
Versal ACAP VCK190 Base
Targeted Reference Design

User Guide

UG1442 (v2020.2) January 8, 2021

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
01/08/2021 Version 2020.2

Initial release. N/A

Revision History

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5
Versal ACAP Device Architecture... 5
Reference Design Overview... 8
Reference Design Key Features...11

Chapter 2: Out of Box Designs...14
Design Components... 15

Chapter 3: Software Architecture..16
Introduction... 16
Video Capture.. 17
Display.. 25
Audio...29
Accelerator... 32
GStreamer.. 34
Jupyter Notebooks.. 37

Chapter 4: System Consideration.. 38
Boot Process.. 38
Programmable Device Image (PDI) ... 41

Chapter 5: Hardware Architecture... 43
Introduction... 43
Capture Pipeline.. 45
Processing Pipeline... 51
Display Pipeline... 53
HDMI Audio Pipeline...54
Clocks, Resets, and Interrupts... 56

Appendix A: Additional Resources and Legal Notices............................. 60
Xilinx Resources...60

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=3

Documentation Navigator and Design Hubs...60
References..60
Please Read: Important Legal Notices... 61

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=4

Chapter 1

Introduction
The Versal™ ACAP VCK190 Base Targeted Reference Design (TRD) is an embedded video
processing application partitioned among the Versal ACAP processing system (PS), the
programmable logic (PL), and the artificial intelligent engines (AIE). The data flow between the
control interfaces and processing system (CIPS), the PL, and the AIE is managed by a network on
a chip (NOC). The design demonstrates the value of offloading computation-intensive image
processing tasks such as 2D-convolution filter from the PS onto the PL or AIE. The benefits
achieved are two-fold:

1. Ultra HD video stream real-time processing up to 60 frames per second

2. Freed-up CPU resources for application-specific tasks

This user guide describes the architecture of the reference design and provides a functional
description of its components. It is organized as follows:

• This chapter provides a high-level overview of the Versal ACAP device architecture, the
reference design architecture, and key features.

• Chapter 2, Out of Box Designs, provides an overview of the Jupyter notebooks that are
available to run designs out of the box using pre-built design images.

• Chapter 3, Software Architecture, describes the application, middleware, and operating system
layers of the Linux software stack running on the APU.

• Chapter 4, System Considerations, describes boot flow and the device image required to
program the ACAP.

• Chapter 5, Hardware Architecture, describes the hardware platform including key PS and PL
peripherals.

Versal ACAP Device Architecture
The Versal™ adaptive compute acceleration platform (ACAP) is a platform that combines Scalar
Engines, Adaptable Engines, and Intelligent Engines with leading-edge memory and interfacing
technologies to deliver powerful heterogeneous acceleration for any application. Built on the
TSMC 7 nm FinFET process technology, the Versal ACAP is the first platform to combine
software programmability and domain-specific hardware acceleration with the adaptability
necessary to meet today's rapid pace of innovation.

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=5

Figure 1: Xilinx Versal ACAP Block Diagram

The following summarizes the Versal ACAP’s key features:

• Scalar Engines comprising

○ Application processing unit (APU) with 64-bit dual-core Arm® Cortex-A72 processor for
compute tasks.

○ Real-time processing unit (RPU) with 32-bit dual-core Arm CortexR5-processor for low
latency and deterministic operations supporting functional safety.

• Platform management controller (PMC) for securely booting and configuring the platform. It is
also responsible for life-cycle management, which includes device integrity and debug, and
system monitoring.

• Adaptable Engines are a combination of programmable logic blocks and memory (Block RAM,
Ultra RAM) for high-compute density.

• Intelligent Engines are very large instruction word (VLIW) AI Engines for adaptive inference
and DSP Engines for floating point and complex MAC operations.

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=6

• Processing system peripherals

○ Gigabit Ethernet, CAN, UART, SPI, USB, etc., to connect to external devices. The Scalar
engines and these peripherals together form the Processing System (PS).

• High-speed connectivity

○ Gigabit Transceivers (GT) with a broad range of speeds up to 58 Gbps supporting multiple
protocols such as PCIe, Ethernet, and Video

○ Integrated block for PCIe that supports Gen1, Gen2, Gen3 data rates at link widths of x1,
x2, x4, x8, or x16, and Gen4 data rates at link widths of x1, x2, x4, or x8. The block can be
configured as an Endpoint or Root Port.

○ CCIX and PCIe (CPM) has two integrated blocks for PCIe and components to support CCIX
(Cache Coherent Interconnect) compliant devices. It additionally has a DMA when
configured as a PCIe device.

○ Multirate Ethernet MAC (MRMAC) provides high-performance, low-latency Ethernet ports
supporting a wide range of customization and statistics gathering. Supported
configurations are: 1 x 100GE; 2 x 50GE; 1 x 40GE; 4 x 25GE; and 4 x 10GE.

• Integrated memory controllers that support either DDR4 or LPDDR4.

• I/Os

○ XPIO are optimized for high-performance communication including, but not limited to,
interfacing to DDR4 memory through the integrated memory controller blocks.

○ High-density I/O (HDIO) banks are designed to be a cost-effective method for supporting
lower-speed, higher-voltage range I/O standards.

○ MIO are multiple banks of general-purpose I/O implemented within the PS and PMC, each
with a dedicated power supply. The main category of I/O are the three banks of
multiplexed I/O (MIO), which can be accessed by the PS, the PMC, and the PL

• The NoC is an AXI4 based network of interconnect architecture that easily enables high-
bandwidth connections to be routed around the device. The NoC extends in both horizontal
and vertical directions and connects together areas of the device that demand and use large
quantities of data alleviating any resource burden on the local and regional device
interconnect.

For more information refer to the Versal Architecture and Product Data Sheet: Overview (DS950).

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=7

Reference Design Overview
The TRD built on the Versal ACAP device provides a framework for building and customizing
video platforms that consist of three pipeline stages.

• Capture pipeline (input)

• Acceleration pipeline (memory-to-memory)

• Display pipeline (output)

The reference design has platforms and integrated accelerators. The platform consists of Capture
pipeline and Display pipeline for Video in and Video out. This approach makes the design leaner
and provides users the maximum Programmable logic (PL) for accelerator/role development.
Platforms supported in this reference design are:

• Platform 1: MIPI single sensor Capture and HDMI TX display

• Platform 2: MIPI quad sensor Capture and HDMI TX display

• Platform 3: HDMI RX Capture and HDMI TX display. Along with video this platform also
supports audio capture

Platforms also include a virtual video device (vivid), a USB webcam, and a file as an input capture
source. The platforms support audio replay from a file as well.

The following types of acceleration kernels can be run on the platforms:

• PS: Running software kernels directly on the PS (OpenCV for example)

• PL: Running HLS or RTL kernels on the PL (Vitis Vision Libraries for example)

• AIE+PL: Running kernels on AI engines with data movers in the PL

The following figure shows the various platforms supported by the design.

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=8

Figure 2: Base TRD Block Diagram

DDR Memory

Video BuffersVideo Buffers

Capture Acceleration Output

APU
rd wr rd

Data
Mover

Computer
Vision
(PL)

MIPI CSI-
2

wr

Quad
Sensor

Audio
Formatter

HDMI Tx SS

Display/
Speaker

Data
Mover

AI
Engines

FBwrite

ISP

MIPI CSI-
2

Single
Sensor

File Sink

PL

AI

PS

USB /
UVC

USB
Webcam

File
Source

Storage
device

Storage
device

Platform

Accelerator

Jupyter
web

server

EthernetISP

FBwrite

HDMI GT
Controller

AXI-MM AXI-LiteAXIS

X23942-102020

FBwrite

HDMI Rx SS

HDMI GT
Controller

HDMI
Source

Audio
Formatter

Video
Mixer

The application processing unit (APU) in the Versal ACAP consists of two Arm Cortex-A72 cores
and is configured to run in SMP (symmetric multi-processing) Linux mode in the reference design.
The application running on Linux is responsible for configuring and controlling the audio/video
pipelines and accelerators using Jupyter notebooks. It also communicates with the APU to
visualize system performance.

The following figure shows the software state after the boot process has completed and the
individual applications have been started on the APU. Details are described in Chapter 3:
Software Architecture.

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=9

Figure 3: Key Reference Design Components

User space

Accelerator Control/Config

APU

SMP Linux

ARM
Cortex-A72

PS/PL

2D Filter PL

Ap
pl

ic
at

io
n/

M
id

dl
ew

ar
e

O
S

Pr
oc

es
so

r
M

em
or

y
m

ap
pe

d
IP

s

HDMI Tx

USB
AXI

Performance
Monitors

MIPI

DRM/
KMSV4L2

Performance
Gatheringsdxfilter2d

ZOCL

AI Engine
driver

Jupyter Notebook

Video Src and Sink Control/Config

mediasrcbin kmssink

Accelerator Video In - Out Stats

2D Filter AIE

X23936-102020

HDMI TxHDMI Rx

ALSA

Audio Src and Sink Control/Config

alsasrc alsasink

HDMI Rx

ARM
Cortex-A72

Audio In - Out

The APU application controls the following video data paths implemented in a combination of
the PS and PL:

• Capture pipeline capturing video frames into DDR memory from

○ A file on a storage device such as an SD card

○ A USB webcam using the USB interface inside the PS

○ An image sensor on an FMC daughter card connected via MIPI CSI-2 Rx through the PL

○ A quad image sensor on an FMC daughter card connected via MIPI CSI-2 Rx through the
PL

○ An HDMI source such as a laptop connected via the HDMI Rx subsystem through the PL.
HDMI Rx also captures audio along with video.

• Memory-to-memory (M2M) pipeline implementing typical video processing algorithms

○ A 2D convolution filter – In this reference design this algorithm is implemented in the PS,
PL and AIE. Video frames are read from DDR memory, processed by the accelerator, and
then written back to memory.

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=10

• Display pipeline reading video frames from memory and sending them to a monitor by means
of the HDMI TX subsystem through the PL. Along with video, the HDMI TX subsystem also
forwards audio data to a HDMI speaker.

The APU reads performance metrics from the AXI performance monitors (APM) and sends the
data to the Jupyter notebook to be displayed.

The following figure shows an example end-to-end pipeline with a single image sensor as the
video source, 2D convolution filter as an accelerator, and HDMI display as the video sink. The
figure also shows the image processing blocks used in the capture path. The video format in the
figure is the output format on each block. Details are described in the Hardware Architecture
chapter.

Figure 4: End-to-End Pipeline from Video In to Video Out

Note: The audio works in a pass-through mode, RX to TX. There is no processing done on the audio data.

Reference Design Key Features
The following summarizes the TRD’s key specifications:

• Target platforms and extensions

○ VCK190 evaluation board. See the VCK180 Evaluation Board User Guide (UG1366) for
detailed information about the board.

○ Avnet Quad Sensor FMC daughter card (2 Megapixel per sensor)

○ Leopard Sony IMX274 Single Sensor FMC card (8 Megapixel)

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 11Send Feedback

https://www.avnet.com/wps/portal/silica/products/new-products/npi/2018/avnet-multi-camera-fmc-module/
https://leopardimaging.com/product/li-imx274-mipi-cs/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=11

• Xilinx® tools

○ Vivado® Design Suite

○ Vitis™ Unified Software platform

○ Petalinux tools

• Hardware interfaces and IP

○ Video inputs

- File

- USB webcam

- MIPI CSI-2 Rx

- HDMI Rx

○ Video outputs

- HDMI Tx

- File

- Ethernet web server (Jupyter notebook)

○ Audio inputs

- HDMI Rx

- File

○ Audio outputs

- HDMI Tx

○ Video processing

- 2D convolution filter

○ Auxiliary Peripherals

- SD

- I2C

- UART

- Ethernet

- General purpose I/O (GPIO)

• Software components

○ Operating system

- APU: SMP Linux

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=12

○ Linux kernel subsystems

- Video source: Video4 Linux (V4L2)

- Display: Direct Rendering Manager (DRM)/Kernel Mode Setting (KMS)

○ Linux user space frameworks

- Jupyter

- GStreamer

- OpenCV

- Xilinx run-time (XRT)

• Supported video formats

○ Resolutions

- 1080p60

- 2160p60

- Lower resolution and lower frame rates for USB and file I/O

○ Pixel format

- YUV 4:2:2 (16 bits per pixel)

Chapter 1: Introduction

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=13

Chapter 2

Out of Box Designs
This TRD consists of Jupyter notebooks (NBs) which allow you to evaluate the TRD "out of the
box". A short summary of what pipeline is executed by each notebook follows.

Notebooks

• NB1 – Encoded Video File Playback: Demonstrates how to create a GStreamer video pipeline
to decode a video file. The video is displayed in the notebook.

• NB2 – V4L2 Video Capture: Demonstrates how to capture video from a V4L2 device.
Supported V4L2 devices include a virtual video test driver, a USB camera, and MIPI. The video
is displayed in the Jupyter notebook.

• NB3 – DRM/KMS Display: Shows how to capture video from a V4L2 device and display the
output on a monitor using a DRM/KMS display device. The Xilinx DRM/KMS driver is used by
the display device. Video mixer and HDMI encoder are implemented inside the PL.

• NB4 – Parallel Video Pipelines: Shows how to create two parallel GStreamer video pipelines.
The first pipeline captures video from a V4L2 device and the second pipeline decodes the
video file and displays the output on the same DRM/KMS display device.

• NB5: MIPI Quad Sensor: Shows how to create four parallel GStreamer video pipelines. All
four pipelines capture video from a V4L2 device and displays the output on a DRM/KMS
display device.

• NB6 – Filter2D: Shows the process of 2D filtering with PS/PL/AIE implementations. Uses
GStreamer to construct the pipeline.

• NB7 – Pipeline Splitting: Shows the process of splitting video pipelines and running them
through 2D filters. Input is taken from eligible V4L2 devices and filtered with PS/PL filters.
The pipeline is constructed with GStreamer.

• NB8 – HDMI Audio: Shows how to capture video and audio and forward them to HDMI TX.
The pipeline is constructed with GStreamer.

• APM Monitoring: Displays read/write throughput metrics for specific slots in the PL design by
configuring soft APMs. Data is plotted in a graph.

• CPU Monitoring: Uses the psutil library to provide CPU metrics. Data is plotted in a graph.

• Power Monitoring: Provides power metrics for various rails using the INA226 power monitors
on the board. Data is plotted in a graph. Refer to the VCK190 Evaluation User Guide for details.

Chapter 2: Out of Box Designs

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=14

The Versal Base TRD documentation provides additional content including:

• Instructions for running the pre-built SD card image on the evaluation board

• Prerequisites for building and running the reference design

• Detailed step-by-step instructions on how to build platforms with integrated accelerators

Design Components
The reference design zip file can be downloaded from the Versal AI Core Series VCK190 Evaluation
Kit website at https://www.xilinx.com/products/boards-and-kits/vck190.html.

The reference design zip file has the following contents:

• Documentation (html webpages)

• Petalinux Board Support Package (BSP)

• Pre-built SD card image

• Vivado hardware design project

• Vitis platform

• Vitis accelerator projects

• README file

• Design sources and licenses zip file

Chapter 2: Out of Box Designs

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 15Send Feedback

https://www.xilinx.com/products/boards-and-kits/vck190.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=15

Chapter 3

Software Architecture

Introduction
This chapter describes the application processing unit (APU) Linux software stack. The stack and
vertical domains are shown in the following figure.

Figure 5: APU Linux Software Stack and Vertical Domains

DisplayVideo Capture Accelerator

DRM / KMSVideo4Linux2

2D Filter PL

Ap
pl

ic
at

io
n

(u
se

r)
M

id
dl

ew
ar

e
(u

se
r)

O
S

(K
er

ne
l)

H
W

2D Filter AIE

HDMI Tx

USB

MIPI CSI-2

kmssink
plugin

+ Python bindings

mediactl

mediasrcbin
plugin

Video Mixer

filter2d
plugin

Codec

vp9dec
plugin

CPU

Notebooks Packages

XRT

ZOCL

X23938-102020

alsasrc/sink
plugins

Audio
Formatter

ALSA

Audio

HDMI Rx

HDMI
Tx

HDMI
Rx

alsa-lib

The stack is horizontally divided into the following layers:

• Application layer (user-space)

○ A series of Jupyter notebooks with a simple control and visualization interface

○ GStreamer multimedia framework with python bindings for video pipeline control

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=16

• Middleware layer (user-space)

○ Implements and exposes domain-specific functionality by means of GStreamer plugins to
interface with the application layer

○ Provides access to kernel frameworks

• Operating system (OS) layer (kernel-space)

○ Provides a stable, well-defined API to user-space

○ Includes device drivers and kernel frameworks (subsystems)

○ Access to hardware IPs

Vertically, the software components are divided by domain:

• Video capture

• Codec

• Accelerator

• Display

• Audio

The subsequent chapters describe the components of each vertical domain first and cover
application layer components next.

Video Capture
The Video Capture software stack is depicted in the following figure using the single-sensor MIPI
CSI capture pipeline as an example.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=17

Figure 6: Video Capture Software Stack

DMA EngineXVIPP Driver

CSI-2 Rx Capture Pipeline

Media Controller

libv4lsubdev

DMAV4L2 subdev

/dev/media* /dev/video*/dev/v4l-subdev*

libmediactl

GStreamer

Channel

Demosaic
MIPI
CSI-2

Rx
IMX274 Frmbuf WrVPSS

mediasrcbin

v4l2src

X23939-050820

The software stack looks similar for a Quad-sensor MIPI CSI capture pipeline as well. At a high-
level it consists of the following layers from top to bottom:

• User-space layers

○ GStreamer: Media source bin plugin (wrapper around generic v4l2src plugin)

○ Media controller: Library to configure v4l subdevices and media devices

• Kernel-space layers

○ V4L2/Media subsystems: Xilinx video IP pipeline (XVIPP) driver

○ DMA engine: Xilinx framebuffer driver

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=18

Media Source Bin GStreamer Plugin
The mediasrcbin plugin is designed to simplify the usage of live video capture devices in this
design, otherwise the user must take care of initialization and configuration. The plugin is a bin
element that includes the standard v4l2src GStreamer element. It configures the media pipelines
of the supported video sources in this design.

The v4l2src element inside the mediasrcbin element interfaces with the V4L2 Linux framework
and the Xilinx VIPP driver through the video device node. The mediasrcbin element interfaces
with the Media Controller Linux framework through the v412-subdev and media device nodes
which allows you to configure the media pipeline and its sub-devices. It uses the libmediactl and
libv4l2subdev libraries which provide the following functionality:

• Enumerate entities, pads and links

• Configure sub-devices

○ Set media bus format

○ Set dimensions (width/height)

○ Set frame rate

○ Export sub-device controls

The mediasrcbin plugin sets the media bus format and resolution on each sub-device source and
sink pad for the entire media pipeline. The formats between pads that are connected through
links need to match. Refer to the Media Framework section for more information on entities, pads
and links.

Kernel Subsystems
In order to model and control video capture pipelines such as the ones used in this TRD on Linux
systems, multiple kernel frameworks and APIs are required to work in concert. For simplicity, we
refer to the overall solution as Video4Linux (V4L2) although the framework only provides part of
the required functionality. The individual components are discussed in the following sections.

Driver Architecture

The Video Capture Software Stack figure in the Capture section shows how the generic V4L2
driver model of a video pipeline is mapped to the single-sensor MIPI CSI-2 Rx capture pipelines.
The video pipeline driver loads the necessary sub-device drivers and registers the device nodes it
needs, based on the video pipeline configuration specified in the device tree. The framework
exposes the following device node types to user space to control certain aspects of the pipeline:

• Media device node: /dev/media*

• Video device node: /dev/video*

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=19

• V4L2 sub-device node: /dev/v4l-subdev*

Media Framework

The main goal of the media framework is to discover the device topology of a video pipeline and
to configure it at run-time. To achieve this, pipelines are modeled as an oriented graph of building
blocks called entities connected through pads.

An entity is a basic media hardware building block. It can correspond to a large variety of blocks
such as physical hardware devices (e.g. image sensors), logical hardware devices (e.g. soft IP cores
inside the PL), DMA channels or physical connectors. Physical or logical devices are modeled as
sub-device nodes and DMA channels as video nodes.

A pad is a connection endpoint through which an entity can interact with other entities. Data
produced by an entity flows from the entity's output to one or more entity inputs. A link is a
point-to-point oriented connection between two pads, either on the same entity or on different
entities. Data flows from a source pad to a sink pad.

A media device node is created that allows the user space application to configure the video
pipeline and its sub-devices through the libmediactl and libv4l2subdev libraries. The media
controller API provides the following functionality:

• Enumerate entities, pads and links

• Configure pads

○ Set media bus format

○ Set dimensions (width/height)

• Configure links

○ Enable/disable

○ Validate formats

The following figures show the media graphs for MIPI CSI-2 Rx (single-sensor and quad-sensor)
as well as the HDMI Rx video capture pipeline as generated by the media-ctl utility. The sub-
devices are shown in green with their corresponding control interface base address and sub-
device node in the center. The numbers on the edges are pads and the solid arrows represent
active links. The yellow boxes are video nodes that correspond to DMA channels, in this case
write channels (outputs).

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=20

Figure 7: Video Capture Media Pipeline: Single MIPI CSI-2 RX

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=21

Figure 8: Video Capture Media Pipeline: Quad MIPI CSI-2 Rx

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=22

Figure 9: Video Capture Media Pipeline: HDMI RX

V4L2 Framework

The V4L2 framework is responsible for capturing video frames at the video device node, typically
representing a DMA channel, and making those video frames available to user space. The
framework consists of multiple sub-components that provide certain functionality.

Before video frames can be captured, the buffer type and pixel format need to be set using the
VIDOC_S_FMT ioctl. On success the driver can program the hardware, allocate resources, and
generally prepare for data exchange. Optionally, you can set additional control parameters on
V4L devices and sub-devices. The V4L2 control framework provides ioctls for many commonly
used, standard controls such as brightness and contrast.

The videobuf2 API implements three basic buffer types but only physically contiguous memory is
supported in this driver because of the hardware capabilities of the Frame Buffer Write IP.
Videobuf2 provides a kernel internal API for buffer allocation and management as well as a user-
space facing API. VIDIOC_QUERYCAP and VIDIOC_REQBUFS ioctls are used to determine the
I/O mode and memory type. In this design, the streaming I/O mode in combination with the
DMABUF memory type is used.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=23

DMABUF is dedicated to sharing DMA buffers between different devices, such as V4L devices or
other video-related devices such as a DRM display device (see the GStreamer Pipeline Control
section). In DMABUF, buffers are allocated by a driver on behalf of an application. These buffers
are exported to the application as file descriptors.

For capture applications, it is customary to queue a number of empty buffers using the
VIDIOC_QBUF ioctl. The application waits until a filled buffer can be de-queued with the
VIDIOC_DQBUF ioctl and re-queues the buffer when the data is no longer needed. To start and
stop capturing applications, the VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls are used.

The ioctls for buffer management, format and stream control are implemented inside the v4l2src
plugin and the application developer does not need to know the implementation details.

Video IP Drivers

Xilinx adopted the V4L2 framework for most of its video IP portfolio. The currently supported
video IPs and corresponding drivers are listed under V4L2. Each V4L driver has a sub-page that
lists driver-specific details and provides pointers to additional documentation. The following table
provides a quick overview of the drivers used in this design.

Table 1: V4L2 Drivers Used in Capture Pipelines

Linux Driver Function
Xilinx Video Pipeline (XVIPP)

• Configures video pipeline and register media, video and sub-device nodes.

• Configures all entities in the pipeline and validate links.

• Configures and controls DMA engines (Xilinx Video Framebuffer Write).

• Starts/stops video stream.

Xilinx Video Processing Subsystem
(Scaler Only configuration) • Sets media bus format and resolution on input pad.

• Sets media bus format and resolution on output pad. (Output configuration can
be different from the input configuration as the block enables color space
conversion and scaling).

MIPI CSI-2 Rx
• Sets media bus format and resolution on input pad.

• Sets media bus format and resolution on output pad.

Xilinx Video Image Signal
Processing (ISP) • Sets media bus format and resolution on input pad.

• Sets media bus format and resolution on output pad.

Sony IMX274 Image Sensor
• Sets media bus format and resolution on output pad.

• Sets sensor control parameters: exposure, gain, test pattern, vertical flip.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=24

Table 1: V4L2 Drivers Used in Capture Pipelines (cont'd)

Linux Driver Function
OnSemi AR0231 Image Sensor

• Sets media bus format and resolution on output pad.

• Sets sensor control parameters: exposure, gain, test pattern, h/v flip, r/g/b
balance.

MAX9286 GMSL Deserializer
• Sets media bus format and resolution on input pad.

• Sets media bus format and resolution on output pad.

AXI-Stream Switch
• Sets media bus format and resolution on input pad.

• Sets media bus format and resolution on output pad.

HDMI Rx Subsystem
• Query digital video (DV) timings on output pad.

• Sets media bus format and resolution on output pad.

Display
The Display software stack is depicted in the following figure.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=25

Figure 10: Display Software Stack

GStreamer

DRM

HDMI Display Pipeline

Xilinx DRM Driver

Connector

/dev/dri/card*

EncoderCRTCPrimary Plane

Overlay Planes

kmssink

libkms

libdrm

HDMI TxVideo Mixer
9

5..8

1..4

X23940-050820

At a high-level it consists of the following layers from top to bottom which are further described
in the next sections:

• User-space layers

○ GStreamer: KMS sink plugin

○ libdrm: DRM user-space library

• Kernel-space layers

○ DRM/KMS subsystem: Xilinx DRM driver

○ DMA engine: Xilinx framebuffer driver

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=26

KMS Sink GStreamer Plugin
The kmssink element interfaces with the DRM/KMS Linux framework and the Xilinx DRM driver
through the libdrm library and the dri-card device node.

The kmssink element library uses the libdrm library to configure the cathode ray tube controller
(CRTC) based on the monitor's extended display identification data (EDID) information with the
video resolution of the display. It also configures plane properties such as the alpha value.

Libdrm
The DRM/KMS framework exposes two device nodes to user space: the /dev/dri/card* device
node and an emulated /dev/fb* device node for backward compatibility with the legacy fbdev
Linux framework. The latter is not used in this design. libdrm was created to facilitate the
interface of user space programs with the DRM subsystem. This library is merely a wrapper that
provides a function written in C for every ioctl of the DRM API, as well as constants, structures
and other helper elements. The use of libdrm not only avoids exposing the kernel interface
directly to user space, but presents the usual advantages of reusing and sharing code between
programs.

DRM/KMS Kernel Subsystem
Linux kernel and user-space frameworks for display and graphics are intertwined and the
software stack can be quite complex with many layers and different standards/APIs. On the
kernel side, the display and graphics portions are split with each having their own APIs. However,
both are commonly referred to as a single framework: DRM/KMS.

This split is advantageous, especially for SoCs that often have dedicated hardware blocks for
display and graphics. The display pipeline driver responsible for interfacing with the display uses
the kernel mode setting (KMS) API and the GPU responsible for drawing objects into memory
uses the direct rendering manager (DRM) API. Both APIs are accessed from user-space through a
single device node.

A brief overview of the DRM is provided but the focus is on KMS as there is no GPU present in
the design.

Direct Rendering Manager

The Xilinx DRM driver uses the GEM (Graphics Execution Manager) memory manager and
implements DRM PRIME buffer sharing. PRIME is the cross-device buffer sharing framework in
DRM. To user-space PRIME buffers are DMABUF-based file descriptors. The DRM GEM/CMA
helpers use the Continuous Memory Access (CMA) allocator as a means to provide buffer objects
that are physically contiguous in memory. This is useful for display drivers that are unable to map
scattered buffers via an I/O memory management unit (IOMMU).

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=27

Frame buffers are abstract memory objects that provide a source of pixels to scan out to a CRTC.
Applications explicitly request the creation of frame buffers and receive an opaque handle that
can be passed to the KMS CRTC control, plane configuration, and page flip functions.

Kernel Mode Setting

Mode setting is an operation that sets the display mode including video resolution and refresh
rate. It was traditionally done in user-space by the X-server which caused a number of issues due
to accessing low-level hardware from user-space which, if done incorrectly, can lead to system
instabilities. The mode setting API was added to the kernel DRM framework, hence the name
kernel mode setting.

The KMS API is responsible for handling the frame buffer and planes, setting the mode, and
performing page-flips (switching between buffers). The KMS device is modeled as a set of planes,
CRTCs, encoders, and connectors as shown in the Display Software Stack figure in the Display
section. The figure also shows how the driver model maps to the physical hardware components
inside the HDMI Tx display pipeline

CRTC

CRTC is an antiquated term that stands for cathode ray tube controller, which today would be
simply named display controller as CRT monitors have disappeared and many other display types
are available. The CRTC is an abstraction that is responsible for composing the frame to be
scanned out to the display and setting the mode of the display.

In the Xilinx DRM driver, the CRTC is represented by the video mixer. The bottom-most plane is
the primary plane (or master layer) and configured statically in the device-tree. The primary plane
always matches the currently configured display resolution set by the CRTC (width and height)
with X- and Y-offsets set to 0. The primary plane can be overlayed with up to eight overlay
planes inside the video mixer.

Plane

In this design, the primary plane can be overlayed and/or alpha-blended with up to eight
additional planes inside the video mixer. The z-order (foreground or background position) of the
planes is fixed. The global alpha mode can be configured per plane through the driver by means
of custom KMS properties: an alpha value of 0% (or 0) means the layer is fully transparent
(invisible); an alpha value of 100% (or 255) means that the layer is fully opaque.

Each overlay plane's width, height, X- and Y-offset is run-time programmable relative to the
primary plane or CRTC which determines the display resolution. The pixel formats of the primary
plane as well as the eight overlay planes are fixed: one BGR plane (primary) plus four YUY2
planes (overlay) plus four BGR planes (overlay) from bottom to top.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=28

The Xilinx DRM driver supports the universal plane feature, therefore the primary plane and
overlay planes can be configured through the same API. A page-flip is the operation that
configures a plane with the new buffer index to be selected for the next scan-out. The new
buffer is prepared while the current buffer is being scanned out and the flip typically happens
during vertical blanking to avoid image tearing.

Encoder

An encoder takes pixel data from a CRTC and converts it to a format suitable for any attached
connectors. There are many different display protocols defined, such as HDMI and DisplayPort.
This design uses an HDMI transmitter implemented in the PL which sends the encoded video
data to the HDMI GT Controller and PHY. The PHY serializes the data using the GTY transceivers
in the PL before it goes out via the HDMI Tx connector on the board.

Connector

The connector models the physical interface to the display. The HDMI protocol uses a query
mechanism to receive data about the monitor resolution and refresh rate by reading the
extended display identification data (EDID) stored inside the monitor. This data can then be used
to program the CRTC mode. HDMI also supports hot-plug events to detect if a cable has been
connected or disconnected as well as handling display power management signaling (DPMS)
power modes.

Audio
Audio Advanced Linux Sound Architecture (ALSA) arranges hardware audio devices and their
components into a hierarchy of cards, devices, and subdevices. It reflects the capabilities of the
hardware as seen by ALSA.

ALSA cards correspond one-to-one to hardware sound cards. A card can be denoted by its ID or
by a numerical index starting at zero. ALSA hardware access occurs at the device level. The
devices of each card are enumerated starting from zero.

The audio software stack is depicted in the following figure.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=29

Figure 11: Audio Software Stack

GStreamer

Alsa-lib

HDMI Audio Pipeline

Xilinx ALSA ASoC Driver

/dev/snd/*

CODEC DAI
DriverCPU DAI Driver

Machine Driver

PCM/DMA
Driver

alsasrc

libasound

alsasink

HDMI TxAudio FormatterHDMI Rx

X24764-102620

At a high-level the audio software stack consists of the following layers from top to bottom:

• User-space layers

○ GStreamer: alsasrc and alsasink plugins

○ Alsa-lib: ALSA user-space library

• Kernel-space layers

○ ALSA: Xilinx ALSA ASoC driver

ALSA Source and Sink GStreamer Plugins

The alsasrc plugin reads audio data from an audio card and the alsasink plugin renders audio
samples using the ALSA API. The audio device is specified by means of the device property
referring to the ALSA device as defined in an asound configuration file.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=30

Alsa-lib

The ALSA library API is the interface to the ALSA drivers. Developers need to use the functions
in this API to achieve native ALSA support for their applications. The currently designed
interfaces are as follows:

• Information Interface (/proc/asound)

• Control Interface (/dev/snd/controlCX)

• Mixer Interface (/dev/snd/mixerCXDX)

• PCM Interface (/dev/snd/pcmCXDX)

• Raw MIDI Interface (/dev/snd/midiCXDX)

• Sequencer Interface (/dev/snd/seq)

• Timer Interface (/dev/snd/timer)

For more information, refer to https://www.alsa-project.org/alsa-doc/alsa-lib/.

ALSA Kernel Subsystem

A sound card, encapsulating playback and capture devices will be visible as single entity to the
end user. There can be many playback and capture devices within a sound card and there can be
multiple sound cards in a system.

The Machine driver creates a pipeline out of the ALSA drivers. This glue or DAI (Digital Audio
Interface) link is made using registered device names or device nodes (using OF kernel
framework). Each proper DAI link results as a device in a sound card. A sound card is thus a
logical grouping of several such devices.

The Audio Formatter driver creates the platform device for the sound card. While creating the
device, it passes the HDMI device tree node of either I2S/HDMI/SDI/SPDIF depending on the
kind of sound card being created. When the sound card driver detects the kind of audio node
(I2S/HDMI/SDI/SPDIF), the proper DAI link is selected from the available links.

HDMI Rx receives the data from the HDMI source and separates audio from the video content.
The Xilinx Audio Formatter converts this AES data to PCM data and stores it in memory. HDMI
TX gets the AES data from the Audio Formatter and embeds it into video.

The AES format contains PCM and channel status information. The Audio Formatter IP separates
non-audio content such as channel status and stores it in registers. The Audio Formatter driver
can parse the content of channel status to get audio parameters.

A dummy CPU DAI driver is used as there needs to be a CPU DAI to be registered with ASoC
framework. Codec DAI will be part of HDMI Tx and Rx video drivers, as those provide and
consume the digital audio data.

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 31Send Feedback

https://www.alsa-project.org/alsa-doc/alsa-lib/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=31

In this TRD design, a sound card is created with a record device for the HDMI-RX capture
pipeline and a playback device for the HDMI-TX playback pipeline. The supported parameters
are:

• Sampling rate: 48 kHz

• Sample width: 24 bits per sample

• Sample encoding: Little endian

• Number of channels: 2

• Supported format: S24_32LE

Accelerator
The accelerator GStreamer plugins are designed to implement memory-to-memory functions
that can easily and seamlessly interface with other GStreamer elements such as video sources
and sinks. The following figure shows the general architecture of accelerator plugins. The gray-
colored boxes are components developed by Xilinx whereas the white boxes are open-source
components.

Figure 12: Gstreamer Plugin Architecture

gstsdx<accelerator>

gstsdxbase gstxclallocator xilinxopencl opencv*

gstreamer* xrtutils opencl

X23935-050820

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=32

An accelerator element has one source and one sink pad; it can consume N temporal input
frames from its source pad and produce one output frame on its sink pad. All accelerator plugins
inherit from the generic base class which in turn inherits from the GStreamer video transform
class. The base class provides common infrastructure that is shared across all accelerators. It also
provides a generic filter-mode property which allows the user to switch between a hardware-
accelerated version of the algorithm or a pure software implementation. Note that it is not
mandatory for accelerator plugins to implement both modes. Accelerator plugins can implement
additional accelerator-specific properties. The allocator class wraps the low-level memory
allocation and dmabuf routines. The plugins launch the PL-based kernel or Data movers
generated by the Vitis software platform.

The PL-based kernel uses the Xilinx Vitis Vision libraries. These libraries provide hardware-
optimized implementations of a subset of the OpenCV libraries. They are implemented in C-code
that is then synthesized to PL using high level synthesis (HLS).

• Xilinx Vitis Vision libraries:

○ https://github.com/Xilinx/Vitis_Libraries/tree/master/vision/

○ https://xilinx.github.io/Vitis_Libraries/vision/

The AIE-based kernel uses Xilinx AIE engine intrinsic calls. The AI engine program is implemented
in C-code that is then synthesized to target AI engines using aiecompiler. A data mover
implemented in C-code is synthesized to PL using high level synthesis (HLS) which transfers data
to/from the AI engine.

The XRT and hls libraries are used for memory allocation as well as memory and hardware
interface generation.

Filter 2D Plugin

In this example, a 2D convolution filter is implemented in three different versions:

• A software implementation using the OpenCV library

• A PL implementation using the Xilinx Vitis Vision library

○ https://xilinx.github.io/Vitis_Libraries/vision/

• An AIE implementation based on the Versal ACAP AI Engine Programming Environment User
Guide (UG1076). The AIE implementation also needs a data mover in the PL that the plugin
configures.

The kernel implements a transform function that takes an input frame and produces an output
frame. It also exports an interface that allows the user to program the kernel coefficients (not
available in the AIE implementation).

The PL based implementation uses three hardware-accelerated functions to process the video:

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 33Send Feedback

https://github.com/Xilinx/Vitis_Libraries/tree/master/vision/
https://xilinx.github.io/Vitis_Libraries/vision/
https://xilinx.github.io/Vitis_Libraries/vision/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=33

• The first function read_f2d_input, extracts the luma component from the input image to
prepare it for the next, main processing step that operates on luma only.

• The main processing function filter2d_sd uses the Vitis Vision function filter2D with a 3x3
window size, and a maximum resolution of 3840x2160.

○ https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-
functions

○ https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/
xf_custom_convolution.hpp

• As final step, the write_f2d_output function merges the unmodified UV component with the
modified luma component from the main processing function.

The AIE based implementation also uses three hardware-accelerated functions to process the
video:

• The first function read_f2d_input, extracts the luma component from the input image to
prepare it for the next, main processing step that operates on luma only. The luma component
is streamed into an AI engine.

• The AI engine performs the main processing function with a 3x3 window size, and a fixed
resolution of 720x1280 and stream outs the processed data to the data mover.

• As final step, the write_f2d_output function merges the unmodified UV component with the
modified luma component from the main processing function.

GStreamer
GStreamer is a cross-platform open source multimedia framework that provides infrastructure to
integrate multiple multimedia components and create pipelines/graphs. GStreamer graphs are
made of two or more plugin elements which are delivered as shared libraries. The following is a
list of commonly performed tasks in the GStreamer framework:

• Selection of a source GStreamer plugin

• Selection of a processing GStreamer plugin

• Selection of a sink GStreamer plugin

• Creation of a GStreamer graph based on above plugins plus capabilities

• Configuration of properties of above GStreamer plugins

• Control of a GStreamer pipeline/graph

Plugins

The following GStreamer plugin categories are used in this design:

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 34Send Feedback

https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-functions
https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-functions
https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/xf_custom_convolution.hpp
https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/xf_custom_convolution.hpp
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=34

• Source

○ mediasrcbin: V4l2 sources such as USB webcam, MIPI single-sensor, MIPI quad-sensor

○ multisrc/filesrc: video file source for raw or encoded image/video files

• Sink

○ kmssink: KMS display sink for HDMI Tx

○ filesink: video file sink for raw or encoded image/video files

○ appsink: sink that makes video buffers available to an application such as the display inside
jupyter notebooks

• Encode/decode

○ jpegenc/dec: jpg image file encode/decode

○ vp9enc/dec: vp9 video file encode/decode

• Processing/acceleration

○ sdxfilter2d: 2D filter accelerator

• Other

○ capsfilter: filters capabilities

○ tee: tee element to create a fork in the data flow

○ queue: creates separate threads between pipeline elements and adds additional buffering

○ perf: measure frames-per-seconds (fps) at an arbitrary point in the pipeline

Capabilities

The pads are the element's interface to the outside world. Data streams from one element's
source pad to another element's sink pad. The specific type of media that the element can handle
is exposed by the pad's capabilities. The following capabilities are used between the video-source
plugin and its peer plugin (either video-sink or video-processing). These capabilities (also called
capsfilter) are specified while constructing a GStreamer graph, for example:

"video/x-raw, width=<width of videosrc>, height=<height of videosrc>,
format=YUY2, ramerate=<fps/1>"

If multisrc is used as video-source plugin, the videoparse element is used instead of a capsfilter to
parse the raw video file and transform it to frames:

"video/x-raw, width=<width of videosrc>, height=<height of videosrc>,
format=YUY2, framerate=<fps/1>"

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=35

Pipeline Control

The GStreamer framework is used to control the GStreamer graph. It provides the following
functionality:

• Start/stop video stream inside a graph

• Get/set controls

• Buffer operations

• Get frames-per-second information

There are four states defined in the GStreamer graph: "NULL", "READY", "PAUSED", and
"PLAYING". The "PLAYING" state of a GStreamer graph is used to start the pipeline and the
"NULL" state is to stop the pipeline.

Allocators

GStreamer abstracts buffer allocation and pooling. Custom allocators and buffer pools can be
implemented to accommodate custom use-cases and constraints. The video source controls
buffer allocation, but the sink can propose parameters in the negotiation phase.

The DMABUF framework is used to import and export buffers in a 0-copy fashion between
pipeline elements, which is required for high-performance pipelines, as shown in the following
figure. The v4l2src element has a property named io-mode which allows allocation and export of
DMABUFs to its peer element. The kmssink element allows import as well as export of
DMABUFs to/from its peer element. The accelerator element xrtbase allows only import of
DMABUFs, which means it relies on DMABUFs being allocated by its peer elements connected
to the source and sink pads.

Figure 13: DMABUF Sharing Mechanism

DisplayVideo Capture Processing

kmssinkv4l2src xrtbase

DMABUFImport/export

Import/export

Import/export

Import/export

X23943-050820

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=36

Note that DMABUFs are not necessarily physically contiguous depending on the underlying
kernel device driver, that is, the UVC v4l2 driver does not allocate CMA memory which results in
a data copy if its peer element can only handle contiguous memory.

Jupyter Notebooks
The reference design provides several notebooks to exercise and evaluate the reference design.
The notebooks follow this general sequence:

• Create Gstreamer elements

○ Example: mediasrcbin for V4L devices, kmssink for HDMI display, perf for performance
monitoring.

• Configure the Gstreamer elements

○ Example: set source type, video resolution

• Create a Gstreamer pipeline by adding and linking the elements

• Run the pipeline by setting the Gstreamer state to PLAYING. Then click on the stop button
which will put the Gstreamer state to NULL and stop the pipeline.

Additionally, the notebooks:

• Display a Gstreamer pipeline graph

• Plot the live memory bandwidth by running the APM notebook

• Plot CPU utilization and power utilization in a real-time graph

Chapter 3: Software Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=37

Chapter 4

System Consideration
This chapter describes an example boot sequences in which you can bring up various
components and execute the required boot tasks.

Boot Process
The following figure depicts the primary responsibilities of the Platform Management Controller
(PMC) unit, along with the memory source at each phase of the non-secure boot flow. The figure
also shows how the platform loader and manager (PLM) loads the major partition components of
the ACAP software stack (exceptfor Linux). U-Boot loads the Linux OS.

Chapter 4: System Consideration

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=38

Figure 14: Boot Flow Sequence

Monitoring (Wake on Interrupt)

Release
PMC Reset

Load PLM, PMC CDO
(Configuration data

object)

Time

ATF: Called by PLM

U-Boot: Called by ATF

Linux: Called by U-Boot

PSM

APU

PL

AIE Software: Loaded by PLMAI Engine

Linux

AIE
SW

U-Boot

PMC
ROM

Execute PLM: Boot, Run LBIST, Security Libraries,
Software Test Libraries, Power and Error Management

Libraries Authenticated by PMC ROM

PMC CDOPMC
CDO

PPU RAM

OCM

DDR

PMC
Registers

AIE
PMEM

PMC
PL
LPD
FPD
SPD
BPD

Power Domains Memory Source

Internal Memory
External DDR

ATF

Power Valid/POR_b
Release

PMC Hardware
(Phase 1: Pre-boot)

PMC RCU
(Phase 2: Boot Setup)

PMC PPU
(Phase 3: Load
Platform and
Phase 4: Post-boot)

PL: Configured by PLM.CFI CRAM

PSM Software: Called by PLM PSM RAMPSM
SW

PLM

PL/NoC/DDR: Authenticated/Configured by PLM NPI
RegistersPL/NoC/DDR .NPI

X24069-060120

Chapter 4: System Consideration

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=39

The boot process is divided into four phases that are independent of the selected boot mode.

• Phase 1: Pre-boot (power-up and reset)

○ The pre-boot phase is initiated when the PMC senses the PMC power domains
(VCCAUX_PMC and VCC_PMC) and when the external POR_B (power on reset) pin is
released.

○ PMC reads the boot mode pins and stores the value in the boot mode register.

○ PMC sends the reset signal to the ROM Code Unit (RCU).

• Phase 2: Boot setup (initialization and boot header processing)

○ The RCU begins to execute the BootROM executable from the RCU ROM.

○ The BootROM executable reads the boot mode register to select the boot device.

○ The BootROM executable reads the boot header in the PDI from the boot device and
validates it.

○ The BootROM executable finds the PLM in the Programmable Device Image (PDI).

○ The BootROM executable loads the PLM from the PDI into Platform Processing Unit (PPU)
RAM and validates it.

○ The BootROM executable releases the reset to the PPU to execute the PLM.

○ The BootROM executable enters a sleep state. The BootROM executable continues to run
until the next power-on-reset (POR) or system reset, and is responsible for post-boot
platform tasks.

• Phase 3: Load platform (boot image processing and configuration)

○ The PPU begins to execute the PLM from the PPU RAM.

○ The PLM reads and processes the PDI, validating PDI components.

○ The PLM loads the applications and data for the Arm Cortex-A72 and Cortex-R5F
processors to various memories specified by the ELF file. These memories include onboard
DDR and internal memories, such as on-chip memory and TCMs.

○ The PLM sends configuration information to various Versal ACAP components

- NoC initialization

- DDR initialization

- PS

- PL

- AI engines

Chapter 4: System Consideration

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=40

• Phase 4: Post-boot (Platform management and monitoring services)

○ The BootROM executable continues to run until the next power-on reset (POR) or system
reset, and is responsible for its post-boot platform management tasks. The BootROM
executable sleeps, and wakes up for security tampering event interrupts and for service
routines.

○ The PLM continues to run until the next POR or system reset, and is responsible for its
post-boot platform management tasks.

For detailed information on the boot sequence see the Versal ACAP System and Software
Developers Guide (UG1304).

Programmable Device Image (PDI)
The PDI is a Xilinx format file which is processed by the PMC as part of the Versal ACAP boot
process. The full PDI contains the following information needed to boot, configure, and manage
the Versal ACAP.

• Boot header

• PLM

• Meta header that contains an image header table, image tables, and partition tables.

• Additional subsystem images and image partitions used to configure the Versal ACAP.

The folowing figure shows an example PDI.

Chapter 4: System Consideration

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=41

Figure 15: Programmable Device Image

Boot Device
Example PDI

PLM

CFI Data
“Adaptable Engine Binary”

U-Boot

Unified Linux Image

Applications

Boot Header

X23999-051820

Chapter 4: System Consideration

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=42

Chapter 5

Hardware Architecture

Introduction
This chapter describes the targeted reference design (TRD) hardware architecture. The following
figure shows a block diagram of the design components inside the Versal ACAP on the VCK190
board. See VCK190 Evaluation Board User Guide (UG1366) for more information.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=43

Figure 16: Hardware Block Diagram

VCK190

Versal ACAP

Programmable Logic

Processing System

N
O

C

USB

HDMI Sink HDMI Tx

2D Filter
PL only

UVC
Source

MIPI CSI

Single
Or

Quad
Sensor

DD
R

M
em

or
y

Co
nt

ro
lle

r

FM
C

2D Filter
AIE

AI Engine (1)

DD
R

Capture

Display

Accelerators

AXI-MM
(master to slave) AXIS Soft APM IP

X23944-110420

HDMI
Source HDMI Rx

At a high level, the design comprises three pipelines:

• Capture/input pipeline

○ USB capture pipeline (PS)

○ Single or quad MIPI CSI-2 Rx capture pipeline (FMC + PL)

○ HDMI RX video and audio capture pipeline

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=44

• Processing Pipeline

○ 2D filter processing pipeline

• Display/Output Pipeline

○ HDMI TX display pipeline

○ HDMI RX audio pipeline

The block diagram comprises two parts: platforms and accelerators.

• Platforms

○ This mainly consist of I/O interfaces and their data motion network. This is the fixed part of
the design. Platforms supported in this reference design:

- Platform 1: Single sensor MIPI CSI-2 Rx (capture), USB-UVC (capture), HDMI Tx (display)

- Platform 2: Quad sensor MIPI CSI-2 Rx (capture), USB-UVC (capture), HDMI Tx (display)

- Platform 3: HDMI Rx (capture), USB-UVC (capture), HDMI Tx (display)

• Accelerators

○ This is a block which performs different video processing functions. This is the variable part
of the design. Hardware accelerators supported in this reference design:

- 2D convolution filter in the PL

- 2D convolution filter in the AIE

The accelerator and corresponding data/control interfaces (AXI-MM, AXI-Lite, interrupts) are
generated by the Vitis tool and is integrated into the platform.

Capture Pipeline
Single Sensor MIPI Capture
A capture pipeline receives frames from an external source and writes it into memory. The single
sensor MIPI CSI-2 receiver capture pipeline is shown in the following figure.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=45

Figure 17: MIPI CSI Video Capture Pipeline

CSI data AXI-MM AXI-Lite

IMX274
Sensor

I2C

DD
R

In
pu

t I
m

ag
es

N
O

C

PS

M_AXI_GP0

PL

3232

Frmbuf
Write

VPSS
CSC

MIPI CSI-2
Rx SS

AXIS
Subset

Converter
ISP

AXI
I2C

40

96

96

32

256

AXIS

X23945-050820

This pipeline consists of six components, of which four are controlled by the APU via an AXI-Lite
based register interface; one is controlled by the APU via an I2C register interface, and one is
configured statically.

• The Sony IMX274 is a 1/2.5 inch CMOS digital image sensor with an active imaging pixel
array of 3864H x2196V. The image sensor is controlled via an I2C interface using an AXI I2C
controller in the PL. It is mounted on a FMC daughter card and has a MIPI output interface
that is connected to the MIPI CSI-2 RX subsystem inside the PL. For more information refer to
the LI-IMX274MIPI-FMC_datasheet.

• The MIPI CSI-2 receiver subsystem (CSI Rx) includes a MIPI D-PHY core that connects four
data lanes and one clock lane to the sensor on the FMC card. It implements a CSI-2 receive
interface according to the MIPI CSI-2 standard v2.0 with underlying MIPI D-PHY standard
v1.2. The subsystem captures images from the IMX274 sensor in RAW10 format and outputs
AXI4-Stream video data. For more information see the MIPI CSI-2 Receiver Subsystem Product
Guide (PG232).

• The AXI subset converter, see AXI4-Stream Infrastructure IP Suite LogiCORE IP Product Guide
(PG085), is a statically-configured IP core that converts the raw 10-bit (RAW10) AXI4-Stream
input data to raw 8-bit (RAW8) AXI4-Stream output data by truncating the two least
significant bits (LSB) of each data word. At four pixels per clock (4ppc), the AXIS width is 32
bits.

• The Image Single Processing IP available in the Vitis vision librarires (https://github.com/Xilinx/
Vitis_Libraries/tree/master/vision/L1) implements the following functions.

○ The Badpixelcorrection module removes the defective pixels in the image as an image
sensor may have a certain number of defective/bad pixels that may be the result of
manufacturing faults or variations in pixel voltage levels based on temperature or exposure.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 46Send Feedback

https://leopardimaging.com/product/li-imx274-mipi-cs/
https://www.leopardimaging.com/uploads/LI-IMX274-MIPI-CS_datasheet.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mipi_csi2_rx_subsystem;v=latest;d=pg232-mipi-csi2-rx.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axis_infrastructure_ip_suite;v=latest;d=pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=46

○ The Gain control module improves the overall brightness of the input image by applying a
multiplicative gain (weight) for red and blue channel to the input bayerized image.

○ The Demosaicing module converts a single plane Bayer pattern output, from the digital
camera sensors to a color image.

○ The histogram module computes the histogram of given input image. The normalization
module changes the range of pixel intensity values. Both modules are used to improve the
contrast in the image.

See https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-
functions for more details

○ The ISP IP receives the RAW AXI4-Stream input data and interpolates the missing color
components for every pixel to generate a 24-bit, 8 bits per pixel (8 bpc) RGB output image
transported via AXI4-Stream. At 4 ppc, the AXIS width is 96-bit. A GPIO from the PS is
used to reset the IP between resolution changes.

• The video processing subsystem (VPSS), see Video Processing Subsystem Product Guide
(PG231), is a collection of video processing IP subcores. This instance uses the scaler only
configuration which provides scaling, color space conversion, and chroma resampling
functionality. The VPSS takes AXI4-Stream input data in 24-bit RGB format and converts it to
a 16-bit, 8bpc YUV 4:2:2 output format. The following figure shows AXIS data interface at
4ppc. A GPIO pin from the PS is used to reset the subsystem between resolution changes.

Figure 18: AXI-Stream Data Bus Encoding

G G G

Y0U0
8

Y1V0
24 16

Y2U1
8

Y30 pad V1
64 56 48 4096 32

GB
8

R
24 16

B
32

R
48 40

B
56

R
72 64

B
80

R
96 88

Input RGB

Output YUYV

X23947-050820

• The video frame buffer, see Video Frame Buffer Read and Video Frame Buffer Write LogiCORE IP
Product Guide (PG278) takes YUV 4:2:2 sub-sampled AXI4-Stream input data and converts it
to AXI4-MM format which is written to memory as 16-bit packed YUYV. The AXI-MM
interface is connected to the system DDR via NOC. For each video frame transfer, an
interrupt is generated. A GPIO is used to reset the IP between resolution changes.

All the IPs in this pipeline are configured to transport 4ppc @ 150 MHz, enabling up to
3840x2160 resolution at 60 frames per second (fps).

• Time to transfer one frame: (3840 + 560) x (2160 + 90) / (150 MHz * 4ppc) = 0.0165 ms

• Number of frames transferred per second = 1/0.0165 = 60 frames

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_proc_ss;v=latest;d=pg231-v-proc-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_frmbuf;v=latest;d=pg278-v-frmbuf.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=47

Note: In this calculation the vertical blanking accounts for 90 pixels per line and the horizontal blanking for
560 lines per video frame.

The video resolution, frame format and frame rate are set via register writes through the AXI-Lite
interface of the IPs at run-time. The drivers for the above blocks provide APIs to set these values
in a user application.

• For the pass-through design (no accelerator) user can choose between 720p60, 1080p60,
2160p30, and 2160p60.

• For the 2D filter PL accelerator user can choose between 720p60, 1080p60, 2160p30 and
2160p60.

• For the 2D filter AIE accelerator resolution is fixed at 720p60.

Quad Sensor MIPI Capture
The quad sensor MIPI CSI-2 receiver capture pipeline is shown in the following figure.

Figure 19: Quad MIPI CSI Video Capture Pipeline

Pipe

CSI data AXI-MM AXI-Lite

AR0231
Sensor

(4)

I2C

DD
R

In
pu

t I
m

ag
es

N
O

C

PS

M_AXI_GP
0

PL

3232

MIPI CSI-
2 Rx SS

AXIS
Subset

Converter

AXI
I2C

24 16 128

AXIS

AXIS
Switch

Pipe 3

Pipe 2

Pipe 1

Pipe 0

128

128

128

128

Frmbuf
Write

VPSS
CSC

ISP 48 48

G
SM

L
co

m
po

ne
nt

s

X23946-051820

• The Avnet Multicamera FMC module bundles fours ON Semi image sensors (AR0231) with
GMSL (Gigabit Multimedia Serial Link) serializers (MAX96705) and deserialzer (MAX9286).

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 48Send Feedback

https://www.avnet.com/wps/portal/silica/products/new-products/npi/2018/avnet-multi-camera-fmc-module/
https://www.avnet.com/wps/portal/silica/products/new-products/npi/2018/on-semiconductor-ar0231at
https://datasheets.maximintegrated.com/en/ds/MAX96705.pdf
https://www.maximintegrated.com/en/products/interface/high-speed-signaling/MAX9286.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=48

• The MIPI CSI-2 subsystem, see the MIPI CSI-2 Receiver Subsystem Product Guide (PG232),
captures images from the deserializer in RAW12 format on four lanes and outputs AXI4-
Stream video data.

• The AXI subset converter converts the raw 12-bit (RAW12) AXI4-Stream input data to raw 8-
bit (RAW8) AXI4-Stream output data by truncating the four least significant bits (LSB) of each
data word. The AXIS switch splits the incoming data into four streams using the destination id.

• The ISP IP receives the RAW AXI4-Stream input data and interpolates the missing color
components for every pixel to generate a 24-bit, 8 bits per pixel (8 bpc) RGB output image
transported via AXI4-Stream.

• The VPSS takes AXI4-Stream input data in 24-bit RGB format and converts it to a 16-bit, 8
bpc YUV 4:2:2 output format.

• The video frame buffer takes YUV 4:2:2 sub-sampled AXI4-Stream input data and converts it
to AXI4-MM format which is written to memory as 16-bit packed YUYV.

All of the IPs in this pipeline are configured to transport 2 ppc @ 150 MHz, enabling up to
1920x1080 resolution at 120 fps, or 30 fps per stream.

• Time to transfer one frame: (1920 + 280) x (1080 + 45) / (150 MHz * 2 ppc) = 0.00825 ms

• Number of frames transferred per second = 1/0.00825 = 120 frames

Note: The AR0231 sensor is limited to 1080p30 applications.

HDMI Rx Capture
The HDMI receiver capture pipeline is shown in the following figure.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mipi_csi2_rx_subsystem;v=latest;d=pg232-mipi-csi2-rx.pdf
https://www.avnet.com/wps/portal/silica/products/new-products/npi/2018/on-semiconductor-ar0231at
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=49

Figure 20: HDMI RX Capture Pipeline Block Diagram

DD
R

In
pu

t I
m

ag
es

N
O

C

PS

M_AXI_GP0

PL

3232

Frmbuf
Write

VPSS
CSC

HDMI GT
Controller

and
GT Quad

HDMI RX
Subsystem40

96

96 256

40

40

Link Data AXI-MM AXI-LiteAXISSerial DataTMDS

HDMI
Retimer
(TMDS181)

H
DM

I
Co

nn
ec

to
r

mem wr

X24755-102020

This pipeline consists of four main components, each of them controlled by the APU via an AXI4-
Lite base register interface:

• The HDMI retimer converts TMDS data from the HDMI connector to serial data and clock,
and provides them to the GT QUAD.

• The HDMI GT controller and PHY (GT QUAD) enable plug-and-play connectivity with the
video transmit or receive subsystems. The interface between the media access controller
(MAC) and physical (PHY) layers are standardized to enable ease of use in accessing shared
gigabit-transceiver (GT) resources. The data recovery unit (DRU) supports lower line rates for
the HDMI protocol. An AXI4-Lite register interface is provided to enable dynamic accesses of
transceiver controls/status. See the HDMI GT Controller LogiCORE IP Product Guide (PG334) for
more information. The HDMI GT controller and PHY are shared with the HDMI TX display
pipeline

• The HDMI receiver subsystem (HDMI RX) interfaces with PHY layers and provides HDMI
decoding functionality. The subsystem is an hierarchical IP that bundles a collection of HDMI
RX-related IP subcores and outputs them as a single IP. The subsystem receives the captured
TMDS data from the PHY layer. It then extracts the video stream from the HDMI stream and
generates a 96-bit AXI4-Stream data stream corresponding to four pixels per clock. The data
format is dependent on the HDMI source format. See the HDMI 1.4/2.0 Receiver Subsystem
Product Guide (PG236) for more information.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_rx_ss;v=latest;d=pg236-v-hdmi-rx-ss.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=50

• The video processing subsystem (VPSS) is a collection of video processing IP subcores. This
instance of the VPSS uses the video scaler only configuration which provides scaling, color
space conversion, and chroma resampling functionality. The VPSS takes AXI4-Stream input
data from the HDMI RX subsystem and depending on the input format and resolution,
converts and scales it to YUV 4:2:2 format transferred on a 96-bit AXI4-Stream interface. A
GPIO is used to reset the subsystem between resolution changes. See the Video Processing
Subsystem Product Guide (PG231) for more information.(

• The video frame buffer takes YUV 4:2:2 sub-sampled AXI4-Stream input data and converts it
to AXI4-MM format which is written to memory as 16-bit packed YUYV. The AXI-MM
interface is connected to the system DDR via the NOC. An interrupt is generated for each
video frame transfer. A GPIO is used to reset the IP between resolution changes. See the
Video Frame Buffer Read and Video Frame Buffer Write LogiCORE IP Product Guide (PG278) for
more information.

All of the IPs in this pipeline are configured to transport 4ppc @ 150 MHz, enabling up to
3840x2160 resolution at 60 frames per second (fps).

• Time to transfer one frame: (3840 + 560) x (2160 + 90) / (150 MHz * 4ppc) = 0.0165 ms

• Number of frames transferred per second = 1/0.0165 = 60 frames

Processing Pipeline
A memory-to-memory (M2M) pipeline reads video frames from memory, does certain processing,
and then writes the processed frames back into memory A block diagram of the process pipeline
is shown in the following figure.

Figure 21: M2M Processing Pipeline Showing Hardware Accelerator and Data Motion
Network

PL

2D Filter

2D Filter DD
R

In
pu

t I
m

ag
es

,
Pr

oc
es

se
d

O
ut

pu
t

Im
ag

es

N
O

C

PS
M_AXI_GP032

128
128
128

128
128

128

AXI-MM AXI-LiteAXIS

AI Engine (1)
frame in

frame out frame process

frame rd

frame wr

frame wr
frame rd

DM + frame
process

128
128

Data Mover

X23948-050820

There are two accelerators supported in this reference design:

• 2D convolution filter implemented in PL along with a data mover (DM)

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 51Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_proc_ss;v=latest;d=pg231-v-proc-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_frmbuf;v=latest;d=pg278-v-frmbuf.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=51

• 2D convolution filter implemented in AIE along with a data mover DM in PL

The memory-to-memory (m2m) processing pipeline with the 2D convolution filter is generated
and integrated by the Vitis™ tool. The C-based 2D filter function is translated to RTL and then
packaged as kernel object (.xo) using Vitis™ HLS. The case is the same for the data mover
required for the 2D Convolution filter in AIE. The Cardano compiler generates the connectivity
graph (.o) with the AIE engine and the program (2D convolution filter elf) to execute on AIE. The
Vitis™ tool uses the .xo and .o outputs from these tools and integrates the IPs into the platform.

The data movers read input frames from the memory. The processing block runs convolution on
the frame. Convolution is a common image processing technique that changes the intensity of a
pixel to reflect the intensities of the surrounding pixels. This is widely used in image filters to
achieve popular image effects like blur, sharpen, and edge detection.

The implemented algorithm uses a 3x3 kernel with programmable filter coefficients. The
coefficients inside the kernel determine how to transform the pixels from the original image into
the pixels of the processed image, as shown in the following figure.

Figure 22: 2D Convolution Filter with a 3x3 Kernel

Source Pixel

Convolution
kernel for
emboss

New pixel value
(destination pixel)

0 1 1 1 1 0 0

0 1 2 2 1 0 0

0 1 2 2 2 1 0

0 0 1 1 1 0 0

0 0 1 2 2 1 0

0 0 1 1 1 1 0

0 0 1 1 1 1 0

4 0 0

0 0 0

0 0 -4
-8

X17322-071917

The algorithm performs a two-dimensional (2D) convolution for each pixel of the input image
with a 3x3 kernel. Convolution is the sum of products, one for each coefficient/source pixel pair.
As the reference design is using a 3x3 kernel, in this case it is the sum of nine products.

The result of this operation is the new intensity value of the center pixel in the output image.
This scheme is repeated for every pixel of the image in raster-scan order, that is, line-by-line from
top-left to bottom-right. In total, width x height 2D convolution operations are performed to
process the entire image.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=52

The pixel format used in this design is YUYV which is a packed format with 16 bits per pixel. Each
pixel can be divided into two 8-bit components: one for luma (Y), the other for chroma (U/V
alternating).

In this implementation, only the Y component is processed by the 2D convolution filter which is
essentially a grayscale image. The reason is that the human eye is more sensitive to intensity than
color. The combined U/Y components which accounts for the color is merged back into the final
output image unmodified. The processed frame is then written back to memory.

Note: The 2D filter in the PL has the option of reading coefficients from memory (AXI MM is not shown in
the figure). The 2d filter in the AIE only supports fixed coefficients corresponding to a Sobel filter.

Display Pipeline
An output pipeline reads video frames from memory and sends the frames to a sink. In this case
the sink is a display and therefore this pipeline is also referred to as a display pipeline. The HDMI
display pipeline is shown in the following figure.

Figure 23: HDMI Transmitter Display Pipeline

PL

Video
Mixer

HDMI TX
Subsystem

HDMI GT
Controller

and
GT QUAD DD

R
O

ut
pu

t I
m

ag
es

96

N
O

C

PS

M_AXI_GP032

256

256

256

HDMI
Retimer

(SN65DP159)

AXI
I2C

Link Data AXI-MM AXI-Lite I2CAXIS

40
40
40

Serial DataTMDS

H
DM

I
Co

nn
ec

to
r

mem rd

mem rd

mem rd

X24753-102020

This pipeline consists of three main components, all of them controlled by the APU via an AXI-
Lite base register interface:

• The video mixer IP core is configured to support blending of up to eight overlay layers into
one single output video stream. The eight layers are configured to be memory-mapped AXI4
interfaces connected to the NOC via two interconnects. Two interconnects are required to
reduce arbitration across ports. The main AXI-MM layer has the resolution set to match the
display. The other layers, whatever their resolution, is blended with this layer. Four video

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=53

layers are configured for YUYV and the other four are configured for RGB. The AXI4-Stream
output interface is a 96-bit bus that transports 4ppc for up to 2160p60 performance. It is
connected to the HDMI Tx subsystem input interface. A GPIO is used to reset the subsystem
between resolution changes. For more information refer to the input interface Video Mixer
LogiCORE IP Product Guide (PG243).

Note: The mixer configuration remains the same for different capture sources. To enable/disable various
layers, software programs the layer enable register in the IP

• The HDMI transmitter subsystem (HDMI Tx) interfaces with PHY layers and provides HDMI
encoding functionality. The subsystem is a hierarchical IP that bundles a collection of HDMI
TX-related IP sub-cores and outputs them as a single IP. The subsystem generates an HDMI
stream from the incoming AXI4-Stream video data and sends the generated link data to the
video PHY layer. For more information refer to the HDMI 1.4/2.0 Transmitter Subsystem
Product Guide (PG235).

• The HDMI GT controller and PHY (GT) enables plug-and-play connectivity with the video
transmit or receive subsystems. The interface between the media access control (MAC) and
physical (PHY) layers are standardized to enable ease of use in accessing shared gigabit-
transceiver (GT) resources. The data recovery unit (DRU) is used to support lower line rates for
the HDMI protocol. An AXI4-Lite register interface is provided to enable dynamic accesses of
transceiver controls/status. For more information refer to the HDMI GT Controller LogiCORE IP
Product Guide (PG334).

• The HDMI re-timer converts serial HDMI output signals to transition minimized differential
signals (TMDS) compliant with HDMI signaling.. For more information refer to SNx5DP159
datasheet.

HDMI Audio Pipeline
In Platform3, where video capture and display are enabled via HDMI it also possible to capture
and replay audio. The HDMI audio RX-to-TX pipeline is shown in the following figure. This
pipeline consists of four components, each of them controlled by the APU through an AXI4-Lite
base register interface.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_mix;v=latest;d=pg243-v-mix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_tx_ss;v=latest;d=pg235-v-hdmi-tx-ss.pdf
http://www.ti.com/lit/ds/symlink/sn65dp159.pdf
http://www.ti.com/lit/ds/symlink/sn65dp159.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=54

Figure 24: The HDMI Audio Pipeline

Link Data AXI-MM AXI-Lite

DD
R

Au
di

o
Da

ta

N
O

C

PS

M_AXI_GP0

PL

3232

Audio
Formatter

HDMI GT
Controller

and
GT Quad

HDMI RX
Subsystem40 32 32

AXIS

40

40

Serial Data

HDMI TX
Subsystem 3240

40

40
32

mem wr

mem rd

HDMI
Retimer
(TMDS181)

H
DM

I
Co

nn
ec

to
r

HDMI
Retimer
(DP159)H

DM
I

Co
nn

ec
to

r

TMDS

X24754-102020

• The HDMI GT controller is shared with the HDMI RX and HDMI TX pipelines.

• The HDMI RX subsystem converts the captured audio to a multiple channel AXI audio stream
and outputs the audio data on 32-bit AXI Stream interface. This design supports two audio
channels. The subsystem also outputs Audio Clock Regeneration (ACR) signals that allow
regeneration of the audio clock. The ACR signals are passed to hdmi_acr_ctrl which calculates
Cycle Time Stamp (CTS) values for the transmit. It basically counts the cycles of the TX TMDS
clock for a given audio clock. See the HDMI 1.4/2.0 Receiver Subsystem Product Guide (PG236)
for more information.

• • The audio formatter provides high-bandwidth direct memory access between memory and
AXI4-Stream target peripherals. Initialization, status, and management registers are accessed
through an AXI4-Lite slave interface. It is configured with both read and write interface
enabled for a maximum of two audio channels and interleaved memory packing mode with
memory data format configured as AES to PCM. The IP receives audio input from the HDMI
RX subsystem IP and writes the data to memory. It reads audio data from memory and sends
it out to the HDMI TX subsystem IP, which forwards it to the output device. See the Audio
Formatter Product Guide (PG330) for more information.

• The HDMI TX subsystem receives the 32-bit AXI stream audio data from the audio formatter
and transfers it to the HDMI GT controller as Link Data. This is further transferred as TMDS
data on the HDMI and finally to a HDMI replay device. This block also receives ACR signals
used to transmit an audio packet. See the HDMI 1.4/2.0 Transmitter Subsystem Product Guide
(PG235) for more information.

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_rx_ss;v=latest;d=pg236-v-hdmi-rx-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=audio_formatter;v=latest;d=pg330-audio-formatter.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_tx_ss;v=latest;d=pg235-v-hdmi-tx-ss.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=55

Clocks, Resets, and Interrupts
The following table lists the clock frequencies of key ACAP components and memory. For more
information refer to the Versal ACAP Technical Reference Manual (AM011).

Table 2: Key Component Clock Frequencies

Component Clock Frequency
ACPU 1,000 MHz

NOC 950 MHz

NPI 300 MHz

LPDDR 1,600

AIE 1,000

The following table identifies the main clocks of the PL design, their source, their clock
frequency, and their function.

Table 3: System Clocks

Clock Clock Source Clock
Frequency Function

pl0_ref_clk CIPS 100 MHz Clock source for clocking wizard.

clk_out1 Clocking wizard 150 MHz AXI MM clock and AXI Stream clock used in the capture of
platform2, display pipeline, and processing pipeline.

clk_out2 Clocking wizard 105 MHz AXI-Lite clock to configure the different IPs in the design.

clk_out3 Clocking wizard 200 MHz MIPI D-PHY core clock. Also the AXI MM clock and AXI
Stream clock used in the capture pipeline of plaform2.

sys_clk0 SI570 (External) 200 MHz Differential clock source used internally by the memory
controller to generate various clocks to access DDR
memory.

HDMI DRU clock SI570 (External) 200 MHz Clock for data recovery unit for low line rates.

HDMI GT TX
reference clock

IDT 8T49N241
(External)

Variable GT Transmit clock source to support various HDMI
resolutions.

HDMI GT RX
reference clock

Si570 (External); Variable GT receive clock to support various HDMI resolutions.

Audio clock Si570 (External) Variable Master reference clock to generate audio stream at the
required sampling rate.

The PL0 clock is provided by the PPLL inside the PMC domain and is used as the reference input
clock for the clocking wizard instance. This clock does not drive any loads directly. A clocking
wizard instance is used to de-skew the clock and to provide three phase-aligned output clocks,
clk_out1, clk_out2 and clk_out3 .

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 56Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=56

The clk_out2 is used to drive most of the AXI-Lite control interfaces of the IPs in the PL. AXI-Lite
interfaces are typically used to configure registers and therefore can operate at a lower
frequency than data path interfaces. Exception is the AXI-Lite interfaces of HLS based IP cores
where the control and data plane use either clk_out1 or clk_out3.

The clk_out1 clock drives the AXI MM interfaces and AXI Stream interfaces of the display
pipeline and processing pipeline. It also drives AXI MM interfaces and AXI Stream interfaces of
the capture pipeline of platform2. The clk_out3 clock drives the AXI MM interfaces and AXI
Stream interfaces of the capture pipeline in platform1.

For details on HDMI Tx and HDMI GT clocking structure and requirements refer toHDMI 1.4/2.0
Transmitter Subsystem Product Guide (PG235) and HDMI GT Controller LogiCORE IP Product Guide
(PG334). For HDMI Tx, an external clock chip is used to generate the GT reference clock
depending on the display resolution. Various other HDMI related clocks are derived from the GT
reference clock and generated internally by the HDMI GT controller; only for the DRU a fixed
reference clock is provided externally by a Si570 clock chip.

For details on the various clock chips used refer to the VCK190 Evaluation Board User Guide
(UG1366).

The master reset (pl_resetn0) is generated by the PS during boot and is used as input to the four
processing system (PS) reset modules in the PL. Each module generates synchronous, active-Low
and active-High interconnect and peripheral resets that drive all IP cores synchronous to the
respective, clk_out0, clk_out1, and clk_out2 clock domains.

Apart from these system resets, there are asynchronous resets driven by PS GPIO pins. The
respective device drivers control these resets which can be toggled at run-time to reset HLS-
based cores. The following table summarizes the PL resets used in this design.

Table 4: System and User Resets

Reset Source Purpose
pl0_resetn PL reset for proc_sys_reset modules

rst_processor_150MHz Synchronous resets for clk_out0 clock domain

rst_processor_105MHz Synchronous resets for clk_out1 clock domain

rst_processor_200MHz Synchronous resets for clk_out3 clock domain

lpd_gpio_o 0 Asynchronous reset for the video mixer IP

GPIO for platorm1 – Single Senor

lpd_gpio_o 1 Asynchronous reset for the demosaic IP

lpd_gpio_o 2 Asynchronous reset for the VPSS CSC IP

lpd_gpio_o 3 Asynchronous reset for the frame buffer write IP

lpd_gpio_o 4 Asynchronous reset for the sensor GPIO

GPIO for platorm2 – Quad Senor

lpd_gpio_o 1 Asynchronous reset for the demosaic IP stream 0

lpd_gpio_o 2 Asynchronous reset for the VPSS CSC IP stream 0

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_tx_ss;v=latest;d=pg235-v-hdmi-tx-ss.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=57

Table 4: System and User Resets (cont'd)

Reset Source Purpose
lpd_gpio_o 3 Asynchronous reset for the frame buffer write IP stream 0

lpd_gpio_o 4 Asynchronous reset for the demosaic IP stream 1

lpd_gpio_o 5 Asynchronous reset for the VPSS CSC IP stream 1

lpd_gpio_o 6 Asynchronous reset for the frame buffer write IP stream 1

lpd_gpio_o 7 Asynchronous reset for the demosaic IP stream 2

lpd_gpio_o 8 Asynchronous reset for the VPSS CSC IP stream 3

lpd_gpio_o 9 Asynchronous reset for the frame buffer write IP stream

lpd_gpio_o 10 Asynchronous reset for the demosaic IP stream 3

lpd_gpio_o 10 Asynchronous reset for the VPSS CSC IP stream 3

lpd_gpio_o 12 Asynchronous reset for the frame buffer write IP stream 3

GPIO for platform3 - HDMI RX

lpd_gpio_0 1 Asynchronous reset for the VPSS CSC IP

lpd_gpio_0 2 Asynchronous reset for the frame buffer write IP

The following table lists the PL-to-PS interrupts used in this design.

Table 5: Interrupt from PL to PS

Interrupt ID Instance
pl_ps_irq0 HDMI GT Controller

pl_ps_irq1 HDMI Tx subsystem

pl_ps_irq2 Video Mixer

pl_ps_irq3 HDMI I2C

pl_ps_irq4 AXI Performance Monitor

Interrupts specific to platform 1 - Single Sensor

pl_ps_irq5 Audio formatter memory-mapped to stream

pl_ps_irq6 MIPI RX subsytem

pl_ps_irq7 MIPI I2C

pl_ps_irq8 Frame buffer write interrupt

Interrupts specific to platform 2 - Quad Sensor

pl_ps_irq5 Audio formatter memory-mapped to stream

pl_ps_irq6 MIPI RX subsytem

pl_ps_irq7 MIPI I2C

pl_ps_irq8 Frame buffer write stream 0

pl_ps_irq9 Frame buffer write stream 1

pl_ps_irq10 Frame buffer write stream 2

pl_ps_irq10 Frame buffer write stream 3

Interrupts specific to platform 3 - HDMI RX

pl_ps_irq5 Audio formatter memory-mapped to stream

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=58

Table 5: Interrupt from PL to PS (cont'd)

Interrupt ID Instance
pl_ps_irq6 Audio formatter stream to memory map

pl_ps_irq7 Frame buffer write interrupt

pl_ps_irq8 HDMI RX subsytem

Chapter 5: Hardware Architecture

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=59

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 60Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=60

1. Versal Architecture and Product Data Sheet: Overview (DS950)

2. VCK190 Evaluation Board User Guide (UG1366)

3. Xilinx OpenCV User Guide (UG1233)

4. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

5. https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-functions

6. https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/
xf_custom_convolution.hpp

7. Versal ACAP System and Software Developers Guide (UG1304)

8. MIPI CSI-2 Receiver Subsystem Product Guide (PG232)

9. HDMI 1.4/2.0 Transmitter Subsystem Product Guide (PG235)

10. HDMI GT Controller LogiCORE IP Product Guide (PG334)

11. Video Processing Subsystem Product Guide (PG231)

12. Video Frame Buffer Read and Video Frame Buffer Write LogiCORE IP Product Guide (PG278)

13. HDMI 1.4/2.0 Receiver Subsystem Product Guide (PG236)

14. AXI4-Stream Infrastructure IP Suite LogiCORE IP Product Guide (PG085)

15. Video Mixer LogiCORE IP Product Guide (PG243)

16. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841700/Xilinx+ALSA+ASoC+driver

17. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842519/Xilinx+ALSA+HDMI+Audio
+driver

18. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/75104264/Xilinx+ALSA+Audio
+Formatter+driver

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx

Appendix A: Additional Resources and Legal Notices

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1233-xilinx-opencv-user-guide.pdf
https://xilinx.github.io/Vitis_Libraries/vision/api-reference.html#vitis-vision-library-functions
https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/xf_custom_convolution.hpp
https://github.com/Xilinx/Vitis_Libraries/blob/master/vision/L1/include/imgproc/xf_custom_convolution.hpp
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mipi_csi2_rx_subsystem;v=latest;d=pg232-mipi-csi2-rx.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_tx_ss;v=latest;d=pg235-v-hdmi-tx-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_proc_ss;v=latest;d=pg231-v-proc-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_frmbuf;v=latest;d=pg278-v-frmbuf.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_hdmi_rx_ss;v=latest;d=pg236-v-hdmi-rx-ss.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axis_infrastructure_ip_suite;v=latest;d=pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=v_mix;v=latest;d=pg243-v-mix.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841700/Xilinx+ALSA+ASoC+driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842519/Xilinx+ALSA+HDMI+Audio+driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842519/Xilinx+ALSA+HDMI+Audio+driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/75104264/Xilinx+ALSA+Audio+Formatter+driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/75104264/Xilinx+ALSA+Audio+Formatter+driver
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=61

had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1442 (v2020.2) January 8, 2021 www.xilinx.com
VCK190 Base TRD 62Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1442&Title=%20Versal%20ACAP%20VCK190%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.2&docPage=62

	 Versal ACAP VCK190 Base Targeted Reference Design
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Versal ACAP Device Architecture
	Reference Design Overview
	Reference Design Key Features

	Ch. 2: Out of Box Designs
	Design Components

	Ch. 3: Software Architecture
	Introduction
	Video Capture
	Media Source Bin GStreamer Plugin
	Kernel Subsystems

	Display
	KMS Sink GStreamer Plugin
	Libdrm
	DRM/KMS Kernel Subsystem

	Audio
	Accelerator
	GStreamer
	Jupyter Notebooks

	Ch. 4: System Consideration
	Boot Process
	Programmable Device Image (PDI)

	Ch. 5: Hardware Architecture
	Introduction
	Capture Pipeline
	Single Sensor MIPI Capture
	Quad Sensor MIPI Capture
	HDMI Rx Capture

	Processing Pipeline
	Display Pipeline
	HDMI Audio Pipeline
	Clocks, Resets, and Interrupts

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

