domain-cells = <0x0>; pd-id = <0xf>;
};

pd_tcm_0_b: pd_tcm_0_b {

#power-domain-cells = <0x0>; pd-id = <0x10>;
};

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=247

pd_tcm_1_a: pd_tcm_1_a {

#power-domain-cells = <0x0>;

pd-id = <0x11>;
};

pd_tcm_1_b: pd_tcm_1_b {

#power-domain-cells = <0x0>; pd-id = <0x12>;
};
};
amba {

r5_0_tcm_a: tcm:dirffe00000 { compatible = "mmio-sram";
reg = <0x0 0xFFE00000 0x0 0x10000>;

pd-handle = <&pd_tcm_0_a>;

};

r5_0_tcm_b: tcm:dirffe20000 { compatible = "mmio-sram";
reg = <0x0 0xFFE20000 0x0 0x10000>;

pd-handle = <&pd_tcm_0_b>;

};

r5_1_tcm_a: tcm:dirffe90000 { compatible = "mmio-sram";
reg = <0x0 0xFFE90000 0x0 0x10000>;

pd-handle = <&pd_tcm_1_a>;

};

r5_1_tcm_b: tcm:dirffeb0000 { compatible = "mmio-sram";
reg = <0x0 0xFFEB0000 0x0 0x10000>;

pd-handle = <&pd_tcm_1_b>;

};

elf_ddr_0: ddr:dir3ed00000 { compatible = "mmio-sram";
reg = <0x0 0x3ed00000 0x0 0x40000>;

};

elf_ddr_1: ddr:dir3ed40000 { compatible = "mmio-sram";
reg = <0x0 0x3ed40000 0x0 0x40000>;

};

test_r50: zynqmp_r5_rproc:dir0 {

compatible = "xlnx,zynqmp-r5-remoteproc-1.0";

reg = <0x0 0xff9a0100 0x0 0x100>, <0x0 0xff340000 0x0 0x100>, <0x0
0xff9a0000 0x0 0x100>;

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=248

reg-names = "rpu_base", "ipi", "rpu_glbl_base"; dma-ranges;

core_conf = "split0"; sram_0 = <&r5_0_tcm_a>; sram_1 = <&r5_0_tcm_b>;
sram_2 = <&elf_ddr_0>; pd-handle = <&pd_r5_0>;
interrupt-parent = <&gic>; interrupts = <0 29 4>;
} ;
test_r51: zynqmp_r5_rproc:dir1 {
compatible = "xlnx,zynqmp-r5-remoteproc-1.0";
reg =<0x0 0xff9a0200 0x0 0x100>, <0x0 0xff340000 0x0 0x100>, <0x0
0xff9a0000 0x0 0x100>;

reg-names = "rpu_base", "ipi", "rpu_glbl_base"; dma-ranges;
core_conf = "split1"; sram_0 = <&r5_1_tcm_a>; sram_1 = <&r5_1_tcm_b>;
sram_2 = <&elf_ddr_1>; pd-handle = <&pd_r5_1>;
interrupt-parent = <&gic>; interrupts = <0 29 4>;
} ;
};
};

Now include this node in system-user.dtsi:

/include/ "system-conf.dtsi"
/include/ "remoteproc.dtsi"
/ {
};

For information on OpenAMP and remoteproc, see the OpenAmp wiki page.

Example: Removing DT node(s) [PL node]

It is necessary to remove PL nodes, which are not accessed or dependent on APU subsystem,
from the device tree. Again, you can modify system-user.dtsi in project-spec/meta-
user/recipes-bsp/device-tree/files to remove specific node or property.

For example, you can modify the system-user.dtsi as following, if you are willing to remove
AXI DMA node from the dts:

/include/ "system-conf.dtsi"
/include/ "remoteproc.dtsi"
/ {
/delete-node/axi-dma;
};

Chapter 12: Reset

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 249Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=249

Chapter 13

High-Speed Bus Interfaces
The Zynq® UltraScale+™ MPSoC has a serial input/output unit (SIOU) for a high-speed serial
interface. It supports protocols such as PCIe®, USD 3.0, DisplayPort, SATA, and Ethernet
protocols.

• The SIOU block is part of the full-power domain (FPD) in the PS.

• The USB and Ethernet controller blocks that are part of the low-power domain (LPD) in the
Zynq UltraScale+ MPSoC also share the PS-GTR transceivers.

• The interconnect matrix enables multiplexing of four PS-GTR transceivers in various
combinations across multiple controller blocks.

• A register block controls or monitors signals within the SIOU.

This chapter explains the configuration flow of the high-speed interface protocols.

See this link to the “High-Speed PS-GTR Transceiver Interface” of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085) for more information.

USB 3.0
The Zynq UltraScale+ MPSoC USB 3.0 controller consists of two independent dual-role device
(DRD) controllers. Both can be individually configured to work as host or device at any given
time. The USB 3.0 DRD controller provides an eXtensible host controller interface (xHCI) to the
system software through the advanced eXtensible interface (AXI) slave interface.

• An internal DMA engine is present in the controller and it uses the AXI master interface to
transfer data.

• The three dual-port RAM configurations implement the RX data FIFO, TX data FIFO, and the
descriptor/register cache.

The following flow diagrams illustrate how to configure USB as mass storage device.

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 250Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxHighSpeedPSGTRTranscieverInterface
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=250

Figure 70: USB Example Flow: USB Initialization

USB config initialize

Start

Call a function to hook up the handler for control packets

Is Req type==
Std dev req?

Stall on endpoint 0

Call a function to hook up the handler for mass storage

Stall the endpoint 0

Handle standard device request

Is Req type==
class req? Handle the class request

Is Req type==
vendor req? Do nothing

Is Req ==
Mass storage

reset?

Do nothing
(Status phase is handled by driver)

Is Req ==
Get_Maz_LUN Prepare a URB with number of LUNs

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

A

X15463-111020

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=251

Figure 71: Example USB Flow: Hookup Bulk in and Bulk out Handlers and Initialize
Interrupt Controller

Prepare device descriptors

Prepare configuration descriptors

Call a function to hook up the bulkout handler

Is phase ==
Data?

Send command status wrapper (CSW)

Call a function to hook up the bulk In handler

Read the packet data into Receive BufferIs phase ==
Status?

Initialize the driver interrupt controller

Config initialize for GIC

Connect the interrupt controller

Is phase ==
Command? Parse CBW

Send reduced block command (RBC)
Write operation

Is phase ==
Data?

Is
RBC

Mode sense ==
1?

Send CSW with mode

Yes

Yes

No

No

Yes

No

Yes Yes

Send CSW with mode
No

No

B

A

X15477-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=252

Figure 72: Enable Interrupts and Start the USB Controller

Enable all the required interrupts

Connect the interrupt controller to the interrupt
handling logic in ARM

Enable interrupts in the ARM

Wait for interrupts

Start USB Controller

B

X15478-021317

For more information on USB controller, see this link to the “USB 2.0/3.0 Host, Device, and
Controller,” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Gigabit Ethernet Controller
The gigabit Ethernet controller (GEM) implements a 10/100/1000 Mb/s Ethernet MAC
compatible with IEEE Standard for Ethernet (IEEE Std 802.3-2008) and is capable of operating in
either half or full-duplex mode in 10/100 mode and full-duplex in 1000 mode.

The processor system (PS) is equipped with four gigabit Ethernet controllers. Registers are used
to configure the features of the MAC, and select different modes of operation. The DMA
controller connects to memory through the advanced eXtensible interface (AXI). It is attached to
the FIFO interface of the controller of the MAC to provide a scatter-gather type capability for
packet data storage in an embedded processing system.

The following figures illustrate an example for configuring an Ethernet controller to send a single
packet of data in RGMII mode.

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 253Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxUSB2030HostDeviceAndOTGController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=253

Figure 73: Example Ethernet Flow: Initialize Ethernet Controller

Start

Setup UART

Get the Configuration of Ethernet
Hardware

Get Cache Coherence Selection

Initialize Ethernet hardware, setup interrupts and
callbacks

Error in initializing? Return error and exit

Set the MAC address

Set the loopback speed to 1G

Get the PHY interface

Detect the PHY address

Read the PHY Model

Yes

No

A

X15462-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=254

Figure 74: Example Ethernet Flow: Configure the Ethernet Parameters & Initiate the
Transmit

Clear the PHY of any existing bits

RGMII mode PHY specific register initialization

Configure the Interface modes

Set the speed and put the PHY in reset

Put the PHY in loopback

Return Error and ExitError Setting the
PHY loopback?

Set PHY <-> MAC Data clock

Delay

Setup BD space

Setup attributes of BD space

Set up the packet to be transmitted

Clear out the receive packet memory area

Calculate the frame length (not including FCS)

Setup BD Rings and push the Frame

Start the Ethernet Device and Initiate Transmit

Wait for status of the transmitted packet

No

Yes

A

B
X15479-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=255

Figure 75: Example Ethernet Flow: Receive and Validate the Data

Wait for status of the transmitted packet

Receive the packet

Return error and exitError

Get the length of the arrived data

Read the packet data received

Verify the received frame length

Validate the frame data

Stop Ethernet Hardware and disable
Interrupts

No

Yes

Stop

B

X15480-021317

For more information on Ethernet Controller, see this link to the “Gigabit Ethernet Controller”
chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

PCI Express
The Zynq UltraScale+ MPSoC provides a controller for the integrated block for PCI™ Express
v2.1 compliant, AXI-PCIe Bridge, and DMA modules. The AXI-PCIe Bridge provides high-
performance bridging between PCIe and AXI.

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 256Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxGigabitEthernetController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=256

The following flow diagrams illustrate an example for configuring PCIe root complex for a data
transfer.

Figure 76: Example PCIe Flow: Enable the Legacy Interrupts and Create PCIe Root Bus

Map the register memory space for PCIe bridge
and controller

Start

Map the memory space for ECAM

Write the bridge offset in the bridge register base

Enable the bridge in the bridge control register

Disable the DMA channel registers

Enable the bridge configuration interrupt

Enable Ingress Subtractive decode translation

Enable message filtering

Get the PCIe link up

ECAM
Bit==1

?
Return error and exit

Enable ECAM in ECAM control register

Yes

No

A
X15481-071217

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=257

Figure 77: Example PCIe Flow: Enable the Legacy Interrupts and Create PCIe Root Bus

Get the legacy interrupt number

Return error and exit
Invalid interrupt

number

Register the legacy interrupt handler

Return error and exit
Failed to

register handle?

Enable all legacy interrupts

Get the bridge resources

Error getting
resources?

Create PCIe root bus

Return error and exit

Return error and exit
Error creating

 root bus? Yes

Yes

Yes

Yes

No

No

No

No

A

B

X15483-043021

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=258

Figure 78: Example PCIe Flow: Enable MSI Interrupts and Wait for Interrupts

Assign MSI chip hooks

No

Create the IRQ domain

Enable MSII and MSII status

Error creating
IRQ domain? Return error and exit

Yes

No

MSII bit Present?
No

Write the MSII low and high addresses

Disable and clear all high range MSI interrupts

Get the MSI_1 IRQ number

Disable and clear all low range MSI interrupts

Get the MSI_0 IRQ number

Enable all low range interrupts

Enable all high range interrupts

Remove the Interrupt Domain

Error Registering
 MSI_0 handle?

No

Yes

Register the MSI_0 handle

Error getting the IRQ number?

No

Error Registering
 MSI_1 handle?

Yes

Yes

Register the MSI_1 handle

Error getting the IRQ number? Yes

Yes

No

No

Is MSI bit set?

Yes

B

Scan the PCIe child bus

Assign unassigned bus resoources

Add PCIe bus devices

Set the platform driver data

Wait for interrupts

X15484-043021X15484-071217

Note: For endpoint operation, refer to this link to “Controller for PCI Express” in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

After the memory space for PCIe bridge and ECAM is mapped, ECAM is enabled for ECAM
translations. You then acquire the bus range to set up the bus numbers, and write the primary,
secondary, and subordinate bus numbers. The interrupt system must be set up by enabling all the
miscellaneous and legacy interrupts. You can parse the ranges property of a PCI host bridge
device node, and setup the resource mapping based on its content.

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 259Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxControllerForPCIExpress
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=259

To create a root bus, allocate the PCIe root bus and add initial resources to the bus. If the MSI bit
is set, you must enable the message signaling interrupt (MSI). After configuring the MSI
interrupts, scan the PCIe slot and enumerate the entire PCIe bus and allocate bus resources to
scanned buses. Now, you can add PCIe devices to the system.

For more information on PCI Express, see this link to the “DMA Controller” section and this link
to “Controller for PCI Express” in the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

Chapter 13: High-Speed Bus Interfaces

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 260Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxDMAController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=260

Chapter 14

Clock and Frequency Management
The Zynq® UltraScale+™ MPSoC architecture includes a programmable clock generator that
takes a clock of a definite input frequency and generates multiple-derived clocks using the
phase-locked loop (PLL) blocks in the PS. The output clock from each of the PLLs is used as a
reference clock for the different PS peripherals.

Unlike the USB and Ethernet peripherals, some peripherals like the UART and SD allow you to
dynamically change the device frequency setting.

This chapter provides information about changing the operating frequency of these peripherals
dynamically. See Chapter 11: Power Management Framework for more information on reducing
or adjusting the clock frequencies.

Changing the Peripheral Frequency
You can change the peripheral operation frequency by directly setting the frequency in the
corresponding peripheral clock configuration register. The Zynq UltraScale+ MPSoC BSP
provides APIs that aid in changing the peripheral clock frequency dynamically according to your
requirements.

The following table shows the standalone APIs that can be used to change the frequency of the
peripherals

Table 64: Standalone APIs

APIs Description
XSDPS_change_clkfreq Change the clock frequency of SD.

XSPIPS_setclkprescaler XSPIPS_getclkprescaler Pre-scale the SPI frequency.

XRtcPSu_calculatecalibration Change the oscillator frequency.

XQSPIPSU_setclkprescaler Change the clock frequency of QSPI.

Chapter 14: Clock and Frequency Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=261

In case of a Linux application, the frequency of all the peripherals is set in the device tree file. The
following code snippet shows the setting of peripheral clock.

ps7_qspi_0: ps7-qspi:dir0xFF0F0000 {
#address-cells = <0x1>;
#size-cells = <0x0>;
#bus-cells = <0x1>;
clock-names = “ref_clk”, “pclk”;
compatible = “xlnx,usmp-gqspi”, “cdns,spi-r1p6”; stream-connected-dma =
<0x26>;
clocks = <0x1e 0x1e>; dma = <0xb>; interrupts = <0xf>;
num-chip-select = <0x2>;
reg = <0x0 0xff0f0000 0x1000 0x0 0xc0000000 0x8000000>;
speed-hz = <0xbebc200>; xlnx,fb-clk = <0x1>;
xlnx,qspi-clk-freq-hz = <0xbebc200>; xlnx,qspi-mode = <0x2>;

To avoid any error condition, the peripheral needs to be stopped before changing the
corresponding clock frequency.

The steps to follow before changing the clock frequency for any peripheral are as follows:

1. Stop the transition pertaining to the peripheral (IP) and make it idle.

2. Stop the IP by appropriately configuring the registers.

3. Change the clock frequency of the peripheral.

4. Issue soft reset to the IP.

5. Restart the IP.

For more information on Zynq UltraScale+ MPSoC clock generator, see this link in the “Clocking”
chapter in the in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 14: Clock and Frequency Management

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 262Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxClocking
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=262

Chapter 15

Target Development Platforms
This chapter describes various development platforms available for the
Zynq® UltraScale+™ MPSoC, such as Quick Emulators (QEMU) and the Zynq UltraScale+ MPSoC
boards and kits.

QEMU
QEMU is a system emulation model that functions on an Intel-compatible Linux host system.
Xilinx® QEMU implements a framework for generating custom machine models based on a
device tree passed to it using the command line. See the Xilinx Quick Emulator User Guide: QEMU
for more information about QEMU.

Boards and Kits
Xilinx provides the Zynq UltraScale+ MPSoC ZCU102, ZCU106, and ZCU111 Evaluation Kits for
developers. To understand more about the evaluation kits, see the following documentation
pages:

• ZCU102

• ZCU106

• ZCU111

To know the different Zynq UltraScale+ MPSoCs, see the Zynq UltraScale+ MPSoC Products
Page.

Chapter 15: Target Development Platforms

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 263Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#documentation
https://www.xilinx.com/products/boards-and-kits/zcu106.html#documentation
https://www.xilinx.com/products/boards-and-kits/zcu111.html#documentation
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=263

Chapter 16

Boot Image Creation
Zynq® UltraScale+™ MPSoC supports both secure and non-secure booting. While deploying the
devices in field, it is important to prevent unauthorized or modified code from being run on these
devices. Zynq UltraScale+ MPSoC provides the required confidentiality, integrity, and
authentication to host applications securely. For more information on security features, see Zynq
UltraScale+ Device Technical Reference Manual (UG1085).

Zynq UltraScale+ MPSoCs typically have many hardware and software binaries that are used to
boot them to function as designed and expected. These binaries includes FPGA bitstreams,
Firmware, boot loaders, operating system, and applications that you select. For example: FPGA
bitstream files, first stage boot loader (FSBL), PMU firmware, TF-A, U-Boot, Linux kernel, Rootfs,
device tree, standalone or RTOS applications and so on). Xilinx provides a standalone tool,
Bootgen, to stitch all these binary images together and generate a device bootable image in a
specific format that Xilinx loader programs can interpret while loading.

Bootgen has multiple attributes and commands that define its behavior while generating boot
images. They are secure boot image generation, non-secure boot image generation, Secure key
generation, HMI Mode and so on. For complete details of how to get the Bootgen tool, the
installation procedure, and details of Zynq Ultrascale+ Boot Image format, Bootgen commands,
attributes, and boot image generation procedure with examples, see Bootgen User Guide
(UG1283).

Chapter 16: Boot Image Creation

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 264Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=264

Appendix A

Libraries
See OS and Libraries Document Collection (UG643) for information on API reference for the
following libraries.

• Standalone Library

• LwIP 2.1.1 Library

• XilIFS

• XilFFS

• XilSecure

• XilSkey

• XilPM

• XilFPGA

• XilMailbox

Appendix A: Libraries

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 265Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=265

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

Appendix B: Additional Resources and Legal Notices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 266Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=266

Xilinx References

1. Xilinx Third-Party Licensing Solution Center

2. PetaLinux Product Page

3. Xilinx Vivado Design Suite – HLx Editions

4. Xilinx Third-Party Tools

5. Zynq UltraScale+ MPSoC Product Table

6. Zynq UltraScale+ MPSoC Product Advantages

7. Zynq UltraScale+ MPSoC Products Page

Zynq Devices Documentation

1. Xilinx Quick Emulator User Guide: QEMU

2. UltraScale Architecture and Product Data Sheet: Overview (DS890)

3. Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)

4. Zynq UltraScale+ Device Technical Reference Manual (UG1085)

5. Zynq UltraScale+ Device Register Reference (UG1087)

6. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

7. Zynq UltraScale+ MPSoC Processing System LogiCORE IP Product Guide (PG201)

8. UltraScale Architecture System Monitor User Guide (UG580)

9. Libmetal and OpenAMP for Zynq Devices User Guide (UG1186)

10. Embedded Energy Management Interface Specification (UG1200)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC: Embedded Design Tutorial (UG1165)

13. Zynq-7000 SoC Software Developers Guide (UG821)

14. UltraScale Architecture PCB Design User Guide (UG583)

15. Vivado Design Suite Documentation

16. Bootgen User Guide (UG1283)

Vitis software platform and PetaLinux Documents

1. Vitis Unified Software Platform Documentation

Appendix B: Additional Resources and Legal Notices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 267Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com/search/support-keyword-search.html?searchKeywords=Zynq%20UltraScale%2B%20MPSoC%20Products%20Page
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds890-ultrascale-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/ZynqMPSoC-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/Zynq7000-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=267

2. OS and Libraries Document Collection (UG643)

3. Embedded Design Tools Download

4. PetaLinux Tools Documentation: Reference Guide (UG1144)

5. Xilinx Software Development Kit: System Performance (UG1145)

Xilinx IP Documents

1. AXI Central Direct Memory Access LogiCORE IP Product Guide (PG034)

2. AXI Video Direct Memory Access LogiCORE IP Product Guide (PG020)

Miscellaneous Links

1. Xilinx Github

2. Embedded Development

3. Yocto

4. PetaLinux Software Development

5. Zynq UltraScale+ Silicon Devices Page

6. Xilinx Answer: 66249

7. Vivado Quick Take Video: Vivado PS Configuration Wizard Overview

8. Xilinx Wiki

9. Kria SOM

Third-Party References

1. Lauterbach Technologies

2. Arm Trusted Firmware

3. Xen Hypervisor

4. Arm Developer Center

5. Arm Cortex-A53 MPCore Processor Technical Reference Manual

6. Yocto Product Development

7. GNU FTP

8. Power State Coordination Interface – Arm DEN 0022B.b, 6/25/2013

Appendix B: Additional Resources and Legal Notices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 268Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_cdma;v=latest;d=pg034-axi-cdma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vdma;v=latest;d=pg020_axi_vdma.pdf
https://github.com/Xilinx/linux-xlnx/
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
http://www.wiki.xilinx.com/MPSoC+Petalinux+Software+Development
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/support/answers/66249.html
http://www.zylinks.com/video/hardware/vivado-ps-configuration-wizard-overview.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/overview
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1641152513/Kria+K26+SOM
http://www.lauterbach.com/frames.html?home.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0928e/CJHIDGJF.html
http://dornerworks.com/services/xilinxxen
http://ds.arm.com/developer-resources/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf
https://www.yoctoproject.org/downloads
http://ftp.gnu.org/gnu/coreutils
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=268

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2015-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan,
Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Appendix B: Additional Resources and Legal Notices

UG1137 (v2021.2) October 27, 2021 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 269Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2021.2&docPage=269

	Zynq UltraScale+ MPSoC Software Developer Guide
	Revision History
	Table of Contents
	Ch. 1: About This Guide
	Introduction
	Intended Audience and Scope of this Document
	Prerequisites

	Ch. 2: Programming View of Zynq UltraScale+ MPSoC Devices
	Hardware Architecture Overview
	Boot Process
	Boot Modes

	Virtualization
	System Level Reset Requirements
	Security
	Configuration Security Unit
	System-Level Protections

	Safety and Reliability
	Safety Features
	Lock-Step Operation
	Error Checking and Correction
	System-Wide Safety Features

	Memory Overview for APU and RPU Executables

	Ch. 3: Development Tools
	Vivado Design Suite
	Vitis Unified Software Platform
	Arm GNU Tools
	Device Tree Generator
	PetaLinux Tools
	Linux Software Development using Yocto
	Yocto Project Development Environment

	Ch. 4: Software Stack
	Bare Metal Software Stack
	The C Standard Library (libc)
	The C Standard Library Mathematical Functions (libm)
	Standalone BSP

	Linux Software Stack
	Multimedia Stack Overview
	FreeRTOS Software Stack

	Third-Party Software Stack

	Ch. 5: Software Development Flow
	Bare Metal Application Development
	Application Development Using PetaLinux Tools
	Linux Application Development Using Vitis
	Creating a Linux Application Project
	Create a Hello World Application
	Build a Sample Application
	Debug and Run the Application

	Adding Driver Support for Custom IP in the PL

	Ch. 6: Software Design Paradigms
	Frameworks for Multiprocessor Development
	Symmetric Multiprocessing (SMP)
	Asymmetric Multiprocessing (AMP)
	OpenAMP
	Virtualization with Hypervisor
	Use of Hypervisors

	Ch. 7: System Boot and Configuration
	Boot Process Overview
	Boot Flow
	Boot Image Creation
	Creating a Bootable Image

	Boot Modes
	QSPI24 and QSPI32 Boot Modes
	SD Boot Mode
	eMMC18 Boot Mode
	NAND Boot Mode
	JTAG Boot Mode
	USB Boot Mode
	Secondary Boot Mode

	Detailed Boot Flow
	Pre-Boot Sequence

	Disabling FPD in Boot Sequence
	Setting FSBL Compilation Flags
	Fallback and MultiBoot Flow

	FSBL Build Process
	Creating a New Zynq UltraScale+ MPSoC FSBL Application Project
	Phases of FSBL Operation
	Initialization
	Boot Device Initialization
	Partition Loading
	Handoff
	Miscellaneous Functions
	XFsbl_PrintArray
	XFsbl_Strcpy
	XFsbl_Strcat
	XFsbl_Strcmp
	XFsbl_MemCpy
	XFsbl_PowerUpIsland
	XFsbl_IsolationRestore
	XFsbl_SetTlbAttributes
	XFsbl_GetSiliconIdName
	XFsbl_GetProcEng
	XFsbl_CheckSupportedCpu
	XFsbl_AdmaCopy
	XFsbl_GetDrvNumSD
	XFsbl_MakeSdFileName

	Hooks in FSBL

	Using the Ethernet-Based Recovery Tool

	Ch. 8: Security Features
	Boot Time Security
	Encryption
	BIF File with BBRAM Red Key
	BIF File with eFUSE Red Key
	BIF File with an Operational Key
	Using Op Key to Protect the Device Key in a Development Environment

	BIF File for Black Key Stored in eFUSE
	BIF File for Black Key Stored in Boot Header
	BIF File for Obfuscated Form (Gray) Key Stored in eFUSE
	BIF File with Multiple AESKEY Files

	Authentication
	BIF File with SHA-3 Boot Header Authentication and PPK0
	BIF File with SHA-3 eFUSE RSA Authentication and PPK0

	Enhanced RSA Key Revocation Support

	Bitstream Authentication Using External Memory
	Bootgen
	Software

	Run-Time Security
	Trusted Firmware-A
	TF-A Functions

	FPGA Manager Solution
	FPGA Manager Architecture

	Xilinx Memory Protection Unit
	Protecting Memory with XMPU
	Configuring XMPU Registers

	Xilinx Peripheral Protection Unit
	System Memory Management Unit
	A53 Memory Management Unit
	R5 Memory Protection Unit
	TrustZone

	Ch. 9: Platform Management
	Platform Management in PS
	Full-Power Operation Mode
	Low-Power Operation Mode
	Deep-Sleep Operation Mode
	Shutdown Mode
	Battery-Powered Mode
	Power Management Framework

	Wake Up Mechanisms
	Platform Management for Memory
	DDR Controller
	Platform Management for Interconnects
	PMU Firmware

	Ch. 10: Platform Management Unit Firmware
	Features
	PMU Firmware Architecture
	Execution Flow
	Handling Inter-Process Interrupts in PMU firmware
	Send IPI Message
	Send IPI Response
	Read IPI Message
	Read IPI Response
	Triggering an IPI

	PMU Firmware Modules
	Creating a Module
	Setting up Handlers for the Module
	PMU Firmware Build Flags

	Error Management (EM) Module
	Error Management Hardware
	Error Management in PMU firmware
	Error Management API Calls
	Setting up Error Action
	Removing Error Action
	Processing an Error

	IPI Handling by EM Module

	EM Error ID Table
	EM Error Action Table
	PMU Firmware Signals PLL Lock Errors on PS_ERROR_OUT

	Power Management (PM) Module
	Scheduler
	Safety Test Library
	CSU/PMU Register Access
	Timers
	FPD WDT
	LPD WDT
	CSU WDT

	Configuration Object
	PM Configuration Object Generation
	Initial Configuration at Boot

	PMU Firmware Loading Options
	Loading PMU Firmware in JTAG Boot Mode
	Loading PMU Firmware in NON-JTAG Boot Mode
	Using FSBL to Load PMU Firmware
	Using CBR to load PMU Firmware

	PMU Firmware Usage
	Enable/Disable Modules
	Custom Module Usage
	Creating a Custom Module
	Registering for an Event

	Error Management Usage
	Example for Error Management (Custom Handler)
	Example for Error Management (PoR as a Response to Error)
	Example for Error Management (PS Error out as a Response to Error)

	IPI Messaging Usage
	Adding a Task to Scheduler
	Reading FPD Locked Status from RPU

	PMU Firmware Memory Layout and Footprint
	Dependencies

	Ch. 11: Power Management Framework
	Introduction
	Key Features
	Power Management Software Architecture

	Zynq UltraScale+ MPSoC Power Management Overview
	Zynq UltraScale+ MPSoC Power Management Hardware Architecture
	Zynq UltraScale+ MPSoC Power Management Software Architecture

	Power Management Framework Overview
	API Calls and Responses
	Acknowledge Mechanism
	Power Management Framework Layers
	Typical Power Management API Call Flow
	Sub-system Power Management
	Sharing Devices

	Using the API for Power Management
	Implementing Power Management on a Processor Unit
	Interacting with Other Processing Units
	DDR Self-refresh over Warm Restart

	XilPM Implementation Details
	Payload Mapping for API Calls to PMU
	Payload Mapping for API Callbacks from the PMU
	Issuing EEMI API calls to the PMU
	Handling API callbacks from the PMU

	Linux
	User Space PM Interface
	System Power States
	Power Management for the CPU
	Power Management for the Devices

	Demo
	Debug Interface
	Command-line Input
	Command List

	PM Platform Driver

	Trusted Firmware-A (TF-A)
	TF-A Application Binary Interface
	Power State Coordination Interface (PSCI)

	PMU Firmware
	Power Management Events
	General flow of an EEMI API Call

	Ch. 12: Reset
	System-Level Reset
	Block-Level Resets
	PS-Only Reset

	Application Processing Unit Reset
	APU-Only Reset

	Real Time Processing Unit Reset
	Full Power Domain Reset
	Warm Restart
	Supported Use Cases
	APU Subsystem Restart
	RPU Subsystem Restart
	PS-Only Reset
	System Reset
	Idle and Reset of Peripherals
	Custom Hooks
	GPIO Reset to PL
	Recovering from a Hang System
	Watchdog Management
	APU Idling
	Escalation
	Building Software
	Modifying Component Recipes

	Ch. 13: High-Speed Bus Interfaces
	USB 3.0
	Gigabit Ethernet Controller
	PCI Express

	Ch. 14: Clock and Frequency Management
	Changing the Peripheral Frequency

	Ch. 15: Target Development Platforms
	QEMU
	Boards and Kits

	Ch. 16: Boot Image Creation
	Appx. A: Libraries
	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Xilinx References
	Zynq Devices Documentation
	Vitis software platform and PetaLinux Documents
	Xilinx IP Documents
	Miscellaneous Links
	Third-Party References

	Please Read: Important Legal Notices

