
Abstract
The FPGA physical design flow offers a compelling opportunity for Machine Learning for CAD
(MLCAD) for the following reasons:

• An ML solution can be applied wholesale to a device family.

• There is a vast data farm that can be harvested from device models and design data from
broad applications.

• There is a single streamlined design flow that an be instrumented, annotated, and queried at
all stages.

In this white paper, two ML modeling applications are provided to enhance the accuracy of
timing delay and routing congestion estimation in the Vivado® ML edition. Accurate delay
estimation is pertinent for timing closure because the global/detail placer, physical synthesis in
placement, and the global router use it to estimate net criticalities. The ML-based delay estimator
improves the accuracy from 65.5% to about 98%. The Vivado Design Suite placement flow relies
on a routing congestion estimator to identify and alleviate routing congestion hotspots during
placement so that the design is easier to route downstream. The ML-based congestion estimator
in the Vivado ML edition demonstrates similarly significant accuracy gains over the traditional
approaches, and results in marked routing run-time reductions on a broad suite of designs from
various device families.
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Introduction
MLCAD is used in the ASIC physical design (PD) flow to solve complex computational problems
because it can:

• Identify trends, patterns, and clusters of data.

• Handle multiple dimensions and multiple variables.

• Model highly nonlinear behavior.

• Work efficiently on large data sets.

Like ASICs, the FPGA PD flow aims to formulate and efficiently solve a discrete, multi-objective,
non-linear optimization problem that maps a design onto a physical layout with interconnect
logic to achieve target performance metrics. However, there are key differences between the two
that underscore the reasons why MLCAD is even more compelling to the FPGA PD flow.

Unlike ASICs, FPGA place and route is implemented on a layout template with interconnected
routing resources. This type of logic mapping can be challenging because the number and type of
available logic and routing resources are fixed. However, FPGAs provide an ideal framework for
using ML solutions for entire device families to improve device modeling accuracy and speed up
the convergence of various algorithms in the PD flow. Some of the reasons MLCAD is ideal for
FPGAs are listed in this section.

For a good survey on the application of ML in FPGA PDs, see Machine Learning for Electronic
Design Automation: A Survey [REF 1].

Reason 1: FPGAs are Templatized Design Platforms
FPGA families are template-based programmable platforms with the following features:

• Serve a wide range of applications.

• Long life cycle.

• Interconnect and logic layout features, captured by detailed device models.

• Uniform device characteristics per device family.

• Predictable regular layout.

• Simpler timing and routing models (buffered interconnect and 2D abstracted routing layers).

○ ML effort has a high ROI because it applies to an entire device family.

Reason 2: Vast Design Architecture and Application Data
Available for Harvest
FPGAs have a large device and design data farm available for harvest.
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Figure 1: Large Device and Design Data Farm
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• Diverse applications (ML, emulation, automotive, DSP, 5G, aerospace/defense, high-
performance computing (HPC), database, etc.)

○ Affords more robust ML models.

• Domain specific architecture (DSA) designs (convolutional neural networks (CNNs), deep
neural networks (DNNs), graph analytics, etc.)

○ Presents a unique opportunity for custom DSA ML solutions at scale.

Reason 3: FPGA PD is Completely Streamlined
A single streamlined design flow from high-level description to device bitstream mapping allows
full access to annotate, instrument, harvest, and optimize the PD flow.

Figure 2: Streamlined Design Flow
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The Vivado design tools incorporate ML in various parts of its PD flow for both feature modeling
and algorithm parameter optimization. Among them are a strategies recommender system,
design routing difficulty predictor, routing congestion estimator, and delay estimator. In this
white paper, the latter two are briefly covered.

ML-Based Routing Congestion Estimator
The increased capacity of Xilinx® devices allows for larger and higher performance designs to be
mapped and realized in the logic interconnect. This is especially true for emulation, prototyping,
and HPC designs in which the high logic utilization and demand for more routing resources can
make routing challenging. To mitigate this, it is very important to accurately model routing
congestion upstream (for yet-to-be routed nets) during the placement stage to provide the router
downstream an easier placed netlist to route.

Xilinx UltraScale™ FPGAs, UltraScale+™ FPGAs, and Versal® ACAPs each have architectural
blocks that control the programmable logic, block RAM, DSP, and I/O. A configurable logic block
(CLB) has basic logic elements (BLEs) that contain a set of LUTs (for logic and memory
implementations) and flip-flops. The BLEs are grouped into slices that share common switches to
an interconnect routing grid.

Congestion occurs when demand for the routing resources is high in certain regions. The
interconnect grid routing resources are categorized by direction (north, south, east, and west) and
length (short and long wires). Accordingly, a congestion map is a collection of eight maps (north/
short, south/short, east/short, west/short, north/long, south/long, east/long, and west/long).
When modeling congestion, it is often useful to group the short and long resources together into
overall global routing resources. In this context, there are an additional four maps to model
(north/global, south/global, east/global, and west/global). Short congestion is typically caused by
tightly clustered cell placements potentially leading to routability issues. Long congestion is
typically caused by lengthy spread-out or feedthrough nets potentially leading to timing closure
and routability issues.

Along with timing and wire length (WL) metrics, the Vivado design tool's placement flow
iteratively queries a routing congestion estimation oracle to identify potential local areas of
routing congestion hot spots. Congestion mitigation techniques are deployed to alleviate the
demand of routing resources in these areas. These include local cell inflation, target placeable
area capacity reduction, logic remapping, control set optimization, macro placement optimization,
and targeted net wire length reduction. During placement, the nets are not routed yet. There are
up to 12 congestion map estimates per each query. The congestion estimator must be not only
be highly accurate when compared to a congestion map generated by the actual router, but also
fast to compute because it is queried numerous times. Aside from using a costly global routing
estimator, there are various fast heuristic approaches to estimate congestion (e.g., local rent
exponent, net cuts per region, overlapping net bounding box distribution, image blending, single-
pass PathFinder, probabilistic rectilinear minimal Steiner tree distributions, and rectangular
uniform wire density) [REF 2, REF 3, REF 4, and REF 5]. The disadvantages with these
approaches are either high run time or poor accuracy. What complicates the congestion problem
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is the type of routing resource the router uses to route a net, timing criticality, net fanout, routing
demand due to macro placement, inter super long region (SLR) logic connectivity, etc. Maarouf et
al. [REF 6], demonstrates the clear advantages of ML-based congestion estimation techniques in
significantly improving accuracy over prior approaches. This white paper is partly influenced by
Maarouf et al.

The accuracy of the estimated congestion maps is measured versus the actual congestion map
calculated from the routing resources used by the Vivado initial router. The following figure
illustrates the baseline congestion map estimator for the north short direction. The figure is a
visual representation of the error map for the ML congestion estimator (CE) versus the baseline
congestion estimator. Ideally, the error map should be blank.

Figure 3: Error Map for ML Congestion Estimator vs. Baseline Congestion Estimator
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The interconnect grid is a pixelated image per direction (N, S, E, and W) and per interconnect
resource type (short, long, and global). The Vivado ML edition incorporates an ML framework for
accurately and efficiently estimating congestion and alleviation during placement (see the
following figure). Compared with the baseline approach, it demonstrates significant improvement
in the congestion map correlation accuracy and reduces the router run time for hard to route
suites of benchmark designs by about 10% in geometric mean and as much as 60% across
multiple generations of device families.

The following figure shows the MLCE training flow.
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Figure 4: MLCE Training Flow
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The following figure shows the MLCE inference flow.

Figure 5: MLCE Inference Flow
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Feature Extraction
Routing congestion estimation is similar to semantic segmentation, in which given an encoded
input image, an overlay is generated that predicts congestion hotspots over the image. Viewed
from this perspective, a number of supervised ML (e.g., traditional regression or fully
convolutional network) approaches can be adapted to estimate congestion by mapping netlist
and interconnect grid features onto pixelated images and regressing on them given a target
image label. For instance, Alawieh et al. [REF 9] use a conditional generative adversarial network
(CGAN) approach that converts input images to labeled images to model congestion maps and
demonstrates significant accuracy improvements in the Xilinx UltraScale 2016 ISPD FPGA
benchmark suite. Maarouf et al. [REF 6] tabulate the features and use a random forest and MLP
regressors, which demonstrates marked accuracy improvement. Zhou et al. [REF 7] encode
netlist features onto interleaved RGB image channels and develop a generative adversarial
network (GAN) framework where the generator is a fully convolutional encoder/decoder
network, and the discriminator is a CNN that demonstrates impressive congestion map accuracy
on ASIC benchmark suites. In the Vivado ML edition, each feature matrix has the same
dimension as the interconnect routing grid. Features are extracted from the netlist or the
interconnect tile grid. As in Maarouf et al. [REF 6], a smoothed version of the features is used to
capture the impact of neighboring congested regions. The training framework for the ML-based
congestion estimator is depicted in Figure 4. The features are extracted from hundreds of design
suites for each device family. These features include:

• Routing resource capacities.
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• Aggregate net routing resource demands.

○ Based on each net’s bounding box distribution covering interconnect grid bins.

○ Based on each net’s rectilinear Steiner minimal tree distribution covering interconnect grid
bins.

• The number of driver and load typed pins per interconnect grid bin is used to model demand
for local routing resources.

• Interconnect tile bin is a boundary tile.

• Timing criticality map based on slack distribution of driver to pin pairs.

• Cell area distribution.

• Rectilinear minimal Steiner tree route distribution.

These features are blurred with convolution filters to form the final feature data set. The number
and size of convolution kernels depends on whether short or long congestion is being modeled.
For short congestion, smaller sized kernels are used because short congestion is a local
phenomenon. For long congestion, both small and large sized kernels are used because long net
routing is impacted by both local and global routing demands. During global placement, a site
mapper kernel is used to infer the closest locations of logic cells to an interconnect tile for
feature extraction purposes. For the training label, an actual congestion map is used over the
interconnect tile grid based on a routed detail-placed design. The router is run in the shortest
path mode. The congestion map is smoothed by a 4 x 4 uniform convolution filter. The following
figure illustrates the accuracy gain in terms of the Pearson Correlation Coefficient for global
congestion maps predicted on a suite of UltraScale+ device designs. It compares the accuracy of
the ML-based and baseline congestion estimation map for an UltraScale+ device versus a
congestion map calculated by the Vivado design tool router. A value of 1 means perfect
correlation.

Figure 6: Pearson Correlation Coefficient Comparing Accuracy of ML-based and
Baseline Congestion Estimation Map
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The following figure illustrates the error reduction when compared with the congestion map
calculated from the initially routed design. Ideally, the error map should be blank.

Figure 7: Visual Representation of the Error Map for MLCE vs. Baseline Congestion
Estimator
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The following table shows the reduction in the router expansion count in four benchmark design
suites when deploying the ML-based congestion estimator in the Vivado ML edition.

Table 1: Geometric Mean of Router Expansion Count Reduction

Benchmark Design Suite
Router Expansion Count Reduction

Long Pole Overall
VU440 emulation 19% 12%

Customer default 9% 1%

Customer explore 10% 3%

VU19P prototyping 12% 12%

The congested regions in the die areas tend to be in the minority class based on direction,
routing resource type, and design utilization. The following table shows an example of the
resource utilization profile for a particular UltraScale+ device global/west sampled design data
population. In this case, only 56.1K out of about 2.4M data samples show congestion (i.e.,
<0.05%). Consequently, it is useful to augment the sampled population of the minority class
during training.

Table 2: Resource Utilization Profile Distribution for Sampled Global/West Data

Resource Utilization (%) Number of Samples
0.0 – 0.5 18.2M

0.5 – 1.0 2.2M

1.0 – 1.5 56.1K

>1.5 115
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The following figure shows the improvement in the congestion map accuracy before and after
applying minority class augmentation for a global west congestion estimate on an UltraScale+
device design.

Figure 8: Congestion Map Accuracy Improvement
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ML-Based Delay Estimator
During the PD flow, a delay estimator is required by the static timing analyzer (STA) to predict
driver pin-to-load pin delays for yet-to-be routed nets. This requirement occurs during various
stages such as logic synthesis, floor planning, global placement, detail placement, and timing
optimization before routing is invoked. It is also used during the initial phases of the router to
identify timing critical nets (or subnets) to steer the router away from detouring them.

Absent routing, these delays are estimated based on the shortest path routes. Clearly, the fidelity
of these estimates greatly impacts timing closure downstream. Estimating these delays
accurately is a complex task for many reasons, including:

• Nature of its highly nonlinear behavior.

• Where in the fabric the respective nets reside.

• Type and number of interconnect tiles crossings among them.

• Preferred routing sites.

• Proximity to inter-die boundaries.

• Diversity of pin site types in an interconnect tile.

• Net fanout.

• Routing demand.
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Consequently, developing delay estimation models is a tedious, error prone, time-consuming, and
highly empirical process that needs to be done for every device family iteration. Adding to this
complex process is the vast number of available interconnect pin sites that need to be modeled
over multiple speed/corner variations per device family.

To understand the complexity of delay estimation, consider a device with an interconnect grid of
dimensions 400 x 600 tiles, where each interconnect tile has 128 input pin sites and 64 output
pin sites. To estimate the delay for short nets whose driver-to-load distance is less than 10
interconnect tiles away, the number of samples that need to be generated by sweeping the
window across the device is roughly 10 x 10 x 390 x 590 x 64 x 128 x 4 = 753,991,680,000
samples. This adds to the challenge of empirically derived models.

The following figure depicts a typical cumulative error profile for an empirically derived delay
estimator model for an UltraScale+ device. It shows that only about 65% of the driver-to-load
connections have a relative delay error less than 5%. This error profile is undesirable because it
can negatively impact timing closure. For instance, only 68.428% of driver-to-sink delays have a
relative error less than 5%. Ideally, 100% of these relative errors should be less than 5%.

Figure 9: Cumulative Error Distribution for Baseline Delay Estimator
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To address the delay estimation challenge, an automated ML-based delay estimation modeling
framework has been developed. ML offers several key advantages:

• Can incorporate many features (e.g., crossing tile types, capturing the complexity of the
nonlinear behavior of the delay characteristics).

• Affords increased model accuracy with larger more diverse data samples.

• Automates the modeling process across different manufacturing corners for each new or
generation of device families and their respective instances.

Several ML models were regressed based on a supervised learning approach. For the training
framework, tens of millions of driver-to-load pairs were generated across the interconnect grid
from a diverse population of interconnect sites and distances. As is typical, 80% of these samples
were used for training and 20% for validation. The features included various aspects of the
interconnect grid traversed by the driver to load connections such as driver and load pin source
IDs, distance, number of interconnect tile grid crossing types. For the label, the calculated delay
based on the routed shortest path was used.
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Table 3: Cumulative Relative Errors for XGBoost Delay Model vs. Empirical Baseline
Model

Error Baseline Delay Estimator MLDE
0% 7.47 36.04

2% 28.34 84.90

5% 67.90 98.15

10% 94.29 99.82

15% 98.82 99.96

20% 99.65 99.99

25% 99.65 100.00

50% 99.55 100.00

The following figure shows the cumulative error chart for various ML regression models (a 4-
layer multi-perceptron neural net, random forest, and XGBoost). It shows the comparison of the
cumulative relative errors for three different ML-based delay models versus the baseline
empirical model for an UltraScale+ device. Clearly, there is a marked gain in accuracy against the
baseline delay model. Similarly, Table 3 shows the cumulative errors for the ML-based model
versus the baseline model for a Versal device. Notice in particular, the improved accuracy for pin
pairs with errors less than or equal to 5%. The percentage of sampled data with less than 5%
error increases to 97.866.

Figure 10: Cumulative Relative Error for ML Delay Models vs. Baseline
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XGBoost was chosen because it is highly accurate and has a mature C++ API for inference. Aside
from training, a main challenge for deploying a ML-based delay estimator is the inference run
time. This is a particularly strict requirement because the timer queries delay estimates
repeatedly during the various parts of the PD flow. Another complicating issue is that the delay is
typically estimated by iterating over each net rather than all together, which slows the cache.
Consequently, addressing the inference run time was more challenging than fine tuning the
modeling accuracy. To solve the run time issue, aside from the obvious tweaking of ML model
parameters (e.g., number of tree estimators, maximum tree depth, etc.), a fast C++ inference
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framework based on three optimizations was developed. First, an in-memory compiled C++ ML
model with an efficient per net query API was developed. Second, tile types with similar delay
characteristics were aliased to reduce the number of crossing type features. Third, pin site
locations were cached for fast look up of distance metrics. The latter is an optimization that takes
advantage of the fact that the interconnect logic layout in an FPGA is known (a feature not
always common in ASICs). These optimizations helped reduce inference run time by several
orders of magnitude. This enabled the deployment of highly accurate ML-based delay models in
the Vivado tools with on-par run times close to the baseline models.

The following figure shows comparative error plots for ML XGBoost-based delay models versus
the baseline model for a Versal ACAP. Plot a and b show the scatter plot comparison. Plot c and d
show sorted relative error comparison. Notice how the ML model is much more accurate and has
much fewer number of outliers. Plot e and f show a comparison of the error histograms. Plot g
and h show the relative error as a function of the Manhattan distance between the driver and the
sink pairs.

Figure 11: Comparative Error Plots for the ML-Based Delay Estimate Model vs.
Baseline Model
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Conclusion
In this white paper, two instances are described in which an ML framework has been deployed in
the Vivado ML edition to improve model accuracy, namely for delay and routing congestion
estimation. Aside from the clear gains in automating the model generation process, much higher
accuracy, and improved quality of results, some insights are shared in this conclusion.
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In addition to the usual ML model parameters’ tuning and data augmentation required during the
training process, ML inference is a challenge because inference run time is key for online
applications such as the Vivado ML edition. Much work went into developing custom-optimized
C++ (rather than Python) API’s and streamlining feature extraction run times. It is also important
to develop a ML model lifecycle management plan, such as when to trigger model updates and
how to devise a versioning and model compatibility plan. Furthermore, ML modeling and
algorithm parameter tuning are synergistic. Better modeling through ML does not automatically
guarantee better quality of results. It often needs to be coupled with retuning (or optimizing) the
respective algorithms for each deployed application. Finally, there is promising work in progress
for the development of ML frameworks for solving optimization problems. Adaptations of this
work will greatly improve the physical design flow.
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