
XAPP1320 (v4.0) July 21, 2021 1
www.xilinx.com

Summary
The Zynq® UltraScale+™ MPSoC provides multiple processing subsytems including an
application processing unit containing four Cortex™-A53 cores (APU subsystem), two
Cortex-R5 cores (RPU subsytem), a platform management unit (PMU), as well as a configuration
security unit (CSU). A user-specified number of MicroBlaze™ processors could also be located in
the programmable logic (PL). When multiple software teams are involved in system
development, these processing units can potentially interfere with each other. In order to
prevent the possibility of such interference, isolation is necessary. Due to the nature of security
and functional safety applications, isolation is a requirement.

The Zynq UltraScale+ MPSoC provides the Xilinx® memory protection unit (XMPU) and the
Xilinx peripheral protection unit (XPPU) for hardware protection of memory and peripherals.
These protection units complement the isolation provided by TrustZone (TZ), by the
Zynq UltraScale+ MPSoC memory management units (MMUs) and the System Memory
Management Unit (SMMU). The methods outlined in this document allow a system to be built
using a structured isolation methodology. This application note describes how to isolate the
subsystems in a Zynq UltraScale+ MPSoC system using XMPU, XPPU, and TZ.

The reference design files for this application note can be downloaded from the Xilinx website.
For detailed information about the design files, see the Reference Design section of this
application note.

Note: This application note targets MPSoC devices as an example. All isolation methods discussed in this
application note are also applicable to RFSoC devices.

Introduction
Zynq UltraScale+ MPSoC designs use multiple subsystems. The subsystems include one or
more processing units or other masters (e.g., PMU, DMAs, custom PL IP, etc), memories, and
peripherals. Interference occurs when a master in one subsystem accesses a memory region or
peripheral that it is not intended to access. Interference can result from software bugs or from
a malicious actor.

In this application note, the isolation methods in the Vivado® design suite defines a system
that uses isolated subsystems. The subsystems are the application processing unit (APU),
real-time processing unit (RPU), and PMU. The objective of these methods is to ensure that each
subsystem executes with freedom from interference (FFI) from other subsystems. These
methods configure the protection units and TZ for subsystem isolation. The system hardware

Application Note: Zynq UltraScale+ MPSoCs

XAPP1320 (v4.0) July 21, 2021

Isolation Methods in
Zynq UltraScale+ MPSoCs
Authors: Steven McNeil, Peter Schillinger, Aniket Kolarkar,
Emmanuel Puillet, and Uwe Gertheinrich

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=3acbfd52-f0c9-4182-892b-07be84336a5e;d=xapp1320-isolation-methods.zip

Introduction

XAPP1320 (v4.0) July 21, 2021 2
www.xilinx.com

generated in the Vivado design suite is exported as a hardware platform for use by the Xilinx
Vitis Core Development Kit. Vitis will be used to create the software systems. In addition to the
basic software that runs on subsystems, Vitis can be used to create applications that control and
monitor the protection unit and TZ functionality. The software allows the developer to include
an error reaction to interference of a subsystem.

After a system is defined and implemented, it needs to be validated for basic functionality of
the subsystems, including any subsystem intercommunication. The isolation between
subsystems can be verified by injecting faults that invoke protection unit and TZ isolation
functionality. This includes testing of the error reaction to the interference defined by the
system architect.

This application note targets a bare metal system but the methodology provides a framework
for isolation development in systems that use operating systems. This application note
includes:

• UltraScale MPSoC Architecture
• Isolation Tools
• Known Limitations to Isolation

Hardware and Software Requirements
The hardware and software requirements for the reference design system include:

• Xilinx ZCU102 evaluation platform
• Two USB type-A to USB mini-B cables (for UART, JTAG communication)
• Secure Digital (SD) memory card
• Xilinx Vitis 2021.1
• Xilinx Vivado Design Suite 2021.1
• Serial communication terminal software (such as Tera Term or PuTTY)
• Warm restart patch required for releases prior to 2021.1. For more information, see

Software Patch Requirements (2019.1/2019.2).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=2

UltraScale MPSoC Architecture

XAPP1320 (v4.0) July 21, 2021 3
www.xilinx.com

UltraScale MPSoC Architecture
This section discusses the hardware components in the UltraScale+ MPSoC architecture that are
used to create subsystems and the protection units used to ensure FFI. At a high level,
Zynq UltraScale+ MPSoCs consist of a processing system (PS) and programmable logic (PL).
Zynq UltraScale+ MPSoC regions are also defined by power domains, including the full power
domain (FPD) and low power domain (LPD) regions. Within these power domains are islands
whose power can be controlled by the user.

There are also four fundamental memory regions. These memory regions are the double data
rate (DDR) memory, on-chip memory (OCM), tightly-coupled memory (TCM), and advanced
eXtensible interface (AXI) block RAM in the PL. Access to memory is controlled by the memory
controllers, direct memory access controllers (DMACs), memory management units (MMUs),
SMMUs, and the XMPUs. The peripherals, mostly in the LPD, include devices in the input/output
unit (IOU), and other devices such as the gigabit Ethernet MAC (GEM). The GEM and USB
peripherals function as both master and slave AXI devices. Access to the peripherals can be
dedicated or shared. However, when a peripheral is shared it is up to the user to arbitrate
access. Isolation of the peripherals is provided using the XPPU.

Figure 1 shows the location of the XMPUs and the XPPU in the Zynq UltraScale+ MPSoC. There
are eight XMPUs. Six of the XMPUs protect transactions into the DDR, one protects the OCM,
and one protects transactions into the FPD. There is one XPPU, which is located at the input to
the LPD.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=3

UltraScale MPSoC Architecture

XAPP1320 (v4.0) July 21, 2021 4
www.xilinx.com

The hardware provides other components that can be used for isolation: system memory
management unit (SMMU), AXI timeout blocks (ATBs), AXI isolation blocks (AIBs), and TZ. The
SMMU provides memory management for non-CPU masters such as direct memory access
controllers (DMACs). The SMMU provides isolation between two different processors that have
access to the same memory and the SMMU is commonly used in conjunction with hypervisors.
The ATBs ensure that AXI transactions for which there is not a slave response do not halt. The
AIBs facilitate the transition to a powered down state for regions that are powered down.
Powering down unused regions is important in isolation.

X-Ref Target - Figure 1

Figure 1: Zynq UltraScale+ Architecture

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=4

UltraScale MPSoC Architecture

XAPP1320 (v4.0) July 21, 2021 5
www.xilinx.com

Several types of access control need to be used in conjunction with the protection units and TZ.
AXI transactions can be either read or write. However, a section with code or data constants
should not allow writes. To accommodate this isolation requirement, a memory region’s
read/write permissions can be defined using TZ and the Xilinx protection units (XMPU and
XPPU).

Note: While the protection units use the master IDs to enforce isolation, TZ achieves this using the AXI
AxProt bits.

The Zynq UltraScale+ MPSoC APU is an Arm® v8 architecture and as such supports four
exception levels. These exception levels are used to control privileges at the application level
(i.e., each application has its own exception level). The Arm®v8 architecture exception levels
(ELs) are exclusively for applications running on the APU. The RPU and PMU do not support
them. However, the RPU supports modes to control privilege and it is similar to the concept of
exception levels. For more information, see
https://developer.arm.com/docs/den0024/latest/fundamentals-of-armv8/changing-exception-levels#
BEIJHGDA.

Powering down unused regions and islands is a valuable tool not just for isolation but also for
general security and safety practices. A component cannot interfere with other components if it
is powered down. Figure 2 shows an overview of the Zynq UltraScale+ MPSoC power islands.

Send Feedback

https://www.xilinx.com
https://developer.arm.com/docs/den0024/latest/fundamentals-of-armv8/changing-exception-levels#BEIJHGDA
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=5

UltraScale MPSoC Architecture

XAPP1320 (v4.0) July 21, 2021 6
www.xilinx.com

X-Ref Target - Figure 2

Figure 2: Zynq UltraScale+ MPSoC Power Domains

VCU H.265, H.265

BRAM

PL SYSMON
(SYSMONE4)

100 Gb Ethernet Interlaken

PL Configuration

PL
 F

ab
ric

PL Fabric

DSP, LUT, Clks

SerDes

HD I/O

eFUSE

Real
Time
Clock BBRAM

Oscillator

USB 0

USB 1

PS-GTR

1.2 to 1.5V

Battery Power Domain (BPD)

1.8V
VCC_PSAUX good

1.8V to 3.3V VCCO_PSIO3

1.8V to 3.3V VCCO_PSIO2

1.8V to 3.3V VCCO_PSIO1

1.8V to 3.3V VCCO_PSIO0

0.85 or 0.9V VCC_PSINTLP

1.2V VCC_PSPLL

0.85 or 0.9V
VCC_PSINTFP

0.85V PS_MGTRAVCC

1.8V PS_MGTRAVTT

1.1 to 1.5V VCCO_PSDDR

1.8V VCC_PSDDR_PLL

VCCBRAM

VCCINT_VCU0.9V
VCCADC1.8V
VREFP1.25V
VCCAUX1.8V

VCCO1.2 to 3.3V

0.85 or 0.9V

VCC_PSINTFP_DDR

PS
SysMon

APLL
VPLL
DPLL

RPLL
IOPLL

System

MIO 2
MIO 1
MIO 0

L2 Cache
RAM

CPU 3

CPU 1

CPU 2

CPU 0

APU MPCore
(SCU, GIC, CCI)

APU Debug
RPU debug

Arm DAPPL
debug

FPD
DMA SATA

GPU pipeline
PCIe

Interconnect and SLCR
DisplayPort

GPU PP0

GPU PP1

Bank 0

Bank 1

Bank 2

Bank 3

TCM A0

TCM A1

TCM B0

TCM B1

OCM CtrlIOP

CSU PMU

IPI

Interconnect and SLCR
LPD DMA

PS TAP

PLLs (x6) DDR Memory
ControllerDDRIOB Po

rt
s

Battery

Power
Supplies

PCAP

PCAP-LPD Isolation Wall
PL

-L
PD

 Is
ol

at
io

n
W

al
l

VCC_PSAUX

Low Power Domain (LPD)

Full Power Domain (FPD)

PL Power Domain (PLPD)

PSIO {0:3} Power

High-Performance I/O PL Power Domains for Multiple
PL Units

PLL Power Domains
VCC_PSBATT

ETMGIC

RPU
MPCore

PL-FPD Isolation Wall

PS Auxiliary Power Domain

GTH/GTY Supplies0.9 to 1.8V

1.8V VCC_PSADC

PCIe Gen3, 4

PL TAP

PMU software control

PHY

HP I/O
VCCAUX_IO1.8V

VCCINT0.72, 0.85, or 0.9V PLPD
VCCO1.0 to 1.8V

X22405-022719

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=6

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 7
www.xilinx.com

Isolation Tools
The Zynq UltraScale+ MPSoC has many tools to aid in the development of an isolated design.
The primary tools are discussed here.

TrustZone
The isolation methods in this application note rely on the use of protection units and TZ.
Protection units provide isolation by detecting violating AXI transactions. Xilinx differentiates
between the isolation provided by the protection units and isolation provided by TZ using the
terms transaction isolation and state isolation, respectively. State isolation can be more
comprehensive than transaction isolation. With state isolation, the processor, IP, memory, and
interrupts in subsystems are assigned secure world (SW) or non-secure world (NSW) settings.
The subsystem can context switch between SW and NSW states, thereby improving device
utilization at the expense of software complexity.

The reference design provides a critical framework to start using TZ. Because of its complexity,
realization of all the advantages of TZ typically requires running a trusted execution
environment (TEE) and support from a Xilinx ecosystem partner. For more information, see
Isolate Security-Critical Applications on Zynq UltraScale+ Devices (WP516) [Ref 5]. In the
included reference system (see Figure 13), the APU and its memory and peripherals are TZ
non-secure while the RPU and PMU along with their dedicated memory and peripherals are TZ
secure. While sharing is allowed (not typically recommended), the level must be consistent with
the level of the master. For example, a non-secure master cannot access a secure memory or
peripheral. However, a secure master can access either a secure or non-secure memory or
peripheral.

In the typical Arm use case, TZ uses hardware and software functionality to provide isolation. TZ
defines SW and NSW operational states. Because functional safety (FS) applications sometimes
have isolation requirements analogous to security applications, FS applications use the terms
safety critical and non-safety critical in lieu of secure and non-secure, respectively. For brevity,
the terms safe world and non-safe world will be used so as to keep the same acronym as the
security context (secure world and non-secure world) because they are analogous.

The intent is to ensure that safety critical functions cannot be corrupted by non-safety critical
functions. In some, but not all TZ systems, the same CPU multiplexes between the SW and NSW
because that is an efficient use of resources. This usually requires a relatively complex context
switch. In the general case, however, trusted software runs in the SW using a standalone board
support package (BSP) or a small operating system in the SW. NSW software runs on a rich
operating system, often Linux, which generally has a wider attack surface.

As an example, secure boot, secure firmware update, key management, reset control, power
management, and other critical system functions are performed in the SW. Non-critical
applications such as status reporting, non-essential analytics, and performance monitoring are
performed in the NSW as a Linux application. The isolation provided by TZ minimizes the
probability that a cyber attack or software bug in the NSW affects code or data in the SW.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=7

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 8
www.xilinx.com

Because the context switch between code running in a SW and a NSW is complex, it is easier if
one CPU is statically configured to operate in the SW, and a second CPU is statically configured
to operate in the NSW. With the number of CPUs provided in the Zynq UltraScale+ MPSoC, this
is a viable option. As an example, the R5-0 can operate statically in the SW while the A53-0
operates statically in the NSW.

In TZ, masters, slaves, and memory are designated to function in either the SW or the NSW. A
master in the SW has access to slave and memory belonging to both the SW and the NSW (i.e.,
everything). A master in the NSW has access to slave and memory belonging only to the NSW.
An access attempt by a NSW master to a SW peripheral or memory is not allowed. The illegal
access will be rejected by the slave, generally with a SLVERR or DECERR response.

The TZ hardware isolation on the Zynq UltraScale+ MPSoC uses the AxPROT[1] signal on the AXI
bus as the filtering mechanism to determine if an access is legal. This is used on both the Arm
advanced high-performance bus (AHB) and the advanced peripheral bus (APB) in the PS. The
AXI interconnect IP used in the PL also supports AxPROT[1] allowing relatively straightforward
TZ isolation in the PL(1). MicroBlaze interfaces can be setup as secure or non-secure and use the
AxPROT signals. MicroBlaze interfaces can be setup as secure or non-secure and use the
AxPROT signals.

System Protection Units
The Arm TrustZone technology tags the security level of each AXI transaction as described in
more detail in TrustZone. The XMPU and the XPPU verify that a specific system master is
explicitly allowed to access an address by assigning specific addresses ranges (memories and
peripherals) to either the secure world or non-secure world TrustZone tags.

XMPU

Fundamental to any secure or functionally safe system is the isolation of memory. The XMPU
gives the user the ability to partition user-defined regions of memory and allocate them to
specific isolated subsystems. Figure 3 shows a functional diagram of the XMPU.

1. It is up to the user to design cores that make use of these bits.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=8

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 9
www.xilinx.com

There are six XMPUs at the input to the DDRC interface and one XMPU at the input to the OCM.
There is also an XMPU at the input of the FPD interconnect for protection of FPD controllers
(SATA and PCIe®). The XMPU configuration generated by the Vivado tools is exported to the
first stage boot loader (FSBL). It is the FSBL that sets up the isolation configuration registers. As
an additional safety or security check, these registers can be read to verify their state. As part of
the Zynq UltraScale+ MPSoC functional safety software test library (STL), Xilinx provides the
capability to run self tests on the XMPU. These libraries are located in the Functional Safety
Lounge(1). Each XMPU protects up to 16 regions, with regions aligned on either 1 MB (DDR) or
4 KB (OCM) boundaries. For each region, the memory protection is based on two checks:

• The address of the transaction is within the region defined by START_ADDR and
END_ADDR.

• The master ID of the incoming transaction is allowed.

While it is possible to reconfigure these registers at runtime, it is not recommended for safe or
secure systems. Such systems typically require these registers to be locked. This is
recommended for the XMPU, but not for the XPPU. A conflict exists where locking the XPPU
configuration prevents any interrupts from it from being cleared (the register to clear interrupts
is also locked). Due to this conflict, the reference design added an additional subsystem, the

X-Ref Target - Figure 3

Figure 3: XMPU Functionality

OCM Memory

OCM Switch

Offset address +
[BASE] register

APB

AXI

Address
Poison

AXI

FPD_XMPU

IOP Switch
(to Peripheral Slaves)

DECERR

DDR {0:5}

Original
Address

AxUser [Poison]
signal

0: LPD AXI
1: CCI AXI
2: CCI AXI
3: HP0, DisplayPort
4: HP1, HP2
5: HP3, FPD_DMA

AXI

Attribute
Poison

AXI

OCM_XMPU and
DDR_XMPUx

FPD_Sink PSLVERR

IRQ

PSLVERR Invalid Reg

AXI

Poisoned Trans
or Invalid Reg

APB

IRQ

PSLVERR Invalid Reg

Poisoned Trans
or Invalid Reg

X22784-042519

1. The Xilinx Functional Safety Lounge is a paid access repository for Functional Safety documentation and libraries. The no-fee
landing site is www.xilinx.com/applications/industrial/functional-safety.html.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/applications/industrial/functional-safety.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=9

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 10
www.xilinx.com

PMU, to be the XPPU master. In this example, the XPPU configuration is not locked but is only
writable by the PMU subsystem. Framework code for the PMU is provided as an interrupt
handler. This framework allows for additional code to be added based upon the user’s error
reaction requirements.

Note: This conflict only exists for the XPPU. The XMPU can be locked without affecting the ability to clear
an interrupt.

The START_ADDR, END_ADDR, and master ID (MID) values are defined in the system setup and
readable in the XMPU register space. While the APU has a single master ID, the RPU has two
possibilities. If configured in lock-step mode, a single R5 master ID is used. If configured in
split mode, each R5 has its own master ID. If an access violates any of the protection criteria, the
XMPU prevents this access by applying a poisoning method.

If an illegal transaction is attempted, the XMPU asserts AxUser[10] but the transaction is passed
to the memory controller. This mechanism is referred to as poison by attribute. The transaction
is gated by the end point, not the XMPU itself. In the case of the DDR, the user has choices of
how to deal with the invalid transaction (none of which actually allow it). While there is a second
way of poisoning the transaction (by address), poisoning by attribute is recommended for the
XMPU.

Optionally, the XMPU can generate an interrupt such that an error reaction can be included in
the interrupt handler. See the System Protection Unit chapter in the Zynq UltraScale+ MPSoC
Technical Reference Manual (UG1085) [Ref 2] for additional information on the XMPU.

XPPU

The XPPU allows for protecting peripherals, message buffers, inter-processor interrupts (IPI)
and communications, as well as Quad SPI flash memory. It is best deployed at the system choke
points where all traffic to the protected objects will pass through, thus maximizing the
protection coverage. In comparison with the XMPU, the XPPU uses finer grained address
matching and provides more address apertures. Additionally, where the XMPU discourages the
use of address poisoning in lieu of attribute poisoning, the XPPU only allows address poisoning.
The address poisoning approach is shown in Figure 3 on the left side. The violating access is
deviated to a certain memory area that is reserved for this purpose. A master ID list is used to
define the masters that are allowed to access peripherals. Eight of the 20 master IDs are
predefined. An aperture permission list (APL) specifies permissions on peripheral addresses
that masters can access. Permissions are based on master ID.

A functional diagram of the XPPU is shown in Figure 4.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=10

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 11
www.xilinx.com

Both the Zynq UltraScale+ MPSoC Processing System LogiCORE IP Product Guide (PG201) [Ref 3]
and Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 2] provide additional
information on the master ID and aperture permission lists, permission checking, and error
handling.

Memory Management and Protection Units

In addition to the Xilinx Protection Units, the Arm Cortex R5 and A53 systems have typical
memory protection (memory protection unit and memory management unit, respectively)
allowing for additional access control within each processor complex. A highlight is given here
but more detail can be found in the respective technical reference manuals.

The memory protection unit (MPU) of the Arm Cortex R5 allows for creating 0, 12, or 16
memory regions. This allows for individual protection attributes to be set for each region. Each
region is defined by the base address and size. Overlapping of regions is allowed where sharing
a specific address space is desired. Additionally, the memory management unit (MMU) in the
ARMv8 architecture supports two-stage address translation, which allows the users’ OS and
hypervisor to have their own translation stages.

Each Arm Cortex A53 allows for more granular region definition. Rather than specify the
number of regions, it specifies the granularity of a region (4 KB or 64 KB). Each address region
is assigned its own ID (ASID).

The Xilinx system memory management unit (SMMU) extends the MMU capability of the
processor cores into the rest of the Zynq UltraScale+ MPSoC architecture for any other
master/DMA capable devices using six translation buffer units (TBUs). A high-level usage
diagram can be seen in Figure 5.

X-Ref Target - Figure 4

Figure 4: XPPU Functional Diagram

APB
Interface

AxADDR
AxUSER
AxPROT

APB

Control
Registers

Permission
RAM

Address
Decode

ADDR

ID
Permission

CheckMatch

Data

Aperture
Info

poison

Master ID
Lookup

AXI
AxADDR
AxUSER
AxPROT

AXI

X22786-042519

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=11

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 12
www.xilinx.com

AXI Isolation Block
Originally intended to isolate a master from its slave in preparation for powering down, the AXI
isolation blocks (AIBs) can be used to enhance isolation. These blocks are spread throughout
the entire PS of the device. They can be configured to block undesired accesses and generate
a SLVERR response when an illegal access is attempted. The control registers for the AIB can be
protected by the XPPU.

Exception Levels
The ARMv8 architecture allows for setting up four exception levels (EL0 – EL3) allowing for
additional access control within the Arm A53 complex. These exception levels are best
described as follows:

• EL0: Lowest software execution privilege (Sometimes referred to as the unprivileged
execution level). User applications typically run at this level.

• EL1: First true “privileged” level. Operating systems typically run at this level. This level
provides basic support for the non-secure state.

• EL2: Higher level of privilege adding support for processor virtualization. Hypervisors
typically run at this level. This level provides support for processor virtualization.

• EL3: Most privileged level adding support for a secure state. Secure monitor code runs at
this level. For the Zynq UltraScale+ MPSoC, this is the Arm Trusted Firmware (ATF).

X-Ref Target - Figure 5

Figure 5: Example of SMMU System Locations

Cache Coherent Interconnect (CCI)

DDR Memory Subsystem

Cache
Coherent
Master 1

Cache
Coherent
Master n

Interconnect

Non-
coherent
Master 1

Non-
coherent
Master n

Interconnect

SMMU TBU
Stage 1

SMMU TBU
Stages 1

and 2

SMMU TBU
Stages 1

and 2

MMU Stage
1 and 2

L1 Cache

GPU
Masters

MMU
Stage 1
Cache

Coherent Interconnect

L2 Cache

APU MPCore
CPU 0

CPU 1
CPU 2

CPU 3
CPUx

X22407-022719

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=12

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 13
www.xilinx.com

A graphical depiction of this structure (along with TrustZone) is shown in Figure 6.

Interprocessor Communication
Most systems, even with isolation, require some sort of communication between subsystems.
As an example, the APU subsystem can support an Ethernet interface that receives and
transmits data from or to a server for both the APU and RPU subsystems. The RPU subsystem
can generate log files and transmit them to the APU subsystem, which then transfers them to
the server using Ethernet. Similarly, a server can send commands to the RPU subsystem using
the APU subsystem Ethernet, which then uses the inter-subsystem communication mechanism
to transfer the command to the RPU subsystem.

The Zynq UltraScale+ MPSoC provides IPI buffers to support interprocessor communication
between the APU, RPU, and PMU subsystems. The exchange between the APU, RPU, and PMU
subsystems uses 32-byte request and response buffers. Figure 7 shows one specific example
using interprocessor communication between the APU and RPU subsystems using IPI in the
reference design. This is just one example using IPI. Communication can be initiated by all
participants of the IPI system. See the Zynq UltraScale+ MPSoC Technical Reference Manual
(UG1085) [Ref 2] for more information on using IPI.

X-Ref Target - Figure 6

Figure 6: Armv8 Exception Levels with TrustZone

Non-secure State

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

Supervisor (Guest OS1)

AArch64 or AArch32

Supervisor (Guest OS2)

AArch64 or AArch32

Hypervisor Mode

AArch64 or AArch32

EL0

EL1

EL2

SVC

HVC

SMC

Secure Monitor Mode

Supervisor (Secure OS)

AArch64 or AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

EL3

Secure State

X22408-022719

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=13

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 14
www.xilinx.com

The protocol for the message exchange is for the requesting subsystem (APU) to trigger an
interrupt to the receiving subsystem (RPU). The interrupt triggering subsystem fills the data in
the IPI channel’s request buffer. The RPU interrupt receiving master reads the content of the
request buffer. If the interrupt receiving master needs to provide response data to the interrupt
triggering master, the response buffer is used. The response buffer is read by the triggering
master (APU).

The Zynq UltraScale+ MPSoC provides eleven IPI channels for inter-subsystem communication.
Out of the eleven, channels 3 – 6 are dedicated to the PMU, and the remaining are configurable
as masters. The inter-subsystem communication is supported in hardware and uses the xipipsu
device driver. Each channel provides six registers used to trigger the interrupt and check status.
Figure 8 shows the hardware support for interprocessor interrupts in the Vivado design suite.
For the purposes of this lab, the default settings will be used.

Note: Care should be taken when configuring the IPI channels when using Linux. The Arm Trusted
Firmware (ATF) expects a specific configuration. Changing the default settings may cause issues with the
default ATF configuration.

X-Ref Target - Figure 7

Figure 7: Interprocessor Communication Using IPI

RPU Subsystem

A53 R5-0

APU Subsystem

Response

Request

Response

Request

Write
Read Write

Read

Write

Read

Read

Write

IPI Registers

X22421-030119

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=14

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 15
www.xilinx.com

Handling Interrupts with the PMU
The XMPU and XPPU optionally generate an interrupt when there is a memory or peripheral
access violation. The system can be set up so that the interrupt is connected to either the APU
GIC, RPU GIC, or AXI INTC, allowing an interrupt handler to be implemented by the APU, RPU,
or PMU.

The error reaction in the interrupt handler is defined by the system requirements. For example,
in one system, the reaction might be to power down the system and require intervention to
restart the system. In another system, in which availability is a prevalent requirement, the
system might remain functional. In this case, the error reaction might be to log the error, notify
a server for possible scheduled maintenance, and continue operation.

Figure 9 shows the PMU FW code for handling an error. The file shown is xpfw_xpu.c and can
be found under the BSP tree in Vitis. The message (shown later) is printed from the
XPfw_Xpu_IntrHandler function. This handler can be modified to implement the required error
reaction.

X-Ref Target - Figure 8

Figure 8: Vivado Design Suite IPI Communication Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=15

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 16
www.xilinx.com

Fault Injection/Application Fault Error Handling
For functional safety and security systems, it is not sufficient to add safe or secure features
without testing that such features work. For functional features, this is straight forward (if it
runs it works). However, for security or safety related features, system functionality is proof of
nothing because such features might only be noticeable in the presence of a fault. Because it is
not practical to wait for a fault to happen, it is typically necessary to inject faults into the
system. In the example design, it will be necessary to prove isolation by attempting to violate it.

To verify isolation between multiple isolation regions, faults will be injected by writing code to
perform illegal memory and peripheral accesses through TZ protected XMPU and XPPU gates,
and verifying that such accesses are blocked and notification is given to the system. Additional
symbols will be added to the PMU code to enable detailed error messaging while additional
error handling routines will be added to the application code to allow it to run through an
isolated violation. However, these symbols are optional and only for outputting error messages
to the UARTs. They are not required or even desired in a real-world system.

To allow the application that is performing the illegal reads and writes, it is necessary to
construct an error handler to deal with it. This allows the application to run through the fault
rather than end abruptly. How a system handles interrupts is entirely up to the developer and
the system requirements for interrupt handling. This example is best used for demonstration
and as a placeholder for the actual user code.

X-Ref Target - Figure 9

Figure 9: PMU FW Code for Error Handling

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=16

Isolation Tools

XAPP1320 (v4.0) July 21, 2021 17
www.xilinx.com

The example application running in the APU domain generates two types of interrupts: sync and
error aborts. The actual error type depends on the corresponding transaction type (read or
write). Each must have their own handler. The error type depends on the transaction type: read
or write. The requirements for two types of errors comes from the Arm architecture itself, not
the Xilinx-specific implementation. Figure 10 shows the error handler code for both. For sync
aborts, the code sets a Boolean variable, letting the main routine know an abort happened. It
then steps forward one instruction to prevent a loop when returning to the same offending
statement. Error aborts simply log that an abort happened. The application determines if the
statement “passed” or “failed” depending upon the value of this Boolean. Figure 11 shows the
code to register the custom handlers. A similar handler for the RPU system was also generated
but it only required the sync error handler because only one interrupt type is generated in that
system. These handlers are for demonstration purposes and not what would be expected in a
real-world system. How to handle such errors is up to the developer and the requirements of
the system being developed.
X-Ref Target - Figure 10

Figure 10: Application Interrupt Handlers
X-Ref Target - Figure 11

Figure 11: Application Interrupt Handler Registration

X22388-022819

X22389-022719

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=17

Known Limitations to Isolation

XAPP1320 (v4.0) July 21, 2021 18
www.xilinx.com

Known Limitations to Isolation
There are some limitations to isolation that the user must be aware of. These limitations are
documented here.

A-53 cores
There are use cases where it is desirable to physically isolate each core of the quad A-53
processor complex. However, unlike the cores of the R-5 processor complex, each A53 core has
the same master ID. This makes it impossible to use features like XMPU and XPPU to isolate
them. If such isolation is desired, it must to be implemented at a software level, using either a
TEE (Trusted Execution Environment) or a hypervisor.

CCI-400
While useful to keep transactions coherent, it must be pointed out that the CCI-400 IP is
capable of mastering its own transactions. This creates a potential conflict as it generates these
transactions using the same master ID as the R5_0 processor core. This can result in isolation
errors. The Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 2] recommends
adding the R5_0 to the access list of the memory region whose transactions are being mastered
by the CCI-400. While this addresses the access error, it is not typically practical in an isolation
use case. Two alternatives options can resolve this issue:

1. Move the R5_0 application over to the R5_1 core and keep R5_0 either unused or capable of
being in the same isolation region as the memory region whose transactions are driven by
the CCI-400.

2. Disable Cache Coherency for the region being protected by an XMPU.

XPPU Configuration Locking
There is no practical way to lock the XPPU as there is with the XMPU. Protection of the XPPU
configuration is best achieved by placing the XPPU configuration register in the PMU Firmware
isolation system and only that system.

Isolation Reference Design
The first step in developing a system on the Zynq UltraScale+ MPSoC is defining the
functionality in terms of the architecture. This means defining the tasks performed in the APU,
RPU, and PL. In most systems, there is a joint requirement that the subsystems be isolated to
perform their tasks without interference.

It is quite common for subsystems to require some level of communication between them. To
support this and maintain isolation between them, there are two common methods:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=18

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 19
www.xilinx.com

inter-processor interrupt (IPI) and shared memory. IPI relies on a common message buffer and
integrated interrupt system while shared memory creates a partition of memory shared
between the two subsystems. In IPI, the Zynq UltraScale+ MPSoC architecture handles the
notification of the messages while shared memory requires the user to create a similar
notification architecture. Each method has its merits depending upon user requirements.

In some cases, there are reasons for subsystems to share resources. Device configuration is a
good example where non-volatile memory (NVM) stores the boot image for all subsystems,
loaded at power-up. Another example is the DDR controller (DDRC). While it is possible to add
an AXI DDRC in the PL, this increases the resources used, which increases the cost. The isolation
is increased, but the effect of using the added DDRC resources on reliability is less clear.

When using development boards such as the ZCU102 or UltraZed-EG, there might be
constraints in the resources used by each subsystem. The multiplexed I/O (MIO) and device
board interfaces might present resource limitations that do not exist on a custom board. This
reference design specifically targets the ZCU102 development board.

Software Patch Requirements (2019.1/2019.2)
There is an issue discovered in 2019.1 and 2019.2 where the warm restart function conflicts with
isolation. To support warm restart, the PMU copies the FSBL to DDR. This causes two key
conflicts:

• It requires the PMU to read OCM in this reference design, to which it does not have access.
• Violates security tenets if authentication and/or encryption are used for the FSBL.

° Copies the FSBL outside of the chip in DDR without encrypting it.

° Copies the hash of the FSBL for integrity but stores that hash outside in DDR as well.

For more information, see AR73475. The following patches are required for this lab:

• 0001-sw_apps-zynqmp_fsbl-Fix-logic-in-writing-FSBL-runnin.patch
• 0002-sw_apps-zynqmp_pmufw-Make-FSBL-copy-as-user-option.patch

When installed, open the xpfw_config.h file and change the value of
USE_DDR_FOR_APU_RESTART_VAL from (1) to (0) as shown in Figure 12. While it is possible to
make this change on a project by project basis, failure to disable this option (which is enabled
by default) can cause isolation errors in most isolated systems. It is recommended to disable it
in the patch repository rather than in each PMU firmware project. The xpfw_config.h file can
be found at <local patch
repository>/embeddedsw/lib/sw_apps/zynqmp_pmufw/src.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/73475.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=19

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 20
www.xilinx.com

Note: For more information on installing patches, see Answer Record 72710. While a patch for 2019.2 is
shown previously, this lab targets 2021.1. Vitis 2020.1 and beyond has this patch built in so user action for
this lab is not required.

X-Ref Target - Figure 12

Figure 12: Altered USE_DDR_FOR_APU_RESTART_VAL Option in 2019.1/2019.2 Patch
X23827-041320

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/72710.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=20

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 21
www.xilinx.com

System Overview
Figure 13 shows the reference system, which consists of three subsystems. In this design, the
APU subsystem is considered a non-secure system (colored green) while the PMU and RPU
subsystems are both considered secure systems (colored red). Where non-secure regions are
shared with secure masters they are colored both red and green.

The reference system partitions the PS as follows:

• The DDR is split into three regions. The APU subsystem owns addresses 0x0000_0000 to
0x01FF_FFFF and shares 0x6000_0000 to 0x600F_FFFF with the RPU subsystem. The
region 0x4000_0000 to 0x40FF_FFFF is owned by the RPU subsystem.

• OCM is split in two regions. Address range 0xFFFC_0000 to 0xFFFC_0000 is owned by
the RPU subsystem, while the remaining addresses (0xFFFF_0000 to 0xFFFF_FFFF) are
shared between the APU and RPU subsystems.

• The R5 owns the entire R5_0_ATCM region.
• The APU subsystem owns TTC0 and SWDT0, while sharing GPIO with the RPU subsystem

and UART0 with the PMU subsystem. The RPU subsystem owns TTC1, SWDT1, and I2C1, and
shares UART1 with the PMU subsystem.

X-Ref Target - Figure 13

Figure 13: Isolation Reference Design

UART_0

TTC_0

GPIO

SDWT_0

UART_1

TTC_1

SDWT_1

I2C_1

PMU Subsystem

RPU SubsystemAPU Subsystem

OCMDDR
0x0000_0000

0x01FF_FFFF

0x4000_0000

0x40FF_FFFF

0x6000_0000

0x600F_FFFF

0xFFFC_0000

0xFFFF_0000

0xFFFF_FFFF

R5_0 ATCM

0xFFE0_0000

0xFFE0_FFFF

Secure Subsystem

Non-secure Subsystem

Non-secure Subsystem (shared with Secure Subsystem)

CRF_APB
CRL_APB

RPU
EFUSE

IOU_SLCR

X22375-070420

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=21

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 22
www.xilinx.com

A more detailed address map is shown in Table 1.

Table 1: System Address Map
APU Subsystem

A53-0 NSW
OCM 0xFFFF_0000 64 KB NSW R/W

DDR_LOW 0x0000_0000 32 MB NSW R/W
DDR_LOW 0x6000_0000 1 MB NSW R/W

UART0 NSW R/W
GPIO NSW R/W

SWDT0 NSW R/W
TTC0 NSW R/W

RPU Subsystem
R5-0 SW
OCM 0xFFFC_0000 192 KB SW R/W
OCM 0xFFFF_0000 64 KB NSW R/W

DDR_LOW 0x4000_0000 16 MB SW R/W
DDR_LOW 0x6000_0000 1 MB NSW R/W

R5_0_ATCM_GLOBAL SW R/W
SWDT1 SW R/W
UART1 SW R/W
TTC1 SW R/W
I2C1 SW R/W
GPIO NSW R/W

CRF_APB SW R/W
CRL_APB SW R/W

RPU SW R/W
EFUSE SW R/W

IOU_SLCR SW R/W
PMU Subsystem

PMU SW
UART0 NSW R/W
UART1 SW R/W

CRF_APB SW R/W
DDR_XMPU0_CFG SW R/W
DDR_XMPU1_CFG SW R/W
DDR_XMPU2_CFG SW R/W
DDR_XMPU3_CFG SW R/W
DDR_XMPU4_CFG SW R/W

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=22

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 23
www.xilinx.com

For secure and safe systems using XMPU and XPPU for isolation, it is desirable to protect their
configuration to prevent errant software or an adversary from modifying these settings and
compromising the intended isolation. This can be done with either of the following:

• The psu_protection_lock funtion in the PMU Firmware can be called.
• The XMPU lock bit can be set.
• The FPD_XMPU protection can be used.

Since the XPPU cannot be locked as referenced in XPPU Configuration Locking section, it is
best, as demonstrated in the reference design, to add the XPPU configuration registers to a
secure master, such as the PMU.

Building The Hardware Platform
Isolation in the UltraScale+ MPSoC family is rooted in hardware. As such, the configuration of
the hardware is the first step in building the isolated system. The following steps outline how to
set up the hardware to create three isolated subsystems and use the XPMU, XPPU, and
TrustZone hardware to isolate each subsystem. The first step is to create the base hardware
platform to build upon.

After starting the Vivado tools, click Create Project in the Quick Start page to open the New
Project wizard. Use the information below to make selections in each of the wizard screens:

• Create a New Vivado Project

No options. Select Next.

• Project Name

Project name: ps_isolation_lab

Project location: c:/temp/xapp1320_2021.1/ (referred to later as
<your lab location>)

Create project subdirectory: checked

DDR_XMPU5_CFG SW R/W
FPD_SLCR SW R/W

FPD_XMPU_CFG SW R/W
LPD_XPPU SW R/W
CRL_APB SW R/W

EFUSE SW R/W
IOU_SLCR SW R/W
LPD_SLCR SW R/W

OCM_XMPU_CFG SW R/W
RPU SW R/W

Table 1: System Address Map (Cont’d)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=23

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 24
www.xilinx.com

Select Next.

• Project Type

Check Example Project.

• Select Project Template

Select Zynq UltraScale+ MPSoC Design Presets, and then select Next.

• Default board or part

Select Zynq UltraScale+ ZCU102 Evaluation Board, and then select Next.

• Select Design Preset

Check Processing System and Programmable Logic (PS+PL) with GPIO and Block
RAM, and then select Next.

• New Project Summary

No options. Select Finish.

Afterwards, your diagram will look like Figure 14.

Now that a base hardware platform has been generated it is necessary to refine that definition
for isolation.

1. Double-click the Zynq UltraScale+ IP (zynq_ultra_ps_e_0 instance).

X-Ref Target - Figure 14

Figure 14: Initial IP Integrator Diagram

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=24

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 25
www.xilinx.com

2. Check Switch To Advanced Mode in the Page Navigator of the new pop-up window.
3. Select Isolation Configuration in the Page Navigator.
4. Check Enable Isolation at the top of the Isolation Configuration page.

The Secure Subsystem is a baseline subsystem for secure booting. The tools create this system
as a baseline for you to start with. For ease of documentation, this reference design builds its
own system. However, you can start with the Secure Subsystem to save time.

Note: It is not currently possible to change the name of the pre-built Secure Subsystem.
5. Delete the Secure Subsystem by selecting it, right-clicking and selecting Delete from the

drop-down menu.
6. Create two additional isolation subsystems (RPU and APU):

a. Click the button to Add New Subsystem. Type add RPU and press Enter.
b. Click the button to Add New Subsystem. Type add APU and press Enter.

When complete, your window should look like Figure 15.

IMPORTANT: Do not select OK yet. There are more steps that have to be completed before that.

Before customizing the isolation systems, it is important to understand the three check boxes
shown in Figure 15 as they have significant ramifications for isolated systems:

Enable Isolation

This is the key enabling function for isolation. You must check this for enabling an isolation
setup in the reference design.

X-Ref Target - Figure 15

Figure 15: Re-customize IP Window: Base Isolation Subsystems

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=25

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 26
www.xilinx.com

Enable Secure Debug

Checking Enable Secure Debug adds the DAP and CoreSight components as masters in all
subsystems. This can also be achieved in each subsystem by adding one or both as masters to
that subsystem. This option does not actually add the components into your system. This
reference design keeps this option checked by default as it is expected to be used as a training
guide for using isolation and debug. For fielded systems, however, care must be taken on the
use of debug logic and debug access points. It is recommended that such components be under
the control of the most secure (trusted) subsystem in your design.

Lock Unused Memory

Checking Enable Secure Debug adds the DAP and CoreSight components as masters in all the
subsystems. This can also be achieved in each subsystem by adding one or both as masters to
that subsystem. This option does not actually add the components into your system. However,
be mindful that there are operations in a system that are not always obvious to you and could
be impacted by this parameter. For example, when loading authenticated and/or encrypted
images after boot (a partial bitfile), the system must access the CSU, eFuse, and potentially
BBRAM register space. If these are not explicitly added to the secure subsystem performing this
action, then it is blocked by the setting of the Lock Unused Memory option. Use of this option
for this reference design is not tested and is therefore assumed to be unchecked.

It is now necessary to add masters to each isolation subsystem.

1. Right-click APU, select Add Master, and search/select APU.
2. Right-click RPU, select Add Master and search/select RPU0.

° Accept the default secure setting.

Now that each subsystem has a master, it is necessary to assign the slave components to the
APU subsystem.

1. Add slave peripherals to the APU subsystem:
a. Right-click APU to Add Slaves and search/select GPIO keeping NonSecure TZ setting.
Note: This is shared with the RPU subsystem.
b. Right-click APU to Add Slaves and search/select SWDT0 keeping NonSecure TZ

setting.
c. Right-click APU to Add Slaves and search/select TTC0 keeping NonSecure TZ setting.
d. Right-click APU to Add Slaves and search/select UART0 keeping NonSecure TZ setting.

2. Add slave memory to the APU subsystem:
a. Right-click APU to Add Slave and search/select OCM:

- Start address: 0xFFFF0000
- Size: 64 KB
- TZ settings: NonSecure

Note: This is shared with the RPU subsystem.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=26

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 27
www.xilinx.com

b. Right-click APU to Add Slave and search/select DDR_LOW:
- Start address: 0x0
- Size: 32 MB
- TZ settings: NonSecure

c. Right-click APU to Add Slave and search/select DDR_LOW:
- Start address: 0x60000000
- Size: 1 MB
- TZ settings: NonSecure

Note: This is shared with the RPU subsystem.

With the APU subsystem fully populated it is now necessary to assign the slave components to
the RPU subsystem.

Note: When building this subsystem some resources might appear in red when initially added. This is
due to a temporary security conflict which gets resolved when the subsystem is fully defined. There
should be no conflicts (no red) when completed.
1. Add slave peripherals to the RPU subsystem:

a. Right-click RPU to Add Slaves and search/select GPIO keeping NonSecure TZ setting.
Note: This is shared with the APU subsystem.
b. Right-click RPU to Add Slaves and search/select I2C1 selecting Secure TZ setting.
c. Right-click RPU to Add Slaves and search/select SWDT1 selecting Secure TZ setting.
d. Right-click RPU to Add Slaves and search/select TTC1 selecting Secure TZ setting.
e. Right-click RPU to Add Slaves and search/select UART1 selecting Secure TZ setting.

2. Add slave registers to the RPU subsystem (Necessary because FSBL executes on RPU):
a. Right-click RPU to Add Slaves and search/select CRF_APB selecting Secure TZ setting.
b. Right-click RPU to Add Slaves and search/select CRL_APB selecting Secure TZ setting.
c. Right-click RPU to Add Slaves and search/select EFUSE selecting Secure TZ setting.
d. Right-click RPU to Add Slaves and search/select IOU_SLCR selecting Secure TZ setting.
e. Right-click RPU to Add Slaves and search/select RPU selecting Secure TZ setting.

3. Add slave memory to the RPU subsystem:
a. Right-click RPU to Add Slave and search/select OCM:

- Start address: 0xFFFC0000
- Size: 192 KB
- TZ settings: Secure

b. Right-click RPU to Add Slave and search/select OCM:
- Start address: 0xFFFF0000

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=27

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 28
www.xilinx.com

- Size: 64 KB
- TZ settings: NonSecure
Note: This is shared with the APU subsystem.

c. Right-click RPU to Add Slave and search/select DDR_LOW:
- Start address: 0x40000000
- Size: 16 MB
- TZ settings: Secure

d. Right-click RPU to Add Slave and search/select DDR_LOW:
- Start address: 0x60000000
- Size: 1 MB
- TZ settings: NonSecure

e. Right-click RPU to Add Slave and search/select R5_0_ATCM_GLOBAL:
- Start address: <default>
- Size: <default>
- TZ settings: Secure

At this stage the APU and RPU subsystems have been fully populated. However, the PMU
subsystem needs a few modifications in order for the error messaging to reach the outside
world.

1. Add slave peripherals to the PMU Firmware subsystem:
a. Right-click PMU Firmware to Add Slaves and search/select UART0 keeping NonSecure

TZ setting.
Note: This is shared with the APU subsystem.
b. Right-click PMU Firmware to Add Slaves and search/select UART1 keeping Secure TZ

setting.
Note: This is shared with the RPU subsystem.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=28

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 29
www.xilinx.com

2. The Isolation Configuration window should look like Figure 16, Figure 17, and Figure 18.
X-Ref Target - Figure 16

Figure 16: Re-customize IP Window: APU

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=29

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 30
www.xilinx.com

X-Ref Target - Figure 17

Figure 17: Re-customize IP Window: PMU Firmware

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=30

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 31
www.xilinx.com

3. Select OK.

The Vivado tools automatically generated the address map for the AXI IP in the sample design.
However, because we have now changed the platform due to isolation restrictions, it is
necessary to re-map that IP.

1. In the Address Editor tab of the Block Design window, simultaneously select both
axi_bram_ctrl_0 and axi_gpio_0 segments.
a. Right-click and select Unassign.

2. In the Address Editor, select the Data segment.
a. Right-click and select Assign All and then select OK.

Note: The PL peripherals axi_bram_ctrl_0 and axi_gpi_0 do not support the protection mechanism and
are accessible by all AXI masters.

Now that a platform design has been created, it is necessary to implement the design to
generate all the necessary hardware files for Vitis.

1. In the Flow Navigator window, click Generate Bitstream and select Yes.
a. Click Save if requested.

X-Ref Target - Figure 18

Figure 18: Re-customize IP Window: RPU

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=31

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 32
www.xilinx.com

2. Click OK in the Launch Runs popup window.
a. This process takes several minutes depending on the capability of the machine it is

running on.
3. Click Cancel in the Bitstream Generation Completed popup window. It is not necessary to

open the implemented design.

It is now necessary to export the newly created hardware platform and launch Vitis.

1. Select File > Export > Export Hardware to export the hardware platform.
2. Export Hardware Platform

Select Next.

3. Output

Check Include bitstream.

Select Next.

4. Files

XSA file name: xapp1320_zcu102_hw

Export to: <your lab location>/ps_isolation_lab/hardwarePlatform/

Select Next.

5. Exporting Hardware Platform

No options. Select Finish.

6. Export Hardware Platform

Select Next.

7. Select Tools > Launch Vitis IDE.
a. Vitis IDE Launcher: change workspace to

<your lab location>/softwareDevelopment
b. Select Launch.

Creating Demonstration Software
This section describes how to use Vitis to create software that runs on the isolated system
created in the previous section. To test the features previously discussed, five software
applications will be created. These applications and their functions are listed in Table 2.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=32

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 33
www.xilinx.com

Because this lab runs multiple applications simultaneously, it is necessary to manually modify
the linker scripts for each project. Failure to do so would result in memory collisions. For the
purposes of this lab, however, the linker scripts will be imported along with the code (excluding
FSBL and PMU projects where the defaults are acceptable).

Creating a Platform Project (With Boot Components)

This lab will create a Platform Project in which to host the six applications summarized in Table
2. The boot components (zynqmp_fsbl and zynqmp_pmufw) will be created at the same time
as the creation of the Platform Project. The remaining four user applications will be created
separately as Application Projects immediately following the creation of the Platform Project.

1. Select File > New > Platform Project.

Create new platform project

a. Platform project name: xapp1320_zcu102
2. Select Next.

Platform (Create a new platform from hardware (XSA) tab)

a. Hardware Specification

XSA File: <your lab
location>/ps_isolation_lab/hardwarePlatform/xapp1320_zcu102_hw.xsa

This is the file created and exported by Vivado.

b. Software Specification

Operating System: standalone

Processor: psu_cortexr5_0

c. Boot Components

Check Generate boot components.

Table 2: Software Applications
Application Project Function

zynqmp_pmufw PMU firmware: event handler
zynqmp_fsbl FSBL running on R5_0
rpu-ipi Interprocessor interrupt code running on the R5_0
rpu-fi Fault injection code running on the R5_0
apu-ipi Interprocessor interrupt code running on APU_0
apu-fi Fault injection code running on the APU_0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=33

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 34
www.xilinx.com

Check psu_cortexr5_0.

3. Select Finish.

The previous step created a platform project with the FSBL and PMU Firmware applications.
However, a few customizations are desired for demonstrating the isolation features in this lab.

Because the PMU owns the protection units and will be the primary system level error handler,
it is necessary to add four build variables:

• ENABLE_EM: Enables the error manager of the PMU
• ENABLE_SCHEDULER: Prerequisite for use of ENABLE_EM

Note: See the PMU Firmware Build Flags table in Zynq UltraScale+ MPSoC Software Developer Guide
(UG1137) [Ref 4]).

• XPU_INTR_DEBUG_PRINT_ENABLE: Enhanced debug print information
• XPFW_DEBUG_DETAILED: Enhanced debug print information
Note: These variables are not necessary in a fielded system. They are only necessary for external
messaging and adding more detail to that messaging. In a fielded system, they would not normally be
set.
4. In the Explorer tab, right-click the zynqmp_pmufw folder and select C/C++ Build Settings.

Extra compiler flags: To the end of the field, append the following

-DFSBL_DEBUG_DETAILED -DENABLE_SCHEDULER -DXPU_INTR_DEBUG_PRINT_ENABLE
-DXPFW_DEBUG_DETAILED

5. Select OK.

For details see Figure 19.

6. [Optional] In the Explorer tab, right-click the zynqmp_fsbl folder and select C/C++ Build
Settings.

Extra compiler flags: To the end of the field, append the following:

-DFSBL_DEBUG_DETAILED

Note: This just enables all debug messages from the FSBL during boot. It will not be used for the
demonstration of this lab or in its captured images.

7. Select OK.

X-Ref Target - Figure 19

Figure 19: Configure Build Settings

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=34

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 35
www.xilinx.com

Now it is necessary to add two domains for the software to run in. Two domains will be created:
one for the R5-0 applications and one for the A53-0 applications.

1. Select the + symbol in the xapp1320_zcu102 tab.
a. Domain

Name: domain_psu_cortexr5_0

Display Name: domain_psu_cortexr5_0

OS (accept default): standalone

Version: <cannot be changed>

Processor: select psu_cortexr5_0 from the pulldown

Support Runtimes: (accept default): C/C++

Architecture (accept default): 32-bit

2. Select OK.
3. Select the + symbol in the xapp1320_zcu102 tab.

a. Domain

Name: domain_psu_cortexa53_0

Display Name: domain_psu_cortexa53_0

OS (accept default): standalone

Version: <cannot be changed>

Processor: select psu_cortexa53_0 from the pulldown

Support Runtimes: (accept default): C/C++

Architecture (accept default): 64-bit

4. Select OK.

Now that the base platform project has been created, it is time to start adding System Projects
to it, each with their own Application Projects. This lab will create two systems (FI_SYSTEM and
IPI_SYSTEM) to host their respective Application Projects.

Creating the APU Fault Injection Software Application Project

In applications that are safe, secure, or both, it is not sufficient to set up an isolation system and
assume it will behave as expected. As such, it is necessary to physically test it with running
software. While verification using a debug mode (such as JTAG boot) is useful to bring up the
initial system, it is not sufficient to fully verify or validate the system. Thus, an application has
been created as a base template to demonstrate the ability to prevent illegal reads and writes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=35

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 36
www.xilinx.com

by the APU subsystem to various memories and peripherals. In a real system, this test would
likely be much more exhaustive in its coverage.

Because the actual source code is delivered with this lab, it is necessary to create an empty
project in which the code will be imported.

1. Select File > New > Application Project.

Create New Application Project

2. Select Next.

Platform (Select a platform from repository tab)

a. Hardware Specification

Nothing should be changed here

3. Select Next.

Application project details

a. Application project name: apu-fi
b. Select a system project: +Create new…
c. System project name: FI_SYSTEM
d. Target processor: psu_cortexa53_0

4. Select Next.

Domain

a. Select a domain: domain_psu_cortexa53_0
5. Select Next.

Templates

a. Available Templates: Empty Application(C)
Note: Do not choose the version for C++
Note: The code will be populated in the next steps

6. Select Finish.
7. Right-click the src folder under the FI_SYSTEM/apu-fi folder in the Explorer tab, and select

Import Sources.

File system

a. From directory: <your lab location>/software/c/faultInjectionTest/apu
8. Check apu and then select Finish.
9. Select Yes To All when asked to overwrite.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=36

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 37
www.xilinx.com

Creating the RPU Fault Injection Software Application Project

In applications that are safe, secure, or both, it is not sufficient to set up an isolation system and
assume it will behave as expected. As such, it is necessary to physically test it with running
software. While verification using a debug mode (such as JTAG boot) is useful to bring up the
initial system, it is not sufficient to fully verify or validate the system. Thus, an application has
been created as a base template to demonstrate the ability to prevent illegal reads and writes
by the RPU subsystem to various memories and peripherals. In a real system, this test would
likely be much more exhaustive in its coverage.

Because the actual source code is delivered with this lab, it is necessary to create an empty
project in which the code will be imported.

1. Select File > New > Application Project.

Create New Application Project

2. Select Next.
a. Platform (Select a platform from repository tab)
b. Hardware Specification

Nothing should be changed here

3. Select Next.

Application project details:

a. Application project name: rpu-fi
b. Select a system project: FI_SYSTEM
c. System project name: FI_SYSTEM (greyed out due to above selection)
d. Target processor: psu_cortexr5_0

4. Select Next.

Domain:

a. Select a domain: domain_psu_cortexr5_0
5. Select Next.

Templates:

a. Available Templates: Empty Application(C)
Note: Do not choose the version for C++.
Note: The code will be populated in the next steps.

6. Select Finish.
7. Right-click the src folder under FI_SYSTEM/rpu-fi folder in the Explorer tab and select

Import Sources.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=37

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 38
www.xilinx.com

File system:

a. From the directory: <your lab location>/software/c/ faultInjectionTest
/rpu

8. Check rpu and then select Finish.
9. Select Yes To All when asked to overwrite.

Creating the APU IPI Software Application Project

In an isolated system, there is still a need for one subsystem to communicate with another
subsystem. One method to do this safely and securely is to utilize the IPI system. This is
demonstrated using two projects: the first runs in the APU subsystem, while the second one
runs in the RPU subsystem. This project targets the APU subsystem.

Because the actual source code is delivered with this lab, it is necessary to create an empty
application in which the code will be imported.

1. Select File > New > Application Project.

Create New Application Project

2. Select Next.

Platform (Select a platform from repository tab)

a. Hardware Specification

Nothing should be changed here

3. Select Next.

Application project Details:

a. Application project name: apu-ipi
b. Select a system project: +Create new…
c. System project name: IPI_SYSTEM
d. Target processor: psu_cortexa53_0

4. Select Next.

Domain

a. Select a domain: domain_psu_cortexa53_0
5. Select Next.

Templates

a. Available Templates: Empty Application(C)
Note: Do not choose the version for C++.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=38

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 39
www.xilinx.com

Note: The code will be populated in the next steps.
6. Select Finish.
7. Right-click the src folder under IPI_SYSTEM/apu-ipi folder in the Explorer tab and select

Import Sources.

File system:

a. From directory: <your lab location>/software/c/ipiTest/apu
8. Check apu and then select Finish.
9. Select Yes To All when asked to overwrite.

Creating the RPU IPI Software Application Project

In an isolated system there is still a need for one subsystem to communicate with another
subsystem. One method to do this safely and securely is to utilize the IPI system. This is
demonstrated using two projects: the first runs in the APU subsystem, while the second runs in
the RPU subsystem. This project targets the RPU subsystem.

Because the actual source code is delivered with this lab, it is necessary to create an empty
project in which the code will be imported.

1. Select File > New > Application Project.

Create New Application Project

2. Select Next.

Platform (Select a platform from repository tab)

a. Hardware Specification

Nothing should be changed here.

3. Select Next.

Application project Details:

a. Application project name: rpu-ipi
b. Select a system project: IPI_SYSTEM
c. System project name: IPI_SYSTEM (greyed out due to above selection)
d. Target processor : psu_cortexr5_0

4. Select Next.

Domain

a. Select a domain: domain_psu_cortexr5_0
5. Select Next.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=39

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 40
www.xilinx.com

Templates

a. Available Templates: Empty Application(C)
Note: Do not choose the version for C++.
Note: The code will be populated in the next steps.

6. Select Finish.
7. Right-click the src folder under the FI_SYSTEM/rpu-ipi folder in the Explorer tab and select

Import Sources.

File system

a. From the directory: <your lab location>/software/c/ipiTest/rpu
8. Check rpu and then select Finish.
9. Select Yes To All when asked to overwrite.

Running the Applications
Now that the hardware platform and associated software applications have been built, it is time
to generate the boot images and run the demonstration software.

1. Select Project > Clean.
2. Select Clean all projects, Start a build immediately, and Build the entire workspace

check boxes.
3. Click Clean and wait for it to complete before proceeding to the next steps.

Inter-processor Interrupts

The applications that test IPI functions were built to demonstrate one method for two isolated
subsystems to communicate with each other without the introduction of interference between
the two systems. This build will have software running simultaneously on both the APU and RPU
processors. Each application has two key functions:

• Send a message to the other subsystem
• Output the message received from the other subsystem

To build this system, a BIF file will have to be created with five partitions:

• zynqmp_fsbl: Sets up device isolation and loads all other partitions.
• zynqmp_pmufw: Error handler and messenger.
• xapp1320_zcu102_hw: (PL Bitstream): No real function in this system.
• apu-ipi: Application running on A53_0 that sends and receives messages to the RPU

subsystem.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=40

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 41
www.xilinx.com

• rpu_ipi: Application running on R5_0 that sends and receives messages to the APU
subsystem.

Note: For the following steps, <build path> =
<your lab location>/ps_isolation_lab/softwareDevelopment.
Note: For the following steps, all options not stated should be kept at default value.
1. Select Xilinx > Create Boot Image > Zynq and Zynq Ultrascale.

a. Architecture: Zynq MP
b. Check Create new BIF file
c. Output BIF file path: <build path>/ipi.bif
d. Output path: <build path>/BOOT.bin
e. Continue to next steps without clicking Create Image.

2. Click Add.
a. File path: <build

path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102/b
oot/fsbl.elf

b. Partition Type: bootloader
c. Destination Device: PS
d. Destination CPU: R5 0

3. Click OK.
4. Click Add.

a. File path: <build
path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102/b
oot/pmufw.elf

b. Partition Type: datafile
- Optional: This could be pmu (loaded by bootrom).

c. Destination Device: PS
d. Destination CPU: PMU

5. Click OK.
6. Click Add.

a. File path: <build path>/xapp1320_zcu102/hw/xapp1320_zcu102.bit

b. Partition Type: datafile
c. Destination Device: PL

7. Click OK.
8. Click Add.

a. File path: <build path>/apu-ipi/Debug/apu-ipi.elf

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=41

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 42
www.xilinx.com

b. Partition Type: datafile
c. Destination Device: PS
d. Destination CPU: A53 0
e. Exception Level: EL0
f. Check Enable Trust Zone

9. Click OK.
10. Click Add.

a. File path: <build path>/rpu-ipi/Debug/rpu-ipi.elf
b. Partition Type: datafile
c. Destination Device: PS
d. Destination CPU: R5 0

11. The Create Boot Image window will look like Figure 20.
12. Click Create Image.

Now that you created a BOOT.bin, it can be copied to an SD card to be used to boot the
development board.

1. Copy <build path>/BOOT.bin to an SD card.
2. Connect a USB-UART cable to the UART port of the board and identify the COM ports that

were mapped to it.
3. Set up two serial communication terminals to observe output on UART0 (APU) and UART1

(RPU).

X-Ref Target - Figure 20

Figure 20: IPI System BIF Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=42

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 43
www.xilinx.com

a. Baud rate: 115200
b. Data bits: 8
c. Parity: None
d. Stop bits: 1

4. Set Boot Mode: SD (see Figure 21).
a. MODE[3:0] > 1110 > ON-ON-ON-OFF

5. Insert SD card.
6. Power up the board.
X-Ref Target - Figure 21

Figure 21: ZCU102 Board Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=43

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 44
www.xilinx.com

Figure 22 shows the IPI system output.

APU Fault Injection

For each demonstration, the fault injection is divided into two systems: APU and RPU. The first
system built is the APU. Its function is to:

• Read and write non-secure regions of memory in its own domain.
• Read and write non-secure regions of memory outside its own domain.
• Read and write secure regions of memory (these are, by definition, outside of its domain).
• Read and write undefined regions of memory:

° This is allowed in this lab but such regions can be excluded if desired when setting up
the isolated subsystems, using the check box Lock Unused Memory in the Isolation
Configuration dialog.

• Read non-secure peripherals in its own domain:

° Writes have been intentionally skipped to prevent undesired consequences of blindly
writing to a peripheral.

• Read secure peripherals (these are, by definition, outside of its own domain):

° Writes have been intentionally skipped to prevent undesired consequences of blindly
writing to a peripheral.

X-Ref Target - Figure 22

Figure 22: IPI System Output

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=44

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 45
www.xilinx.com

To build this system, a BIF file will have to be created with four partitions:

• zynqmp_fsbl: Sets up device isolation and loads all other partitions.
• zynqmp_pmufw: Error handler and messenger.
• mpsoc_preset_wrapper (PL Bitstream): No real function in this system.
• apu-fi: Application running on A53_0 that reads and writes to various memories and

peripherals of the system.
• rpu-ipi: Application running on R5_0 that reads and writes to various memories and

peripherals of the system.

To prevent a collision of messages between the FSBL, PMU, and the application, it is necessary
to modify the UART that the PMU will use. Recall that it was given both UART0 and UART1.
Because the APU must output on UART0, the PMU UART must be changed to UART1.

1. In the xapp1320_zcu102 tab, click Board Support Package (under
psu_pmu_0/zynqmp_pmufw) and then click Modify BSP Settings

2. Select standalone.
3. Change the values for stdin and stdout to psu_uart_1 by clicking in that field and selecting

psu_uart_1 from the pull-down menu (see Figure 23).
4. Select OK.

5. Select the xapp1320_zcu102 project in the Explorer Tab and then select from the top menu:
Project > Build Project and wait for it to complete.

Note: For the following steps, <build path> =
<your lab location>/ps_isolation_lab/softwareDevelopment.

Note: For the following steps, all options not stated should be kept at default value.
1. Select Xilinx > Create Boot Image.

a. Architecture: Zynq MP
b. Check Create new BIF file

X-Ref Target - Figure 23

Figure 23: Board Support Package Settings
X22785-042519

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=45

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 46
www.xilinx.com

c. Output BIF file path: <build path>/apu-fi.bif
d. Output path: <build path>/BOOT.bin
e. Continue to next steps without clicking Create Image.

2. Click Add.
a. File path: <build

path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102_b
oot/fsbl.elf

b. Partition Type: bootloader
c. Destination Device: PS
d. Destination CPU: R5 0

3. Click OK.
4. Click Add.

a. File path: <build
path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102_b
oot/pmufw.elf

b. Partition Type: datafile
- Optional: This could be pmu (loaded by bootrom).

c. Destination Device: PS
d. Destination CPU: PMU

5. Click OK.
6. Click Add.

a. File path: <build path>/xapp1320_zcu102/hw/xapp1320_zcu102.bit

b. Partition Type: datafile
c. Destination Device: PL

7. Click OK.
8. Click Add.

a. File path: <build path>/apu-fi/Debug/apu-fi.elf

b. Partition Type: datafile
c. Destination Device: PS
d. Destination CPU: A53 0
e. Exception Level: EL0
f. Check Enable Trust Zone

9. Click OK.
10. The Create Boot Image window looks like Figure 24.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=46

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 47
www.xilinx.com

11. Click Create Image. If asked to overwrite the previously created BIF/BIN file, select OK.

Now that you created a BOOT.bin, it can be copied to an SD card to be used to boot the
development board.

1. Copy <build path>/BOOT.bin to an SD card.
2. Set up two serial communication terminals to observe output on UART0 (APU) and UART1

(PMU).
a. Baud rate: 115200
b. Data bits: 8
c. Parity: None
d. Stop bits: 1

3. Set Boot Mode: SD (see Figure 21).
a. MODE[3:0] > 1110 > ON-ON-ON-OFF

4. Insert SD card.
5. Power up the board.

X-Ref Target - Figure 24

Figure 24: APU Fault Injection System BIF Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=47

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 48
www.xilinx.com

Figure 25 shows the APU fault injection system output.

Note: In Figure 25, the PMU error messages correspond to each Failed attempt of the APU system to
access a restricted address.

RPU Fault Injection

For each demonstration, the fault injection is divided into two systems: APU and RPU. The first
system built was the APU. This section describes how to build the RPU system, whose function
is to:

• Read and write non-secure regions of memory in its own domain.
• Read and write non-secure regions of memory outside its own domain.

X-Ref Target - Figure 25

Figure 25: APU Fault Injection System Output

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=48

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 49
www.xilinx.com

• Read and write secure regions of memory.
• Read and write undefined regions of memory:

° This is allowed in this lab but such regions can be excluded if desired when setting up
the isolated subsystems.

• Read non-secure peripherals in its own domain:

° Writes have been intentionally skipped to prevent undesired consequences of blindly
writing to a peripheral.

• Read secure peripherals (these are, by definition, outside of its own domain):

° Writes have been intentionally skipped to prevent undesired consequences of blindly
writing to a peripheral.

To build this system a BIF file will have to be created with four partitions:

• zynqmp_fsbl: Sets up device isolation and loads all other partitions.
• zynqmp_pmufw: Error handler and messenger.
• mpsoc_preset_wrapper (PL Bitstream): No real function in this system.
• rpu-fi: Application running on R5_0 that reads and writes to various memories and

peripherals of the system.

To prevent a collision of messages between the FSBL, PMU, and application, it is necessary to
modify the UART that the PMU will use. Recall that it was given both UART0 and UART1. Because
the RPU must output on UART1, the PMU UART must be changed to UART0.

1. In the xapp1320_zcu102 tab, double-click Board Support Package (under
psu_pmu_0/zynqmp_pmufw), and then click Modify BSP Settings

2. Select standalone.
3. Change the values for stdin and stdout to psu_uart_0 by clicking in that field, and selecting

psu_uart_0 from the pull-down menu.
4. Select OK.
5. Select the xapp1320_zcu102 project in the Explorer Tab and then select from the top menu:

Project > Build Project and wait for it to complete.
Note: For the following steps, <build path> =
<your lab location>/ps_isolation_lab/softwareDevelopment

Note: For the following steps, all options not stated should be kept at default value.
1. Select Xilinx > Create Boot Image.

a. Architecture: Zynq MP
b. Check Create new BIF file
c. Output BIF file path: <build path>/rpu-fi.bif
d. Output path: <build path>/BOOT.bin

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=49

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 50
www.xilinx.com

e. Continue to next steps without clicking Create Image.
2. Click Add.

a. File path: <build
path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102_b
oot/fsbl.elf

b. Partition Type: bootloader
c. Destination Device: PS
d. Destination CPU: R5 Single

3. Click OK.
4. Click Add.

a. File path: <build
path>/xapp1320_zcu102/export/xapp1320_zcu102/sw/xapp1320_zcu102_b
oot/pmufw.elf

b. Partition Type: datafile
- Optional: This could be pmu (loaded by bootrom).

c. Destination Device: PS
d. Destination CPU: PMU

5. Click OK.
6. Click Add.

a. File path: <build path>/xapp1320_zcu102/hw/xapp1320_zcu102.bit

b. Partition Type: datafile
c. Destination Device: PL

7. Click OK.
8. Click Add.

a. File path: <build path>/rpu-fi/Debug/rpu-fi.elf

b. Partition Type: datafile
c. Destination Device: PS
d. Destination CPU: R5 0

9. Click OK.
10. The Create Boot Image window looks like Figure 26.
11. Click Create Image. If asked to overwrite the previously created BIF/BIN file, select OK.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=50

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 51
www.xilinx.com

Now that a BOOT.bin has been created, it can be copied to an SD card and used to boot the
development board.

1. Copy <build path>/BOOT.bin to an SD card.
2. Set up two serial communication terminals to observe output on UART0 (PMU) and UART1

(RPU).
a. Baud rate: 115200
b. Data bits: 8
c. Parity: None
d. Stop bits: 1

3. Set Boot Mode: SD (see Figure 21).
a. MODE[3:0] > 1110 > ON-ON-ON-OFF

4. Insert SD card.
5. Power up the board.

X-Ref Target - Figure 26

Figure 26: RPU Fault Injection System BIF Setup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=51

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 52
www.xilinx.com

Figure 27 shows the RPU fault injection system output.

Note: In Figure 27, the PMU error messages correspond to each Failed attempt of the RPU system to
access a restricted address. The Failed message is part of the application error handler. The PMU
messages are part of the built-in PMU system error handler.

Secure Boot
Up to this point, the reference design is focused only on isolation. However, many applications
using isolation may require the device to boot securely. In such applications, it is necessary to
verify the authenticity of the boot image prior to its use. Encrypting the boot image is required
if you intend to maintain the confidentiality of your IP.

Because, secure boot is an application note on its own, it is not specifically addressed here.
Rather, all necessary modifications are included in the reference design zip file. The BIFs, keys,

X-Ref Target - Figure 27

Figure 27: RPU Fault Injection System Output

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=52

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 53
www.xilinx.com

and scripts to generate the same boot images previously built without secure boot are included
and demonstrated how to:

• Add Authentication using RSA 4096 and SHA3 for the signature.
• Encrypt using AES-256 with galois counter mode (GCM).
• Use operational key (for good key management practices).
• Use physically unclonable function (PUF) for storing the user's encryption key in black

(encrypted) form.

The following is a sample BIF:

//arch = zynqmp; split = false; format = BIN
the_ROM_image:
{
 // Authentication
[pskfile]../../keys/psk0.pem
[sskfile]../../keys/ssk0.pem
[auth_params]ppk_select = 0

// Encryption
[keysrc_encryption]efuse_blk_key
[bh_key_iv]../../keys/black_iv.txt

// FSBL
[fsbl_config]shutter=0x01000005E, opt_key
[bootloader ,
 destination_cpu = r5-0 ,
 authentication = rsa ,
 spk_select = spk-efuse ,
 spk_id = 0x00 ,
 encryption = aes ,
 aeskeyfile = ../../keys/RedAESkey.nky
]./xappp1320_zcu102/export/xappp1320_zcu102/sw/xappp1320_zcu102/boot/fsbl.elf

// PMU Firmware
[destination_cpu. = pmu ,
authentication = rsa ,

 spk_select = user-efuse ,
 spk_id = 0x001 ,
 encryption = aes ,
 aeskeyfile = ../../keys/pmuFW.nky
]./xappp1320_zcu102/export/xappp1320_zcu102/sw/xappp1320_zcu102/boot/pmufw.elf

// PL Bitfile
[destination_device = pl ,
authentication = rsa ,
spk_select = user-efuse ,
spk_id = 0x002 ,

 encryption = aes ,
 aeskeyfile = ../../keys/pl_bitfile.nky
]./xappp1320_zcu102/export/xappp1320_zcu102/hw/mpsoc_preset_wrapper.bit

// R5-0 Application

// A53-0 Application
[destination_cpu = a53-0 ,

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=53

Isolation Reference Design

XAPP1320 (v4.0) July 21, 2021 54
www.xilinx.com

authentication = rsa ,
spk_select = user-efuse ,
spk_id = 0x004 ,

 encryption = aes ,
 aeskeyfile = ../../keys/a530_hello.nky
]./apu-fi/Debug/apu-fi.elf

}

The addition of secure boot does not require modification of the reference design. It only
modifies the BIF used to generate the final BOOT.BIN file. It does, however, require you to
prepare the following:

• A set of keys for RSA authentication and AES encryption (device and operational keys).
• A device that has the PUF provisioned.
• A device that has RSA key(s) provisioned.
• A device that has the AES key provisioned (BBRAM or EFUSE).

The included README.TXT file describes the directories containing all files both for the base
reference design as well as for the modifications for secure boot.

Reference Design
You can download the reference design files for this application note from the Xilinx website.

Table 3 shows the reference design matrix.

Table 3: Reference Design Matrix
Parameter Description

General
Developer name Steven McNeil
Target devices Zynq UltraScale+ devices
Source code provided Yes
Source code format C
Design uses code and IP from existing Xilinx application note and
reference designs or third party

No

Static code analysis/MISRA C No
Simulation
Functional simulation performed N/A
Timing simulation performed N/A
Test bench used for functional and timing simulations N/A
Test bench format N/A
Simulator software/version used N/A
SPICE/IBIS simulations N/A

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=3acbfd52-f0c9-4182-892b-07be84336a5e;d=xapp1320-isolation-methods.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=54

Conclusion

XAPP1320 (v4.0) July 21, 2021 55
www.xilinx.com

Conclusion
With the large number of processors on the Zynq UltraScale+ devices, designers need to ensure
that code running on any processor or master is unable to interfere with or corrupt memory
regions or peripherals that are not part of the master’s subsystem. This application note
describes how to use the hardware and software mechanisms provided by the XMPU, XPPU, and
TZ for the isolation of subsystems. This functionality complements other isolation methods
such as least privilege, hypervisors, and a trusted execution environment (TEE).

References
1. Zynq UltraScale+ MPSoC Register Reference (UG1087)
2. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
3. Zynq UltraScale+ MPSoC Processing System LogiCORE IP Product Guide (PG201)
4. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
5. Isolate Security-Critical Applications on Zynq UltraScale+ Devices (WP516)
6. Arm TrustZone

Revision History
The following table shows the revision history for this document.

Implementation
Synthesis software tools/versions used N/A
Implementation software tools/versions used N/A
Static timing analysis performed N/A
Hardware Verification
Hardware verified Yes
Hardware platform used for verification ZCU102 evaluation board

Table 3: Reference Design Matrix (Cont’d)

Parameter Description

Date Version Revision
07/21/2021 4.0 Updated for new version of software with complete rewrites for Vivado

software and Vitis software 2021.1.
10/26/2020 3.2 Added a new section: Known Limitations to Isolation.
07/27/2020 3.1 Fixed broken arrows in Figure 13.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp516-security-apps.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/html_docs/registers/ug1087/ug1087-zynq-ultrascale-registers.html
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=55

Please Read: Important Legal Notices

XAPP1320 (v4.0) July 21, 2021 56
www.xilinx.com

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
Copyright
© Copyright 2017-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are
trademarks of PCI-SIG and used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and
MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are the property of their respective owners.

04/30/2020 3.0 • Updated for new version of the software and to address issues from
customer feedback.

• Added Secure Boot and Software Patch section.
06/21/2019 2.0 Updated for new version of the software and to address issues from customer

feedback.
07/26/2017 1.0 Initial Xilinx release.

Date Version Revision

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1320&Title=Isolation%20Methods%20in%20Zynq%20UltraScale+%20MPSoCs&releaseVersion=4.0&docPage=56

	Isolation Methods in Zynq UltraScale+ MPSoCs
	Summary
	Introduction
	Hardware and Software Requirements

	UltraScale MPSoC Architecture
	Isolation Tools
	TrustZone
	System Protection Units
	XMPU
	XPPU
	Memory Management and Protection Units

	AXI Isolation Block
	Exception Levels
	Interprocessor Communication
	Handling Interrupts with the PMU
	Fault Injection/Application Fault Error Handling

	Known Limitations to Isolation
	A-53 cores
	CCI-400
	XPPU Configuration Locking

	Isolation Reference Design
	Software Patch Requirements (2019.1/2019.2)
	System Overview
	Building The Hardware Platform
	Enable Isolation
	Enable Secure Debug
	Lock Unused Memory

	Creating Demonstration Software
	Creating a Platform Project (With Boot Components)
	Creating the APU Fault Injection Software Application Project
	Creating the RPU Fault Injection Software Application Project
	Creating the APU IPI Software Application Project
	Creating the RPU IPI Software Application Project

	Running the Applications
	Inter-processor Interrupts
	APU Fault Injection
	RPU Fault Injection

	Secure Boot
	Reference Design

	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

