
Vivado Design Suite User
Guide

Programming and Debugging

UG908 (v2020.1) June 3, 2020

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG908

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/03/2020 Version 2020.1

General Updates Updated for Vivado 2020.1 release.

Revision History

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 8
Getting Started.. 8
Debug Terminology.. 9

Chapter 2: Vivado Lab Edition..13
Installation... 13
Using the Vivado Lab Edition .. 14
Vivado Lab Edition Project ...16
Programming Features ... 19
Debug Features .. 20

Chapter 3: Generating the Bitstream or Device Image.......................... 21
Changing the Bitstream File Format Settings..22
Changing Device Configuration Bitstream Settings... 22

Chapter 4: Programming the Device... 24
Opening the Hardware Manager.. 24
Opening Hardware Target Connections...24
Connecting to a Hardware Target Using hw_server... 25
Opening a New Hardware Target... 26
Troubleshooting a Hardware Target...28
Associating a Programming File with the Hardware Device..30
Programming the Hardware Device... 30
Closing the Hardware Target...34
Closing a Connection to the Hardware Server.. 35
Reconnecting to a Target Device with a Lower JTAG Clock Frequency35
Connecting to a Server with More Than 32 Devices in a JTAG Chain.................................. 36

Chapter 5: Remote Debugging in Vivado.. 38
Using Vivado Hardware Server to Debug Over Ethernet... 38
Xilinx Virtual Cable (XVC).. 39

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=3

Chapter 6: Programming Configuration Memory Devices....................50
Generate Bitstreams for use with Configuration Memory Devices.................................... 51
Creating a Configuration Memory File... 52
Creating a Configuration Memory File for SPI Dual Quad (x8) Devices............................. 53
Connect to the Hardware Target in Vivado..54
Adding a Configuration Memory Device.. 55
Programming a Configuration Memory Device.. 56
Booting the Device.. 59
Configuration Failures in Master Mode..60

Chapter 7: Advanced Programming Features.. 61
Readback and Verify... 61
Generating Encrypted and Authenticated Files for 7 Series Devices..................................65
Generating Encrypted and Authenticated Files for UltraScale and UltraScale+................68
Programming the AES Key for 7 Series Devices.. 73
Programming the AES Key for UltraScale and UltraScale+ Devices....................................75
eFUSE Register Access and Programming... 77
Cable Support for eFUSE Programming...78
eFUSE Register Access and Programming for 7 Series Devices.. 78
eFUSE Register Access and Programming for UltraScale and UltraScale+ Devices..........84
eFUSE NKZ File... 91
System Monitor .. 93

Chapter 8: Serial Vector Format (SVF) File Programming......................95
Creating an SVF Target... 95
Adding Devices to an SVF Target...98
Adding Configuration Memory Parts to Xilinx Devices.. 103
Operations on the SVF Chain... 105
Writing SVF Files.. 108
Executing SVF Files.. 110

Chapter 9: Debugging the Design... 111
RTL-Level Design Simulation..111
Post-Implemented Design Simulation... 111
In-System Logic Design Debugging..112
In-System Serial I/O Design Debugging.. 112

Chapter 10: In-System Logic Design Debugging Flows......................... 113

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=4

Probing the Design for In-System Debugging.. 113
Using the Netlist Insertion Debug Probing Flow.. 114
HDL Instantiation Debug Probing Flow Overview.. 129
Using the HDL Instantiation Debug Probing Flow..130
Debug Flow in IP Integrator.. 140
Implementing the Design Containing the Debug Cores..143
ILA Core and Timing Considerations.. 143
Debug Cores Clocking Guidelines...144
Adding Vivado Debug Cores to a Partial Reconfiguration Design.................................... 148

Chapter 11: Debugging Logic Designs in Hardware................................149
Using Vivado Logic Analyzer to Debug the Design...149
Connecting to the Hardware Target and Programming the Device.................................150
Vivado Hardware Manager Dashboards ... 151
Setting up the ILA Core to Take a Measurement.. 161
Writing ILA Probes Information.. 188
Reading ILA Probes Information...189
Viewing Captured Data from the ILA Core in the Waveform Viewer................................189
Using Waveform ILA Trigger and Export Features... 189
Saving and Restoring Captured Data from the ILA Core... 192
Enumeration of Probe Values..194
Debugging AXI Interfaces in the Hardware Manager.. 202
Setting Up the VIO Core to Take a Measurement... 211
Viewing the VIO Core Status.. 213
Interacting with VIO Core Output Probes..217
Hardware System Communication Using the JTAG-to-AXI Master Debug Core............. 220
Using Vivado Logic Analyzer in a Lab Environment..223
Description of Hardware Manager Tcl Objects and Commands.......................................224
Using Tcl Commands to Interact with a JTAG-to-AXI Master Core....................................228
Using Tcl Commands to Take an ILA Measurement... 229
Trigger At Startup..230
Memory Calibration Debug... 231
Debugging Partial Reconfigurable Designs in Vivado Hardware Manager.....................232
High Bandwidth Memory (HBM) Monitor..233

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer......... 235
ILA Data and Waveform Relationship...235
Waveform Viewer Layout .. 236
Waveform Viewer Operation .. 237

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=5

Removing Probes from the Waveform...238
Adding Probes to the Waveform...239
Using Waveform ILA Trigger and Export Features .. 240
Using the Zoom Features .. 241
Waveform Settings..242
Customizing the Configuration... 243
Renaming Objects...247
Bus Radixes.. 249
Viewing Analog Waveforms... 249
Bus Plot Viewer..252
Zoom Gestures.. 255

Chapter 13: Debugging Designs Post Implementation.........................256
Using Vivado ECO Flow to Replace Existing Debug Probes... 256
Replacing Debug Probes on a Placed and Routed Design Checkpoint............................257
Vivado ECO TCL Flow to Replace Existing Debug Probes...263
Incremental Compile with Debug Core (ILA) Modifications.. 263

Chapter 14: Serial I/O Hardware Debugging Flows.................................267
Serial I/O Hardware Debugging Flows...267

Chapter 15: Debugging the Serial I/O Design in Hardware................273
Using Vivado Serial I/O Analyzer to Debug the Design..273
Viewing Slicer Eye, Histogram, and Signal-to-Noise Ratio (GTM Transceivers Only)..... 288

Appendix A: Device Configuration Bitstream Settings......................... 290
7 Series Bitstream Settings.. 290
Zynq-7000 Bitstream Settings..295
UltraScale Bitstream Settings.. 300
Virtex and Kintex UltraScale+ Bitstream Settings... 306
Zynq UltraScale+ MPSoC Bitstream Settings... 311

Appendix B: Trigger State Machine Language Description................314
States.. 314
Goto Action.. 314
Conditional Branching..315
Counters... 315
Flags..316
Conditional Statements..316

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=6

Appendix C: Low Level SVF JTAG Commands...322
Header Data Register (HDR), Header Instruction Register (HIR)......................................322
TDR, TIR (Trailer Data Register, Trailer Instruction Register) ... 323
scan_ir_hw.. 324
scan_dr_hw...325
Multi Chain SVF Operation... 326

Appendix D: JTAG Cables and Devices Supported by hw_server...... 330

Appendix E: Configuration Memory Support..331
Artix-7 Configuration Memory Devices.. 331
Kintex-7 Configuration Memory Devices..335
Spartan-7 Configuration Memory Devices...338
Virtex-7 Configuration Memory Devices.. 340
Kintex UltraScale Configuration Memory Devices.. 343
Kintex UltraScale+ Configuration Memory Devices.. 347
Virtex UltraScale Configuration Memory Devices... 350
Virtex UltraScale+ Configuration Memory Devices... 354
Zynq-7000 Configuration Memory Devices..356
Zynq UltraScale+ MPSoC Configuration Memory Devices... 374
Zynq UltraScale+ RFSoC Configuration Memory Devices...381

Appendix F: Command Line Options for hw_server................................ 389
Standard hw_server Options... 389
Advanced Options... 391

Appendix G: Additional Resources and Legal Notices........................... 397
Xilinx Resources...397
Solution Centers.. 397
Documentation Navigator and Design Hubs.. 397
References..398
Training Courses... 399
Please Read: Important Legal Notices... 400

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=7

Chapter 1

Introduction

Getting Started
After successfully implementing your design, the next step is to run it in hardware by
programming the FPGA and debugging the design in-system. All of the necessary commands to
perform programming of FPGAs and in-system debugging of the design are in the Program and
Debug section of the Flow Navigator in the Vivado® Integrated Design Environment (IDE) (see
the following figure).

Figure 1: Program and Debug section of the Flow Navigator panel

Chapter 1: Introduction

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=8

Debug Terminology
ILA
The Integrated Logic Analyzer (ILA) feature allows you to perform in-system debugging of post-
implemented designs on an FPGA device. This feature should be used when there is a need to
monitor signals in the design. You can also use this feature to trigger on hardware events and
capture data at system speeds.

The ILA core can be instantiated in your RTL code or inserted post synthesis in the Vivado design
flow. Chapter 10: In-System Logic Designs and Chapter 11: Debugging Logic Designs in
Hardware of this guide have more details on the ILA core and its usage methodology in the
Vivado® Design Suite. Detailed documentation on the ILA core IP can be found in the Integrated
Logic Analyzer LogiCORE IP Product Guide (PG172).

Related Information
In-System Logic Design Debugging Flows
Debugging Logic Designs in Hardware

VIO
The Virtual Input/Output (VIO) debug feature can both monitor and drive internal FPGA signals
in real time. In the absence of physical access to the target hardware, you can use this debug
feature to drive and monitor signals that are present on the real hardware.

This debug core needs to be instantiated in the RTL code, hence you need to know up-front,
what nets to drive. The IP Catalog lists this core under the Debug category. Chapter 11:
Debugging Logic Designs in Hardware of this guide has more details on the VIO core and its
usage methodology in the Vivado Design Suite. Detailed documentation on the VIO core IP can
be found in the Virtual Input/Output LogiCORE IP Product Guide (PG159).

Related Information
Debugging Logic Designs in Hardware

IBERT
The IBERT (Integrated Bit Error Ratio Tester) Serial Analyzer design enables in-system serial I/O
validation and debug. This allows you to measure and optimize your high-speed serial I/O links in
your FPGA-based system. Xilinx recommends using the IBERT Serial Analyzer design when you
are interested in addressing a range of in-system debug and validation problems from simple
clocking and connectivity issues to complex margin analysis and channel optimization issues.

Chapter 1: Introduction

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ila;v=latest;d=pg172-ila.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=vio;v=latest;d=pg159-vio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=9

Xilinx recommends using the IBERT Serial Analyzer design when you are interested in measuring
the quality of a signal after a receiver equalization has been applied to the received signal. This
ensures that you are measuring at the optimal point in the TX-to-RX channel thereby ensuring
real and accurate data. Users can access this design by selecting, configuring, and generating the
IBERT core from the IP Catalog and selecting the Open Example Design feature of this core.
Chapter 14: Serial I/O Hardware Debugging Flows and Chapter 15: Debugging the Serial I/O
Design in Hardware of this guide have more details on the IBERT core and its usage methodology
in the Vivado Design Suite. Detailed documentation on the IBERT design can be found in the
Integrated Bit Error Ratio Tester 7 Series GTX Transceivers LogiCORE IP Product Guide (PG132),
Integrated Bit Error Ratio Tester 7 Series GTP Transceivers LogiCORE IP Product Guide (PG133), and
Integrated Bit Error Ratio Tester 7 Series GTH Transceivers LogiCORE IP Product Guide (PG152).

Related Information
Serial I/O Hardware Debugging Flows
Debugging the Serial I/O Design in Hardware

JTAG-to-AXI Master
The JTAG-to-AXI Master debug feature is used to generate AXI transactions that interact with
various AXI full and AXI lite slave cores in a system that is running in hardware. Xilinx
recommends that you use this core to generate AXI transactions and debug/drive AXI signals
internal to an FPGA at run time. This core can be used in designs without processors as well.

The IP Catalog lists this core under the Debug category. Chapter 11: Debugging Logic Designs in
Hardware of this guide has more details on the JTAG-to-AXI Master core and its usage
methodology in the Vivado Design Suite. Detailed documentation on the JTAG-to-AXI IP core
can be found in the JTAG to AXI Master LogiCORE IP Product Guide (PG174).

Related Information
Debugging Logic Designs in Hardware

Debug Hub
The Vivado Debug Hub core provides an interface between the JTAG Boundary Scan (BSCAN)
interface of the FPGA device and the Vivado Debug cores including the following types of cores:

• Integrated Logic Analyzer (ILA)

• Virtual Input/Output (VIO)

• Integrated Bit Error Ratio Test (IBERT)

• JTAG-to-AXI

• Memory IP

Chapter 1: Introduction

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtx;v=latest;d=pg132-ibert-7series-gtx.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtp;v=latest;d=pg133-ibert-7series-gtp.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gth;v=latest;d=pg152-ibert-7series-gth.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=10

IMPORTANT! The Vivado Debug Hub core cannot be instantiated into the design. It is inserted by Vivado
during the opt_design  stage.

System ILA
The System Integrated Logic Analyzer (System ILA) IP core is a logic analyzer that allows you to
perform in-system debugging of post-implemented designs on an FPGA device. Use this IP when
you need to monitor interfaces and signals in the IP integrator Block Design. You can also use
this feature to trigger on interface and signal related hardware events and capture data at system
speeds. This ensures the intuitive presentation of interface events in the Hardware Manager
when debugging the design on an FPGA . This IP offers AXI interface debug and monitoring
capability along with AXI4-MM and AXI4-Stream protocol checking.

Since the System ILA core is synchronous to the design being monitored, all design clock
constraints that are applied to your design are also applied to the components of the System ILA
core. Detailed documentation on the System ILA core IP can be found in the System Integrated
Logic Analyzer LogiCORE IP Product Guide (PG261).

Debug Bridge
The Debug Bridge IP core is a controller that provides multiple options to communicate with the
debug cores in the design.

The primary use case for a Debug Bridge is to use a Xilinx Virtual Cable (XVC) to remotely debug
designs through Ethernet or other interfaces without the need for a JTAG cable.

The other common use case is for debugging Partial Reconfiguration and Tandem with Field
Updates designs. For more information on the Tandem with Field Updates flow and Debug
Bridge refer to UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide
(PG213).

The Debug Bridge can also be used with the PCIe® core in systems where JTAG is not the
preferred communication and debug mechanism. For more information on the using the XVC
flow with the PCIe core and Debug Bridge refer to UltraScale+ Devices Integrated Block for PCI
Express LogiCORE IP Product Guide (PG213).

Detailed documentation on the Debug Bridge core IP can be found in the Debug Bridge LogiCORE
IP Product Guide (PG245).

In-System IBERT
Note: In-System IBERT is supported on UltraScale and UltraScale+ only.

Chapter 1: Introduction

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=system_ila;v=latest;d=pg261-system-ila.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=11

The In-System IBERT IP enables you to perform 2-D eye-scans of UltraScale and UltraScale+
transceivers in your design, using the Vivado Serial IO Analyzer. The IP uses data from the design
to plot the eye-scan of the transceivers in real time while they interact with the rest of the
system. This IP can be integrated with user logic in the design or Xilinx transceiver based IPs (for
example GT Wizard, or Aurora, etc.).

Detailed documentation on the In-System IBERT IP can be found in the In-System IBERT
LogiCORE IP Product Guide (PG246).

IBERT GTR
IBERT UltraScale+ GTR can be used to evaluate and monitor GTR transceivers in Zynq UltraScale
+ MPSoC devices. With this feature, you can accomplish the following tasks:

• Perform eye scans with user data

• Change GTR settings

• View link status

• Check the "lock" status of all PLLs used by all GTR lanes

However, IBERT GTR does not provide the following capabilities:

• Perform eye scans with raw PRBS data patterns

• Measure Bit Error Ratio (no bit or error counters)

Note that this solution is software based, meaning that no IP or logic is required in the
programmable logic of the device.

Chapter 1: Introduction

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=12

Chapter 2

Vivado Lab Edition
Vivado® Lab Edition is a standalone installation of the full Vivado Design Suite with all the
features and capabilities required to program and debug Xilinx® FPGAs after generating the
bitstream. Typical usage is for programming and debug in the lab environment where machines
have a smaller amount of resources in terms of disk space, memory, and connectivity. Vivado Lab
Edition has a reduced product footprint of around 2.4 GB after installation and the install
package size is 1 GB.

Installation
You will need to use the Lab Edition Installer to install Vivado Lab Edition.

Detailed installation, licensing and release information is available in Vivado Design Suite User
Guide: Release Notes, Installation, and Licensing (UG973).

Launching Vivado Lab Edition on Windows
To launch Vivado Lab Edition, select the following:

Start → All Programs → Xilinx Design Tools → Vivado Lab 2020.x → Vivado Lab 2020.x

Launching the Vivado Lab Edition from the
Command Line on Windows or Linux
Enter the following command at the command prompt:

vivado_lab

TIP: To run vivado_lab at the command prompt setup your environment using either of the two scripts
(depending on OS platform type):

C:\Xilinx\Vivado_Lab\2020.x\settings32.(bat|sh)

C:\Xilinx\Vivado_Lab\2020.x\settings64.(bat|sh)

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=13

You can open the Vivado Lab Edition from any directory. However, Xilinx recommends running it
from a writable project directory, because the Vivado Lab Edition log and journal files are written
to the launch directory. When running from a command prompt, launch the Vivado IDE from the
project directory, or use the vivado_lab -log and journal options to specify a location. When using
a Windows shortcut, you must modify the Start in folder, which is a Property of the shortcut.
Failure to launch from a writable project directory results in warnings and unpredictable behavior
from the tool.

Using the Vivado Lab Edition
When you launch the Vivado Lab Edition, the Getting Started page (see the following figure)
displays and provides you with different options to help you begin working with the Vivado Lab
Edition.

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=14

Figure 2: Vivado Lab Edition Welcome Screen

Starting with a Project
To program or debug your design, you can create or open a project, and connect to a target
server and device. The Quick Start section of the Getting Started Page provides links for easy
access to the following tasks:

• Create a project.

• Open existing projects

Note: You can also open recently accessed projects from the Recent Projects list.

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=15

Opening the Hardware Manager
You can open the Vivado Design Suite Hardware Manager to download your design bitstream to
a device. Use the Vivado logic analyzer and Vivado serial I/O analyzer features of the Hardware
Manager to debug your design. For example, you can add ILA, VIO, and JTAG-to-AXI cores to
your design for debugging in the Vivado logic analyzer, or use the IBERT example design from the
Xilinx IP catalog to test and configure the GTs in your design with the Vivado serial I/O analyzer.

Reviewing Documentation and Videos
From the Getting Started page, you can use the Xilinx Documentation Navigator to access
documentation, including user guides, tutorials, videos, and the release notes.

Vivado Lab Edition Project
Vivado Lab Edition allows users in the lab to create projects. All the relevant programming and
runtime debug preferences and settings are stored in the project. When the project is reopened,
the settings and preferences are restored back into the tool. A Vivado Lab Edition project can be
created in both the Vivado Lab Edition tool as well as in Vivado Design Suite.

Create a New Project
To create a new project in Vivado Lab Edition, click the Create New Project icon as shown below.
Enter the project name and location in the New Vivado Lab Edition Project dialog box. When you
create a new project, Vivado Lab Edition creates a project file. The project file has the same name
as the project name entered in the New Vivado Lab Edition Project dialog box with the .lpr
extension. See the following figure.

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=16

Figure 3: Vivado Lab Edition Creating a New Project

Creating Projects Using Tcl Commands

You can also create a project using Tcl commands. Enter the following command in the Tcl
Console of Vivado Lab Edition or source them from a Tcl file.

create_project project_1 C:/Lab_edition/project_1

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=17

Opening the Project
To open existing projects, click the open project icon as shown in the following figure or double-
click a project in the Recent Projects list. This opens a browser that enables you to open any
Vivado Lab Edition project file (.lpr extension). By default, the last ten previously opened
projects are listed in the Recent Projects list. To change this number, click Tools → Settings and
update the Project options. Vivado Lab Edition checks to ensure that the project data is available
before displaying the projects.

Figure 4: Vivado Lab Edition Open Project Dialog

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=18

Opening Projects Using Tcl Commands

You can also open a project using Tcl commands. Enter the following command in the Tcl Console
of the Vivado Lab Edition or source them from a .tcl file.

open_project C:/Lab_edition/project_1/project_1.lpr

Using existing .lpr project from Vivado Design Suite
Edition
Vivado Design Suite creates an .lpr file at project startup and populates this file with
appropriate details when you use the Hardware Manager to program and/or debug the design in
the project. This file is located in the project_name.hw directory and is named
project_name.lpr. This project file can be opened in the Vivado Lab Edition.

Typical flow would entail:

1. Click the Open Project icon on the Vivado Lab Edition start page.

2. Traverse to the project_name.hw directory, which is located inside the Vivado IDE project
directory

3. Select the .lpr project file inside the project_name.hw directory and click OK.

4. Connect to your hardware.

5. Program and debug with the correct device image file and .ltx file from the appropriate
Vivado runs directory

6. User preferences, runtime manager debug dashboard, and window settings are restored at
project open.

Programming Features
After the project is open and the Hardware Manager is connected with a target device, you can
use all the programming features that were available in the Vivado Design Suite from the Vivado
Lab Edition. All the programming related Tcl commands are supported in Vivado Lab Edition. For
more details on the programming features available refer to Programming Configuration Memory
Devices.

Related Information
Programming Configuration Memory Devices

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=19

Debug Features
After you open the project and connect the Hardware Manager with a target device, you can use
all the debug features that were available in the Vivado Design Suite from the Vivado Lab
Edition. All the debug related Tcl commands are supported in Vivado Lab Edition. For more
details on the debug features available refer to Chapter 11: Debugging Logic Designs in
Hardware of this user guide.

Related Information
Debugging Logic Designs in Hardware

Chapter 2: Vivado Lab Edition

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=20

Chapter 3

Generating the Bitstream or Device
Image

Before generating a bitstream or device image, it is important to review the settings to make sure
they are correct for your design.

There are two types of bitstream and device image settings in Vivado® IDE:

1. Bitstream or Device Image file format settings.

2. Device configuration settings.

Select Settings  → Bitstream in the Vivado Flow Navigator or Flow → Settings → Bitstream
Settings... menu selection to open the Bitstream Settings popup window (see the following
figure). Once the settings are correct, the bitstream data file can be generated using the
write_bistream Tcl command or by using the Generate Bitstream button in the Vivado flow
navigator.

Figure 5: Bitstream Settings Panel

Chapter 3: Generating the Bitstream or Device Image

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=21

Changing the Bitstream File Format Settings
By default, the write_bitstream Tcl command generates a binary bitstream (.bit) file only.
You can optionally change the file formats written out by the write_bitstream Tcl command
by using the following command switches:

• -raw_bitfile: (Optional) This switch causes write_bitstream to write a raw bit file (.rbt), which
contains the same information as the binary bitstream file, but is in ASCII format. The output
file is named filename .rbt.

• -mask_file: (Optional) Write a mask file (.msk), which has mask data where the configuration
data is in the bitstream file. This file determines which bits in the bitstream should be
compared to readback data for verification purposes. If a mask bit is 0, that bit should be
verified against the bitstream data. If a mask bit is 1, that bit should not be verified. The
output file is named file.msk.

• -no_binary_bitfile: (Optional) Do not write the binary bitstream file (.bit). Use this command
when you want to generate the ASCII bitstream or mask file, or to generate a bitstream report,
without generating the binary bitstream file.

• -logic_location_file: (Optional) Creates an ASCII logic location file (.ll) that shows the
bitstream position of latches, flip-flops, LUTs, Block RAMs, and I/O block inputs and outputs.
Bits are referenced by frame and bit number in the location file to help you observe the
contents of FPGA registers.

• -bin_file: (Optional) Creates a binary file (.bin) containing only device programming data,
without the header information found in the standard bitstream file (.bit).

• -reference_bitfile <arg>: (Optional) Read a reference bitstream file, and output an incremental
bitstream file containing only the differences from the specified reference file. This partial
bitstream file can be used for incrementally programming an existing device with an updated
design.

Changing Device Configuration Bitstream
Settings

The most common configuration settings that you can change fall into the device configuration
settings category. These settings are properties on the device model and you change them by
using the Edit Device Properties dialog for the selected synthesized or implemented design
netlist. The following steps describe how to set various bitstream properties using this method:

1. Select Tools → Edit Device Properties.

2. In the Edit Device Properties dialog, select one of the categories in the left-hand column (see
the following figure).

Chapter 3: Generating the Bitstream or Device Image

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=22

TIP: You can type a property in the Search field. For example, type jtag into the Search text field to find and
select properties related to JTAG programming.

3. Set the properties to the desired values, and click OK.

4. Select File → Constraints → Save to save the updated properties to the target XDC file.

You can also set the bitstream properties using the set_property command in an XDC file. For
instance, here is an example on how to change the start-up DONE cycle property:

set_property BITSTREAM.STARTUP.DONE_CYCLE 4 [current_design]

Additional examples and templates are provided in the Vivado Templates. Appendix A: Device
Configuration Bitstream Settings describes all of the device configuration settings.

IMPORTANT! Edit only the Device Configuration Bitstream Settings relevant to the configuration mode being
used. Leave the other settings at their default values

Related Information
Device Configuration Bitstream Settings

Chapter 3: Generating the Bitstream or Device Image

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=23

Chapter 4

Programming the Device
The next step after generating the device image is to download it into the target device. Vivado
IDE has native in-system device programming capabilities built in to do this.

Vivado Design Suite and Vivado Lab Edition includes functionality that allows you to connect to
hardware containing one or more FPGAs to program and interact with those devices. Connecting
to hardware can be done from either the Vivado Lab Edition, or Vivado Design Suite graphical
user interface or by using Tcl commands. In either case, the steps to connect to hardware and
program the target device are the same:

1. Open the Hardware Manager.

2. Open a hardware target that is managed by a hardware server running on a host computer.

3. Associate the device image with the appropriate device.

4. Program or download the device image into the hardware device.

Opening the Hardware Manager
Opening the Hardware Manager is the first step in programming and/or debugging your design in
hardware. To open the Hardware Manager, do one of the following:

• If you have a project open, click the Open Hardware Manager button in the Program and
Debug section of the Vivado flow navigator.

• Select Flow → Open Hardware Manager.

• In the Tcl Console window, run the open_hw_manager command

Opening Hardware Target Connections
The next step in opening a hardware target (for instance, a hardware board containing a JTAG
chain of one or more FPGAs) is connecting to the hardware server that is managing the
connection to the hardware target. You can do this one of three ways:

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=24

• Use the Open Target selection under Hardware Manager in the Program and Debug section of
the Vivado Flow Navigator to open new or recent hardware targets (see the following figure).

• Use the Open Target → Recent targets or Open Target → Open New Target selection on the
green user assistance banner across the top of the Hardware Manager window to open recent
or new hardware targets, respectively (see the following figure).

• Use Tcl commands to open a connection to a hardware target.

TIP: Use the Auto Connect selection to automatically connect to a local hardware target.

Connecting to a Hardware Target Using
hw_server

The hw_server is automatically started by Vivado when connecting to targets on the local
machine. However, you can also start the hw_server manually on either local or remote
machines. For instance, in a full Vivado installation on a Windows platform, at a cmd prompt run
the following command:

C:\Xilinx\Vivado\<Vivado_version>\bin\hw_server.bat

If you are using a Hardware Server (Standalone) installation on a Windows platform, at a cmd
prompt run the following command:

c:\Xilinx\HWSRVR\<Vivado_version>\bin\hw_server.bat

Follow the steps in the next section to open a connection to a new hardware target using this
agent.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=25

For a list of compatable JTAG download cables and devices see Appendix D: JTAG Cables and
Devices Supported by hw_server.

For more information on using SmartLynq data cables, see the SmartLynq Data Cable User Guide
(UG1258).

IMPORTANT! If Vivado Hardware Manager is connected to the hw_server, and the hw_server is stopped, the
Hardware Manager detects this condition automatically and disconnects from the server.

Opening a New Hardware Target
The Open New Hardware Target wizard provides an interactive way for you to connect to a
hardware server and target. The wizard process has the following steps:

1. Select a local or remote server, depending on what machine your hardware target is
connected to:

• Local server: Use this setting if your hardware target is connected to the same machine on
which you are running the Vivado Lab Edition or Vivado IDE (See the following figure). The
Vivado software automatically starts the Vivado hardware server (hw_server) application
on the local machine.

• Remote server: Use this setting if your hardware target is connected to a different machine
on which you are running the Vivado Lab Edition or Vivado IDE. Specify the host name or
IP address of the remote machine and the port number for the hardware server
(hw_server) application that is running on that machine (see the following figures). Refer to
Connecting to a Remote hw_server Running on a Lab Machine for more details on remote
debugging.

IMPORTANT! When using remote server, you need to manually start the Vivado hardware server
(hw_server) application of the same version of Vivado software that you will use to connect to the hardware
server.

TIP: If you only want to connect to your lab machine remotely, you do not need to install the full Vivado design
suite on that remote machine. Instead, you can install the light-weight Vivado Hardware Server (Standalone)
tool on the remote machine.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 26Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=smartlynq;d=ug1258-smartlynq-cable.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=26

2. Select the appropriate hardware target from the list of targets that are managed by the
hardware server. Note that when you select a target, you see the various hardware devices
that are available on that hardware target.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=27

IMPORTANT! If there are third party devices in the JTAG chain, use the instructions in Xilinx Answer Record
61312 to add IDCODE, IR Length, and name for the unknown devices.

Related Information
Connecting to a Remote hw_server Running on a Lab Machine

Troubleshooting a Hardware Target
You might run into issues when trying to connect to a hardware target. Here are some common
issues and recommendations on how to resolve them:

• If you are not able to correctly identify the hardware devices on your target, it might mean
that your hardware is not capable of running at the default target frequency. You can adjust
the frequency of the TCK pin of the hardware target or cable (see the previous figure). Note
that each type of hardware target may have different properties. Refer to the documentation
of each hardware target for more information about these properties.

• While the Vivado hardware server will attempt to automatically determine the instruction
register (IR) length of all devices in the JTAG chain, in some rare circumstances it might not be
able to correctly do so. You should check the IR length for each unknown device to make sure
it is correct. If you need to specify the IR length, you can do so directly in the Hardware
Devices table of the Open New Hardware Target wizard (see Opening a New Hardware
Target).

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=61312.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=61312.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=28

Related Information
Opening a New Hardware Target

Opening a Recent Hardware Target
The Open New Hardware Target wizard is also what populates a list of previously connected
hardware targets. Instead of connecting to a hardware target by going through the wizard, you
can re-open a connection to a previously connected hardware target by selecting the Open
recent target link in the Hardware Manager window and selecting one of the recently connected
hardware server/target combinations in the list. You can also access this list of recently used
targets through the Open Target selection under Hardware Manager in the Program and Debug
section of the Vivado flow navigator.

Opening a Hardware Target Using Tcl Commands
You can also use Tcl commands to connect to a hardware server/target combination. For
instance, to connect to the digilent_plugin target (serial number 210203339395A) that is
managed by the hw_server running on localhost 3121, use the following Tcl commands:

connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/210203339395A]
set_property PARAM.FREQUENCY 15000000 [get_hw_targets \
*/xilinx_tcf/Digilent/210203339395A]
open_hw_target

Once you finish opening a connection to a hardware target, the Hardware window is populated
with the hardware server, hardware target, and various hardware devices for the open target (see
the following figure).

Figure 6: Hardware View after Opening a Connection to the Hardware Target

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=29

Associating a Programming File with the
Hardware Device

After connecting to the hardware target and before you program the device, you need to
associate the bitstream data programming file with the device. Select the hardware device in the
Hardware window and make sure the Programming file property in the Properties window is set
to the appropriate programming file.

Note: As a convenience, Vivado IDE automatically uses the programming file for the current implemented
design as the value for the Programming File property of the first matching device in the open hardware
target. This feature is only available when using the Vivado IDE in project mode. When using the Vivado
IDE in non-project mode, you need to set this property manually.

You can also use the set_property Tcl command to set the PROGRAM.FILE property of the
hardware device:

set_property PROGRAM.FILE {C:/<path_to_programming_file>} [lindex
[get_hw_devices] 0]

Programming the Hardware Device
Once the programming file has been associated with the hardware device, you can program the
hardware device using by right-clicking on the device in the Hardware window and selecting the
Program Device menu option. You can also use the program_hw_device Tcl command. For
instance, to program the first device in the JTAG chain, use the following Tcl command:

program_hw_devices [lindex [get_hw_devices] 0]

Once the progress dialog has indicated that the programming is 100% complete, you can check
that the hardware device has been programmed successfully by examining the DONE status in
the Hardware Device Properties view.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=30

Figure 7: Checking the DONE Status of an FPGA Device

You can also use the get_property Tcl command to check the DONE status. For instance, to
check the DONE status of a Kintex®-7 device that is the first device in the JTAG chain, use the
following Tcl command:

get_property REGISTER.IR.BIT5_DONE [lindex [get_hw_devices] 0]

If you use another means to program the hardware device (for instance, a flash device or external
device programmer such as the iMPACT tool), you can also refresh the status of a hardware
device by right-clicking the Refresh Device menu option or by running the
refresh_hw_device Tcl command. This refreshes the various properties for the device,
including but not limited to the DONE status.

IMPORTANT! If your design contains debug cores, ensure that the JTAG clock is 2.5x times slower than the
debug hub clock.

IMPORTANT! User SCAN Chain: Vivado Programmer tries to detect debug cores on the user scan chain
specified in the design by default. It does the detection by issuing a JTAG_CHAIN 1 command to the device. If
you have programmed a device with a design that does not have any debug cores or a debug core with a user
scan chain of 2, 3, or 4, you will see a warning.

To determine the user scan chain setting, open the implemented design and use:

get_property C_USER_SCAN_CHAIN [get_debug_cores dbg_hub]

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=31

You can change the user scan chain used in the Vivado Hardware Manager. Note that the
BSCAN_SWITCH_USER_MASK is a bit mask value. See the following figure.

Alternatively you can specify the user scan chain value as an option to hw_server start-up.

hw_server -e "set bscan-switch-user-mask <user-bit-mask>"

Figure 8: BSCAN Switch User Mask

TIP: For designs prior to Vivado 2016.3 Xilinx recommends manually launching hw_server  with -e "set
xsdb-user-bscan <C_USER_SCAN_CHAIN scan_chain_number>"  to detect the debug hub at
User Scan Chain of 2 or 4.

Incorrect Bitstream Assignment Message
Vivado Hardware Manager generates an "incorrect bitstream assignment" message when:

• Attempting to program an FPGA with a bitstream generated for a different FPGA.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=32

For example, the following error message appears when trying to program an XCKU115 with
an XCVU190 bitstream.

Figure 9: Programming an xcku115 with an xcvu190 Bitstream

The solution is to specify the correct bitstream for the FPGA being programmed.

Attempting to Program a Device with an Image
Generated for a Different Silicon Revision
• Programming devices with a bitstream generated for a different silicon revision is not

supported, and might not function correctly, and could cause device damage.

○ For example, the XCKU115 device comes in -es1 and a later -es2 silicon version as well as
a production silicon version. These -es1 or -es2 silicon version suffixes appear in the part
selector when you select an FPGA for a Vivado IDE project. The production version has no
suffix.

○ Do not program a device with a bitstream created for a different version of the silicon. For
example, do not program a bitstream created for -es1 silicon into -es2 silicon or program a
bitstream created for -es2 silicon into -es1 silicon. Either of these causes the error message
shown in the following figure to appear.

Figure 10: Bitstream and Silicon Version Incompatibility

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=33

Attempting to Program Configuration Memory
Attached to an FPGA Device
To program configuration memory attached to an FPGA device, Vivado Hardware Manager first
downloads a flash controller bitstream to the FPGA device. Hardware Manager then sends flash
commands and data through the FPGA device's JTAG port to be processed by the controller,
which then sends the processed flash commands/data to the configuration memory interface.

The controller bitstream downloaded by Hardware Manager is generated for the latest silicon
revision of the FPGA device. For example, the configuration memory controller bitstream for the
XCKU115 in 2016.3 and later was generated for XCKU115-es2 silicon.

When programming configuration memory attached to this FPGA, if the user has an XCKU115-
es1 device on the board, the error message shown in Attempting to Program an FPGA Device
with a Bitstream Generated for a Different Silicon Revision of the FPGA appears. This is because
Hardware Manager is attempting to download the -es2 flash controller bitstream into the -es1
device.

Related Information
Attempting to Program a Device with an Image Generated for a Different Silicon Revision

Closing the Hardware Target
You can close a hardware target by right-clicking on the hardware target in the Hardware
window and selecting Close Target from the popup menu. You can also close the hardware target
using a Tcl command. For instance, to close the xilinx_platformusb/USB21 target on the localhost
server, use the following Tcl command:

close_hw_target {localhost/xilinx_tcf/Digilent/210203339395A}

IMPORTANT! If the board is powered off or cable disconnected, Vivado IDE closes the hardware target in the
Hardware Manager. Any Vivado operation in the main Vivado thread is also canceled. If the board is powered
back on or the cable is reconnected, the Vivado IDE will attempt to re-open the hardware target in the
Hardware Manager.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=34

Closing a Connection to the Hardware Server
You can close a hardware server by right-clicking on the hardware server in the Hardware
window and selecting Close Server from the popup menu. You can also close the hardware
server using a Tcl command. For instance, to close the connection to the localhost server, use the
following Tcl command:

disconnect_hw_server localhost

IMPORTANT! If Vivado Hardware Manager is connected to the hw_server, and the hw_server is stopped, the
Hardware Manager detects this condition automatically and disconnects from the server.

Reconnecting to a Target Device with a Lower
JTAG Clock Frequency

The JTAG chain is as fast as the slowest device in the chain. Therefore, to lower the JTAG clock
frequency, connect to a target device whose JTAG clock frequency is less than the default JTAG
clock frequency.

You should attempt to open with a default JTAG clock frequency that is 15 MHz for the Digilent
cable connection and 6 MHz for the USB cable connection. If it is not possible to connect at
these speeds, Xilinx recommends that you lower the default JTAG clock frequency even further
as described below.

To change the JTAG clock frequency, use the Open New Hardware Target wizard, from Vivado®

Design Suite, as shown in the following figure.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=35

Figure 11: Vivado Lower JTAG Frequency

Alternately, you can use the following sequence of Tcl commands:

open_hw_manager

connect_hw_server -url machinename:3121

current_hw_target [get_hw_targets */xilinx_tcf/Digilent/210203327962A]

set_property PARAM.FREQUENCY 250000 [get_hw_targets */xilinx_tcf/Digilent/
210203327962A]
open_hw_target

Connecting to a Server with More Than 32
Devices in a JTAG Chain

It is possible to connect to a server which has more than 32 devices in its JTAG chain in Vivado.
You need to provide option max-jtag-devices at the startup of hw_server to enable the
ability to detect more devices in a scan chain. The default value for this setting is 32. Note that
increasing this number will slow down the device discovery process which in turn can slow down
cable access.

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=36

Specify the max-jtag-devices option at hw_server start-up as follows:

hw_server -e "set max-jtag-devices 64"

Usage
This option is used to start up the hw_server with the ability to enable ir lengths greater than 64
bits. The default value for this setting is 64. You can increase this value for devices in the JTAG
chains whose ir length are wider (for example 93). Note that increasing this number will slow the
device discovery process, which in turn can slow cable access. Therefore, you should only
increase this value for systems with long ir lengths and device counts.

This is how you specify the option at hw_server start-up:

hw_server -e "set max-ir-length 93"

Init Option
You may also use the --init=script.txt option to load this setting through a file. To use the
init option, create a initialization script as shown in the following example. In the script, specify
the set max-jtag-device parameter.

Sample script.txt
set max-ir-length 93

Start the hw_server as shown in the following example:

hw_server --init=script.txt

Chapter 4: Programming the Device

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=37

Chapter 5

Remote Debugging in Vivado
The need for remote debugging may arise in a variety of situations. It could be required in the
prototyping phase of a product, where you might want to debug a design in the lab without
physical access to the lab, or where you might want to share resources across your organization.
Remote debugging could also be required to perform in-the-field debug to diagnose issues or
extend product life cycle.

Xilinx® provides multiple solutions to debug your design remotely. This can be done using the
Xilinx Hardware Server product to connect to a remote computer in the lab. You could also
implement the Xilinx Virtual Cable (XVC) protocol to connect to a network-connected board.
Each of these solutions are explained in detail in the sections below.

Using Vivado Hardware Server to Debug Over
Ethernet

You can connect to a remote lab machine using Vivado Hardware Server product. This is a small
sized (<100 MB) standalone download available for install on the lab machine. This option
requires intranet or internet access and can be used internally just within your organization as
well.

Figure 12: Debug via Internet/Intranet Using Hardware Server

Desk Lab

INTERNET / INTRANET

HARDWARE SERVER

X14741-062315

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=38

Xilinx Virtual Cable (XVC)
Vivado IDE supports the Xilinx Virtual Cable (XVC) protocol. Xilinx Virtual Cable provides a
means to access and debug a Xilinx device without using a USB or parallel configuration cable.
This capability helps facilitate Vivado IDE to debug for designs that:

• Have the FPGA in a hard-to-access location, where a "lab-PC" is not close by.

• Do not have direct access to the device pins on the board - for example, if the JTAG pins are
only accessible via a local microprocessor interface.

XVC is an internet-based (TCP/IP) protocol that acts like a JTAG cable. It has very basic cable
commands. This allows XVC to provide the ability to debug a system over an intranet, or even the
internet. With this ability you can save on costly or impractical travel and reduce the time it takes
to debug a remotely located system.

Another common usage of XVC is for shared systems that are not co-located with teams that
need access to them. It can also be used when there are physical constraints to using the system,
as when the JTAG connector is not available or accessible. XVC implementation is programming
language and platform independent

Rather than using a dedicated JTAG header, an existing Ethernet connection can be used to
create the appropriate JTAG commands from a processor to a target device. With the XVC v1.0
Protocol, Vivado can communicate the same JTAG commands over an Ethernet connection and
still support all of the existing Vivado debug features.

IMPORTANT! If the Vivado Debug Bridge IP is used for XVC, Vivado IDE does not support programming
features. The assumption is that the device is programmed before using XVC to debug the design.

Vivado Debug Bridge IP and Xilinx Virtual Cable
(XVC) Flow
The Vivado Debug Bridge IP core is a controller that provides multiple options to communicate
with the debug cores in the design. This design can be a flat design or a Partial Reconfiguration
(PR) design. In addition, the Debug Bridge IP core can also be configured to take advantage of
debugging designs using a JTAG cable or remotely through Ethernet, PCIe, or other interfaces
without the need for a JTAG cable.

Different modes in Debug Bridge IP facilitate the support of various use cases.

Debug Bridge in XVC Modes

There are five modes in the Debug Bridge that are used in Xilinx Virtual Cable (XVC)
implementations.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=39

• From AXI to BSCAN: In this mode, the Debug Bridge receives XVC Commands via AXI4-Lite
slave interface.

• From JTAG to BSCAN: In this mode, the Debug Bridge receives XVC Commands via JTAG
slave interface driven by user logic.

• From PCIe to BSCAN: In this mode, the Debug Bridge receives XVC Commands via PCIe
Extended Configuration slave interface.

• From PCIe to JTAG: In this mode, the Debug Bridge receives XVC Commands via PCIe
Extended Configuration interface. This Debug Bridge brings out the JTAG pins out of the
FPGA through I/O pins. This mode is mainly used to debug design on another board over
XVC.

• From AXI to JTAG: In this mode, the Debug Bridge receives XVC commands via AXI4-Lite
interface to send over the JTAG pins to a target device.

In all of these modes the Debug Bridge can further communicate with other debug cores/ Debug
Bridge instances in the design via the Soft-BSCAN (Boundary Scan) interface. The Soft BSCAN
master interface enables extension of the JTAG interface to internal USER defined scan chains/
Debug Bridge instances.

Using Debug Bridge IP in Partial Reconfiguration (PR) Designs

The Debug Bridge IP can be used in both flat and PR designs. Below are the details on the Debug
Bridge configurations used in the static or Reconfigurable Partition (RP) region of a PR design.
Multiple Debug Bridge instances are permitted in a partition depending on the design
requirements.

• BSCAN Primitive: This mode is used when a Debug Bridge containing a BSCAN primitive is
required in the static region. The BSCAN master interface of this Debug Bridge can be
connected to another Debug Bridge instance in the static and/or PR region(s) providing one or
more communication pathways for debugging those regions.

• From BSCAN to Debug Hub: In this mode, the Debug Bridge uses the BSCAN slave interface
to communicate to Vivado Hardware Manager. It uses the Debug Hub interface to
communicate with the design cores within the relevant static or RP region. You can also
optionally add additional BSCAN Masters to the output of this Debug Bridge, which enables
debugging other debug cores like MicroBlaze Debug Module (MDM) or other Debug Bridge
instances.

Note: The tool automatically connects the debug cores in an RP to the Debug Bridge if this is the only
Debug Bridge instantiated in the partition.

• From AXI to BSCAN: In this mode, the Debug Bridge receives XVC Commands via AXI4-Lite
slave interface. This Debug Bridge can further communicate with other debug cores/ Debug
Bridge instances in the design via the Soft-BSCAN (Boundary Scan) master interface. The Soft
BSCAN interface enables extension of the JTAG interface to internal USER defined scan
chains/Debug Bridge instances.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=40

• From JTAG to BSCAN: In this mode, the Debug Bridge receives XVC Commands via JTAG
slave interface driven by user logic. This Debug Bridge can further communicate with other
debug cores/ Debug Bridge instances in the design via the Soft-BSCAN (Boundary Scan)
master interface. The Soft BSCAN interface enables extension of the JTAG interface to
internal USER defined scan chains/Debug Bridge instances.

• From PCIe to BSCAN: In this mode, the Debug Bridge receives XVC Commands via PCIe
Extended Configuration slave interface. This Debug Bridge can further communicate with
other debug cores/ Debug Bridge instances in the design via the Soft-BSCAN (Boundary Scan)
interface. The Soft BSCAN master interface enables extension of the JTAG interface to
internal USER defined scan chains/Debug Bridge instances.

Note: This mode is only available for UltraScale+ and UltraScale device architectures

• From PCIe to JTAG: In this mode, the Debug Bridge receives XVC Commands via PCIe
Extended Configuration interface. This Debug Bridge brings out the JTAG pins out of the
FPGA through I/O pins. This mode is mainly used to debug design on another board over
XVC.

Note: This mode is only available for UltraScale+ and UltraScale device architectures.

• From AXI to JTAG: In this mode, the Debug Bridge receives XVC commands via AXI4-Lite
interface to send over the JTAG pins to a target device.

JTAG Fallback Support

The XVC based debug solution can be used with AXI masters such as the PCIe XDMA IP. If the
AXI master is in a hang situation or is otherwise not functioning properly, there are no methods
to debug those scenarios. To provide a JTAG-based fall back debug pathway that is parallel to the
XVC pathway, Xilinx recommends using the Debug Bridge in BSCAN Primitive mode. A Debug
Bridge in BSCAN Primitive mode can be instantiated in static region and its BSCAN master
interface can be connected to the BSCAN slave interface of a second Debug Bridge that is
configured with the JTAG Fallback Support enabled. There are two JTAG Fallback Support types:

1. If the Debug Bridge that you want to provide JTAG Fallback for resides in a PR region, you
need to enable the External BSCAN Master JTAG Fallback Support.

2. If the Debug Bridge that you want to provide JTAG Fallback for resides in the static region (or
in a flat design), you should enable the Internal BSCAN Master JTAG Fallback Support.

Microblaze Debug Module (MDM) Support

Debug access to Microblaze Debug Module (MDM) is also supported by the Debug Bridge. The
MDM BSCAN slave input can be connected to any Debug Bridge configuration mode that
supports multiple BSCAN master interfaces at the output (for example, AXI to BSCAN with its
BSCAN Master Count greater than zero).

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=41

Multiple Debug Trees

The Debug Bridge IP supports the setup and configuration of multiple independent debug trees
in a design. You can use multiple independent debug trees in applications where it is desirable to
make specific debug logic visible to certain users (e.g., system administrators) while hiding it from
other users. This feature supports the setup of independent debug trees both in a standalone and
partial reconfiguration design. Each of these independent debug trees can be connected to any
of the supported debug cores (e.g. ILAs, VIOs etc).

To enable this feature, you need to instantiate one Debug Bridge IP in the appropriate mode,
either the "From AXI to BSCAN" or "From PCIe to BSCAN" mode, for each of the debug trees
you want to enable. For instance, in a data center design where multiple classes of users will
access the DUT, you can instantiate a "From AXI to BSCAN" Debug Bridge IP in the customer-
visible address map while instantiating a second "From AXI to BSCAN" Debug Bridge IP in the
administrator-visible address map.

When the administrator and/or the customer are ready to debug the design, they will only have
to connect to the debug bridge using the Vivado Hardware Manager at the correct device offset
depending on how they are communicating with the debug cores (i.e. PCIe or JTAG pins). For
more information on using the XVC flow with the PCIe core and Debug Bridge in this mode, and
for an example design refer to UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP
Product Guide (PG213).

Below is a table listing the different Debug Bridge modes and features available in those modes:

Table 1: Debug Bridge Modes

Debug Bridge Mode XVC
Support

Can be used In
Reconfigurable

Partition
JTAG Fallback

Support MDM Support

From AXI to BSCAN Yes Yes1 Yes2 Yes3

From JTAG to BSCAN Yes Yes1 Yes2 Yes3

From PCIe to BSCAN Yes Yes1 Yes2 Yes3

From PCIe to JTAG Yes Yes1 NA NA

From BSCAN to DebugHub No Yes1 NA Yes3

BSCAN Primitive No No NA Yes3

From AXI to JTAG Yes Yes NA NA

Notes:
1. BSCAN Master Count can be greater than 0 and can be connected to other Debug Bridge instances or

MicroBlaze/MDM core within the same RP only.
2. Internal BSCAN Mode can only be used when the Debug Bridge is in static partition while External BSCAN Mode can

be used when the Debug Bridge is in either the static or RPs.
3. BSCAN Master Count can be greater than 0 and can be connected to other Debug Bridge instances or

MicroBlaze/MDM core within the same RP only.

Below is an illustration of a design with the XVC Debug Bridge in an RP.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=42

Figure 13: Partial Reconfiguration Design with the XVC Debug Bridge in an RP

This is a PR design with two reconfigurable partitions, Counter RP and Shifter RPs. This figure
illustrates the different Debug Bridge modes used in both static and RP regions.

The static partition of design has two Debug Bridge IPs. The first Debug Bridge IP is in BSCAN
Primitive mode and configured to have three BSCAN master interfaces. Two of the BSCAN
master interfaces are connected to the Debug Bridge instances in Counter-RP and Shifter-RP
partitions providing a parallel path for debug. The third BSCAN master interface is connected to
another Debug Bridge instance within the static partition configured in the From BSCAN to
Debug Hub mode. The Debug Bridge configured in From BSCAN to Debug Hub mode can
communicates to the various Debug IPs (ILA, VIO, JTAG-to-AXI, etc.) in the design, which in this
case is the ILA IP.

In this system the Counter-RP partition contains a Debug Bridge instantiated in the AXI-to-
BSCAN mode. You can use this Debug Bridge in XVC mode, the Debug Bridge receives XVC
Commands via AXI4-Lite interface. This Debug Bridge can further communicate with other
Debug Bridge instances in the design via the Soft-BSCAN (Boundary Scan) interface. Since this
Debug Bridge is configured to contain two BSCAN master interfaces it communicates with the
MDM and the Debug Bridge instance configured in From BSCAN to Debug Hub mode. The
Debug Bridge configured in From BSCAN to Debug Hub mode can communicates to the various
Debug IPs (ILA, VIO, JTAG-to-AXI etc.) in the design, which in this case is the ILA IP.

On the other hand, the Shifter-RP partition contains only one Debug Bridge instance configured
in From BSCAN to Debug Hub mode that can communicate with the various Debug IPs (ILA, VIO,
JTAG-to-AXI etc.) in the design, which in this case is the ILA IP.

For more information see the Debug Bridge LogiCORE IP Product Guide (PG245).

An illustration of some of the Debug Bridge modes is presented below.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=43

From AXI to BSCAN
This bridge type is intended for designs using Xilinx Virtual Cable (XVC) to remotely debug an
FPGA or SoC device through Ethernet or other interfaces without the need for JTAG cable. In
this mode, the Debug Bridge expects to receive Xilinx Virtual Cable commands via AXI4-Lite
interface. Use this mode to debug designs on the FPGA device over the Xilinx Virtual Cable.

For more information, see the Debug Bridge LogiCORE IP Product Guide (PG245).

Figure 14: AXI to BSCAN Debug Bridge

Data Center

XVC over TCP/IP

hw_server

Zynq
Processor

XVC Server AXI

Debug
Bridge

(From AXI
to BSCAN)

BSCAN

User Solution

Vivado Solution

Target Board/FPGA

Debug
Hub

Debug IP 1
(eg ILA, VIO etc)……
Debug IP n
(eg ILA, VIO etc)

X17961-092816

From PCIe to BSCAN
In a typical PCIe setup - you can use the Debug Bridge in the PCIe to BSCAN mode to
communicate with the debug cores. In this mode, Debug Bridge connects to the Extended
Configuration Interface of the PCIe IP. This is a common data center use case where PCIe is the
preferred communication pathway to the Host PC instead of JTAG. For more information on
using the XVC flow with the PCIe core and Debug Bridge in this mode, and for an example design
refer to UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213).

Figure 15: PCIe to BSCAN Debug Bridge Used with PCIe Extended Configuration
Interface

Processor
XVC Server

PCIe

hw_server

XVC over
TCP/IP

PCIe
(Extended

Configuration) PCIe ext
cfg

Debug
Bridge

(From AXI
to BSCAN)

BSCAN

User Solution

Vivado Solution

Target FPGA

Debug
Hub

Debug Core 1
……

Debug Core n

X17962-040517

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=44

From JTAG to BSCAN
This bridge type is intended for designs that use Xilinx Virtual Cable (XVC) to remotely debug an
FPGA or SoC device through Ethernet or other interfaces without the need for JTAG cable. In
this mode, the Debug Bridge expects to receive XVC commands via JTAG interface driven by
user logic. For more information see the Debug Bridge LogiCORE IP Product Guide (PG245).

Figure 16: JTAG to BSCAN Debug Bridge

Target Board

Data Center

Processor
XVC Server GPIO/Custom

Interface

hw_server

User Logic
JTAG

Debug
Bridge

(From JTAG
to BSCAN)

BSCAN

User Solution

Vivado Solution

Target FPGA

Debug
Hub

Debug IP 1
(eg ILA, VIO etc)……
Debug IP n
(eg ILA, VIO etc)

XVC over
TCP/IP

X17963-092816

From PCIe to JTAG
In a PCIe setup, you can use the Debug Bridge in the PCIe to JTAG mode to communicate with
the debug cores. In this mode, Debug Bridge connects to the Extended Configuration Interface of
the PCIe® IP, which in turn can communicate over JTAG to the debug hub on a different target
FPGA.

Figure 17: PCIe® to JTAG Debug Bridge Used with PCIe Extended Configuration
Interface

Target Board

PCIe
Master PCIe ext

cfg

hw_server

PCIe

Debug
Bridge

(From PCIe
to JTAG)

Debug
Hub

User Responsibility

Vivado Solution

FPGA #2

JTAG

FPGA #1

Debug Core 1
……

Debug Core n

X17964-040517

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 45Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=45

From AXI to JTAG
This bridge type is intended for designs that use Xilinx Virtual Cable (XVC) to remotely debug an
FPGA or SoC device through Ethernet or other interfaces. In this mode, the Debug Bridge
receives XVC commands via AXI4-Lite interface to send over the JTAG pins to a target device.
For more information see the Debug Bridge LogiCORE IP Product Guide (PG245).

Figure 18: AXI to JTAG Debug Bridge

Target Board

Data Center

Zynq Processor
XVC Server AXI

hw_server

XVC over
TCP/IP

Debug
Bridge

(From AXI to
JTAG)

BSCAN

Debug
Hub

User Responsibility

Vivado Solution

FPGA #2

JTAG

Debug
Bridge

(From JTAG
to BSCAN)

FPGA #1

Debug IP 1
(eg ILA, VIO etc)……
Debug IP n
(eg ILA, VIO etc)

X17966-092816

XVC Server Implementation
You need to implement the XVC protocol to create an XVC server on the appropriate processor.

XVC Protocol
The XVC protocol allows Vivado IDE to communicate JTAG commands over ethernet to an
embedded system so that a target Xilinx device can be programmed and/or debugged. This
enables a vendor agnostic solution for debugging and programming a Xilinx device. Programming
capabilities include the same support as a traditional JTAG connection would provide. Debugging
capabilities include operability with Xilinx System Debugger (XSDB) or with Vivado Hardware
Debug IP.

The JTAG commands to the device are the same commands that would have been transferred to
the device if it were natively communicating with a programming cable or using a Digilent
module. This ensures functionality between all the existing Vivado Hardware Debug tools.

User XVC 1.0 Commands
The XVC 1.0 Protocol commands are summarized in the following table

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=46

Table 2: Description of XVC commands

Command Description
getinfo Command format:

getinfo:

This command gets the XVC Service version. The service returns the following string when it receives
"getinfo:"
xvcServer_v1.0:<xvc_vector_len>\n

<xvc_vector_len> is the max width of the vector that can be shifted into the service.

shift Command format:
shift:[num bits][tms vector][tdi vector]

This command shifts in num_bits using the byte vectors tms_vector and tdi_vector
num_bits is an integer in little-endian mode.
This represents the number of TCK clk toggles needed to shift the vectors out.
tms_vector is a byte sized vector with all the TMS shift bits.
Bit 0 in Byte 0 of this vector is shifted out first.
The vector is num_bits and rounds up to the nearest byte.
tdi_vector is like tms_vector but this represents all the tdi vectors to be shifted in.
This command returns a byte vector of the same size as tms_vector with the corresponding tdo bits
sampled for every bit shifted in.
Bit 0 in Byte 0 of this vector is the first tdo value read from the shift

settck Command format:
settck:[period]

This command attempts to set the service tck period to [period].
[period] is specified in ns.
This is a little-endian integer value
This command returns the applied period when it completes settck:.
Returned value is specified in ns.
This is a little-endian integer value

Initializing Vivado IDE hw_server
When Vivado IDE hw_server is initialized with an XVC connection Vivado IDE discovers the XVC
cable just like any USB cable. To do that, start the Vivado IDE hw_server with these arguments

hw_server -e "set auto-open-servers xilinx-xvc:localhost:10200"

The auto-open-servers option enables the XVC cable to be initialized by hw_server at start
up. You can initialize the hardware server to force a connection to an existing XVC cable. The
server will automatically discover the XVC cables in future connections.

The argument to auto-open-servers is as follows

xilinx-xvc:<xvc_host_name>:<xvc_port>

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=47

Multiple servers can be specified using comma separated strings. When the hardware server
starts, it attempts to establish connections to the specified XVC servers. Alternatively you can
provide the XVC server details when connecting to the target using the Vivado Hardware
Manager Open New Hardware Target wizard as shown in the following figure.

Figure 19: Open New Hardware Target Dialog

Click the Add Xilinx Virtual Cable button. This brings up the Add Virtual Cable dialog box as
shown in the following figure.

Figure 20: Add Virtual Cable Dialog

You will then provide the XVC Hostname and Port number to connect to.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=48

Refer to Xilinx Virtual Cable Running on Zynq-7000 Using the PetaLinux Tools (XAPP1251) for an
example of this.

This application note shows how to get a Xilinx Virtual Cable (XVC) server running on a
Zynq®-7000 device with a Linux operating system generated with the PetaLinux Tools. A
reference design is provided for the Avnet MicroZed board. The target device in this application
note is on an AC701 board and will be programmed and debugged by the MicroZed board
running XVC on Linux.

Note: For an example XVC server implementation over TCP/IP, refer to the following github repository:
https://github.com/Xilinx/XilinxVirtualCable.

Chapter 5: Remote Debugging in Vivado

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1251-xvc-zynq-petalinux.pdf
https://github.com/Xilinx/XilinxVirtualCable
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=49

Chapter 6

Programming Configuration
Memory Devices

The Vivado® device programmer feature enables you to directly program Xilinx® FPGA devices
via JTAG. Vivado can also indirectly program select Flash-based configuration memory devices
via JTAG. Do this by first programming the Xilinx FPGA device with a special configuration that
provides a data path between JTAG and the Flash device interface followed by programming the
configuration memory device contents using this data path.

The Vivado device configuration feature enables you to directly configure Xilinx FPGAs or
Memory Devices using either Xilinx or Digilent cables. See Connecting to a Hardware Target
Using hw_server for a list of appropriate cables. Operating in Boundary-Scan mode, Vivado can
configure or program Xilinx FPGAs, and Configuration Memory Devices.

Refer to Appendix D for a complete list of configuration memory devices supported by Vivado.

To program and boot from a Configuration Memory Device in Vivado follow the steps below.

1. Generate bitstreams for use with configuration memory devices.

2. Create a Configuration Memory File (.mcs or .bin).

3. Connect to the Hardware target in Vivado.

4. Add the configuration memory device.

5. Program the configuration memory device using the Vivado IDE.

6. Boot the FPGA device (optional).

Related Information
Connecting to a Hardware Target Using hw_server
Configuration Memory Support

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=50

Generate Bitstreams for use with
Configuration Memory Devices

On the synthesized or implemented design select Tools → Edit Device Properties to open the
Edit Device Properties dialog as shown below

On the synthesized or implemented design, from Flow Navigator, select Settings → Bitstream,
and click the settingsConfigure additional bitstream link to open the Edit Device Properties
dialog as shown below.

Figure 21: Edit Device Properties: Search Field

Use the search field in the upper left of the dialog box to search for all SPI or BPI related fields
and select the appropriate option settings. See Appendix A for the device configuration settings.

Related Information
Device Configuration Bitstream Settings

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=51

Creating a Configuration Memory File
Use the write_cfgmem Tcl command to create the .mcs or .bin programming file. This file will
be used in programming the configuration memory device.

For example, to generate an .mcs file for a single 1 Gbit BPI configuration memory device:

write_cfgmem -format mcs -interface bpix16 -size 128 \
 -loadbit "up 0x0 design.bit"-file design.mcs

Note: The -size argument to write_cfgmem is in megabytes, different from flash device capacity which
is based on megabits. Hence, a 1 Gbit sized flash device is provided as 128 megabytes to write_cfgmem
in the example above. Note that write_cfgmem automatically sizes the configuration memory file to the
size of the bitstream.

Vivado IDE supports the ability to chain multiple .bit files together using the write_cfgmem
command. To generate an .mcs file for a single 1 Gbit BPI configuration memory device
containing multiple bitstreams:

write_cfgmem -format mcs -interface bpix16 -size 128 \
 -loadbit "up 0 design1.bit up 0xFFFFF design2.bit" \
 -file design1_design2.mcs

For more information on write_cfgmem command refer to the Vivado Design Suite Tcl Command
Reference Guide (UG835).

TIP: You can create configuration memory files in Vivado Lab Edition.

You can also create the Configuration Memory file in Vivado IDE. Click on Tools → Generate
Memory Configuration File. This will bring up the Write Memory Configuration File dialog box as
shown below.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 52Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_cfgmem
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_cfgmem
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=52

Figure 22: Write Memory Configuration File

Select the relevant format and options, and click OK to generate the configuration memory file.

Creating a Configuration Memory File for SPI
Dual Quad (x8) Devices

You can use the write_cfgmem Tcl command to generate .mcs images for a dual Quad SPI (x8)
device. This command automatically splits the configuration data into two separate .mcs files.

Note: The size specified when generating the .mcs for SPIx8 is the total size of the two Quad Flash
devices.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=53

Note: The write_cfgmem Tcl command divides the start address by 2 when building .mcs files for dual
quad SPI (x8) mode.

Example write_cfgmem Usage
This example shows how to generate the .mcs files for a multiboot design with the "golden"
bitstream loaded at address 0 and the multiboot bitstream loaded at address 0x0100_0000.

Devices: 2x 256 Mib Quad SPI Flash devices: 256 Mib = 32 MiB

Total storage size: 2 * 32 MiB = 64 MiB

Load addresses:

 Golden: 0 * 2 = 0

 Multiboot: 0x0100_0000 * 2 = 0x0200_0000

 write_cfgmem -format mcs -interface spix8 -size 32 \
 -loadbit "up 0 ./design1_spix8.bit up 0x02000000 ./design2_spix8.bit" \
 -file design1_design2_spix8.mcs

Connect to the Hardware Target in Vivado
To connect to a hardware target in Vivado, do the following:

1. Ensure the appropriate configuration mode (Master SPI or Master BPI) is selected on the
FPGA mode pins of the hardware target to configure the FPGA from a configuration memory
device.

For more information, see the appropriate Configuration User Guide for the device you are
targeting.

2. Follow the steps in Programming the FPGA Device to connect to the hardware target.

IMPORTANT! If the board is powered off or cable disconnected, Vivado IDE closes the hardware target. Any
Vivado operation in the main Vivado thread is also canceled.

Related Information
Programming the Device

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=54

Adding a Configuration Memory Device
To add the configuration memory device to a hardware target in Vivado device programmer, do
the following:

1. After connecting to the hardware target as outlined above, add the configuration memory
device by right-clicking the hardware target as shown below and selecting Add Configuration
Memory Device.

On clicking on this menu item the Add Configuration Memory Device dialog box opens as
shown.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=55

2. Select the appropriate configuration memory part and click OK.

TIP: Use the Search field to pare down the list using Vendor, Density, or Type information.

The configuration memory device is now added to the hardware target device.

Programming a Configuration Memory Device
1. After creating the configuration memory device, Vivado device programmer prompts "Do you

want to program the configuration memory device now?" as shown below.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=56

Click OK to open the Program Configuration Memory Device dialog box.

2. Set all the fields in this dialog box appropriately:

• Configuration file (.mcs or .bin) - Specifies the file to use for programming the
configuration memory device. The memory configuration file is created with the
write_cfgmem Tcl command. See Creating a Configuration Memory File for more
information.

• State of non-config mem I/O pins:

○ Pull-none - Specifies that the indirect configuration bitstream programmed into the
FPGA has the unused I/O pins set to pull-none.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=57

○ Pull-up - Specifies that the indirect configuration bitstream programmed into the FPGA
has the unused I/O pins set to pull-up.

○ Pull-down - Specifies that the indirect configuration bitstream programmed into the
FPGA has the unused I/O pins set to pull-down.

IMPORTANT! Ensure the state of non-config mem I/O pins matches what you set in the write_bitstream
properties. The default value for this property is pull-down.

• Program Operations (performed on the configuration memory device):

○ Address Range - Specifies the address range of the configuration memory device to
program. The address range values can be:

- Configuration File Only - Use only the address space required by the memory
configuration file to erase, blank check, program, and verify.

- Entire Configuration Memory Device - Erase, blank check, program, and verify will
be performed on the entire device.

• RS Pins - Optional. Revision Select Pin Mapping that is used with BPI configuration
memory devices only (where the upper two FPGA address pins on the flash are tied to the
FPGA RS[1:0]). When the option is enabled, Vivado drives the FPGA RS[1:0] for
programming. Refer to the appropriate FPGA Configuration User Guide on application
usage.

• Erase - Erases the contents of the configuration memory device.

• Blank Check - Checks the configuration memory device to make sure the device is void of
data prior to programming.

• Program - Programs the configuration memory device with the specified Configuration
File (.mcs or .bin).

• Verify - Verifies that the configuration memory device contents match the Configuration
File (.mcs or .bin) after programming.

• Verify Checksum - Validates the data programmed in the configuration memory device.
The tool calculates the checksum value based on the data programmed in the
configuration memory device and compares it to the checksum value specified in
the .prm file.

TIP: User generates cfgmem file and specifies -checksum write_cftmem  option. This step creates
the .prm  files that contain checksum information about the cfgmem output file.

• Create SVF Only - Enabling this option allows for the creation of an .svf file with the
program operations that you specified. Other third party tools can use the .svf file to
program configuration memory devices outside of Vivado.

IMPORTANT! When this option is enabled, Vivado just generates the .svf file with the relevant program
options. It does not actually program the configuration memory device.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=58

3. Click OK to start the Erase, Blank Check, Program, and Verify operations on the configuration
memory device per the selections in this dialog box. Vivado notifies you as each operation
finishes.

Note: Pressing Apply will store the configuration memory settings but will not program the
configuration memory device. If you press Cancel after pressing Apply the configuration memory
device will be set and programming can be performed at a later time.

Related Information
Creating a Configuration Memory File

Booting the Device
After programming the configuration memory device, you can issue a soft boot operation (i.e.,
JPROGRAM) to initiate the FPGA configuration from the attached configuration memory device.
If you want to perform a Boot operation on the target FPGA device select the target device and
right-click and select Boot from Configuration Memory Device.

Figure 23: Boot from Configuration Memory Device

IMPORTANT! There can be situations after booting from configuration memory where the debug cores do not
show up immediately due to system boot up considerations. Xilinx recommends that you wait for the specified
time period as appropriate using the boot_hw_device  Tcl command in the Vivado Hardware Manager Tcl
Console, as shown below:

boot_hw_device after 1000 [refresh_hw_device]

 Where the 1000 can be the specified by you as the max "wait_on" value.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=59

Configuration Failures in Master Mode
Configuration failures can occur when a board is in Master BPI or Master SPI mode and the JTAG
cable is connected to the Vivado Hardware Manager. When the Hardware Manager polling and
recover feature interrupts the Master mode configuration, intermittent configuration failures
occur on power up. To avoid this issue, set the following parameter in the Vivado Hardware
Manager Tcl console to ensure that the configuration status registers are not updated:

set_param xicom.allow_cfgin_commands false

Note: This parameter affects all devices in the chain.

Chapter 6: Programming Configuration Memory Devices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=60

Chapter 7

Advanced Programming Features

Readback and Verify
Bitstream Verify and Readback
Vivado® IDE can verify and/or readback the configuration data (i.e., .bit file) downloaded into
an FPGA. When using write_bitstream to generate the .bit file, use the -mask_file
option to create a corresponding mask (.msk) file. Run write_bitstream-help in the Vivado
IDE Tcl Console for details on bitstream generation options.

When performing a verify operation, the verify_hw_devices Tcl command reads data back
from the FPGA and uses the .msk file to determine which readback data bits to skip and which
ones to compare against the corresponding bits in the .bit file.

Following is an example of a bitstream verify Tcl command sequence (the .bit and .msk files
were generated by a previous call to write_bitstream):

create_hw_bitstream -hw_device [current_hw_device] \
 -mask kcu105_cnt_ila_uncmpr.msk kcu105_cnt_ila_uncmpr.bit
verify_hw_devices [current_hw_device]

You can use the Vivado Hardware Manager to verify the configuration data. Right click the
device, select Verify Device as shown below.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=61

Figure 24: Verify Device Selection

This opens up the Verify Device dialog box.

Figure 25: Verify Device Dialog

You need to enter the bit file and corresponding mask (.msk) file. Click Verify to execute the
verification.

Use the readback_hw_device Tcl command with at least one of the following options to read
back the FPGA configuration data:

• To save readback data in ASCII format:

-readback_file <filename.rbd>

• To saves readback data in binary format:

-bin_file <filename.bin>

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=62

Example: Readback FPGA configuration data in both ASCII and binary formats:

readback_hw_device [current_hw_device] \
 -readback_file kcu105_cnt_ila_uncmpr_rb.rbd \
 -bin_file kcu105_cnt_ila_uncmpr_rb.bin

1. Bitstream, and readback operations are done through the Tcl Console.

2. Verify and readback operations do not work for FPGAs programmed with encrypted
bitstreams. Encrypted bitstreams contain commands that disable readback. Readback is re-
enabled by pulsing the FPGA PROG pin, or if the FPGA/board is powered down and powered
back up again.

3. The data readback using readback_hw_device contains configuration data only (no
configuration commands are included).

For more information on the readback and mask files, see the "Verifying Readback Data" section
in the UltraScale Architecture Configuration User Guide (UG570) or the 7 Series FPGAs Configuration
User Guide (UG470).

Configuration Memory Verify and Readback
You can convert a bitstream file (.bit) to an .mcs or .bin file and then program it into a
configuration memory device, such as serial/SPI or parallel/BPI flash, via the write_cfgmem
command. See theVivado Design Suite Tcl Command Reference Guide (UG835) for details.

Verify the configuration memory device through the Vivado Design Suite Hardware Manager as
shown in the following figure.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xreadback_hw_device
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_cfgmem
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=63

Figure 26: Configuration Memory Verification

You can also verify the configuration memory device by setting the appropriate HW_CFGMEM
properties and calling program_hw_cfgmem as shown in the following code:

set_property PROGRAM.ADDRESS_RANGE {use_file} [get_property
PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.FILES [list "H:/projects/k7_led/
k7_led_325t_afx_x16_33v.mcs"] \
[get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.BPI_RS_PINS {none} [get_property PROGRAM.HW_CFGMEM
[lindex [get_hw_devices] 0]]
set_property PROGRAM.UNUSED_PIN_TERMINATION {pull-none} [get_property \
PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.BLANK_CHECK 0 [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]
set_property PROGRAM.ERASE 0 [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]
set_property PROGRAM.CFG_PROGRAM 0 [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]
set_property PROGRAM.VERIFY 1 [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]
startgroup
if {![string equal [get_property PROGRAM.HW_CFGMEM_TYPE [lindex
[get_hw_devices] 0]] [get_property MEM_TYPE
[get_property CFGMEM_PART [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]]]] } \
{ create_hw_bitstream -hw_device [lindex [get_hw_devices] 0] [get_property
PROGRAM.HW_CFGMEM_BITFILE \

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 64Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xprogram_hw_cfgmem
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=64

[lindex [get_hw_devices] 0]]; program_hw_devices [lindex [get_hw_devices]
0]; };
program_hw_cfgmem -hw_cfgmem [get_property PROGRAM.HW_CFGMEM [lindex
[get_hw_devices] 0]]
endgroup

The contents of the configuration memory can be readback through the Vivado Design Suite Tcl
Console using the following command sequence:

readback_hw_cfgmem -file test.bin -hw_cfgmem \
 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]

Note: Perform configuration memory readback operations through the Tcl Console only.

For more information on these features, see the UltraScale Architecture Configuration User Guide
(UG570) or the 7 Series FPGAs Configuration User Guide (UG470).

Generating Encrypted and Authenticated Files
for 7 Series Devices

Note: For additional information please refer to Using Encryption to Secure a 7 Series FPGA Bitstream
(XAPP1239).

To generate an encrypted bitstream, open an implemented design in Vivado IDE. From the main
toolbar Select Flow → Bitstream Settings to make the Settings dialog box appear. At the top of
the dialog box click Configure Additional Bitstream Settings.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=65

Figure 27: 7 Series Settings

This brings up the Edit Device Properties dialog box. Select Encryption in the left-hand pane.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=66

Figure 28: 7 Series Configure Encryption Settings

In the Edit Device Properties dialog box, specify the encryption and key settings:

• Encryption Settings

○ Set Enable Bitstream Encryption to YES.

○ Set Select location of encryption key to either BBRAM or EFUSE.

- The key location will be embedded in the encrypted bitstream.

- When the encrypted bitstream is downloaded to the device, it instructs the FPGA to use
the key loaded into the BBR or the eFUSE key register to decrypt the encrypted
bitstream.

• Key Settings

○ Specify HMAC authentication key and Starting cipher block chaining (CBC) value.

- If these values are unspecified, Vivado generates a random value for you.

- These values will be embedded in the encrypted bitstream and do not have to be
programmed into the FPGA.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=67

Note: These values will be stored in the current project constraints file unless an input encryption file
is specified. To avoid storing this value in the constraints file, specify the input encryption file.

○ Specify the AES encryption key to use when encrypting the bitstream. You can use up to
64 hex characters to specify the 256-bit key.

- The key will be written to a file with the .nky file extension. Use this file when loading
the key into the BBR or when programming the key into the eFUSE key register.

Note: These values will be stored in the current project constraints file unless an input encryption file
is specified. To avoid storing this value in the constraints file, specify the input encryption file.

○ Specify Input encryption file.

- Specify an existing .nky file to obtain the encryption key settings. This field is optional
and can be omitted if specifying the AES, HMAC and CBC manually.

After specifying the encryption settings, click OK to apply the settings to the project and
regenerate your bitstream. Upon successful completion of the write_bitstream operation
you will have a programming file along with a .nky, encryption file.

Generating Encrypted and Authenticated Files
for UltraScale and UltraScale+

Note: For additional information please refer to

Using Encryption and Authentication to Secure an UltraScale/UltraScale+ FPGA Bitstream (XAPP1267)

To generate an encrypted bitstream, open an implemented design in Vivado IDE. From the main
toolbar select Flow → Bitstream Settings to make the Settings dialog box appear. At the top of
the dialog box, click Configure Additional Bitstream Settings

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=68

Figure 29: UltraScale and UltraScale+ Configure Additional Bitstream Settings

This brings up the Edit Device Properties dialog box. Select Encryption in the left-hand pane.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=69

Figure 30: UltraScale Configure Encryption Settings

In the Edit Device Properties dialog box, specify the Encryption Settings and Key Settings:

• Encryption Settings

○ Set Enable Bitstream Encryption to YES.

○ Set Select location of encryption key to either BBRAM or EFUSE.

- The key location is embedded in the encrypted bitstream.

- When the encrypted bitstream is downloaded to the device, it instructs the FPGA to use
the key loaded into the BBR or the eFUSE key register to decrypt the encrypted
bitstream.

○ Set Enable obfuscated key load to either ENABLE or DISABLE.

- When enabled, this user generated key is encrypted before being stored in the BBRAM.
If disabled, then the key is stored "as is" in the BBRAM.

• Key Settings

○ Specify the Starting AES encryption key (key0) to use when encrypting the bitstream. You
can use up to 64 hex characters to specify the 256-bit key.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=70

- The key will be written to a file with an .nky file extension. Use this file when loading
the key into the BBR or when programming the key into the eFUSE key register.

○ Note: This value will be stored in the current project constraints file unless an input encryption file is
specified. To avoid storing this value in the constraints file, specify the input encryption file.

○ Specify Input encryption file.

- Specify an existing .nky file to obtain the encryption key settings. This field is optional
and can be omitted if specifying the AES, HMAC, and CBC manually.

○ Specify Number of encryption blocks per key and Number of frames per AES-256 key.

- The number of encryption blocks and frames are used to specify how many sections a
bitstream will be broken into with distinct keys.

○ Specify Starting AES initial vector (IV0) value.

- Initialization vector for the first key. Note that each key needs a separate initialization
vector value that can be supplied through the input encryption file.

○ Note: This value will be stored in the current project constraints file. To avoid storing this value in the
constraints file, specify the input encryption file.

○ Specify Starting obfuscate initial vector (Obfuscate IV0) value.

- Initialization vector for the obfuscated key.

○ Note: This value will be stored in the current project constraints file. To avoid storing this value in the
constraints file, specify the input encryption file.

For authentication settings select Authentication in the left-hand pane

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=71

Figure 31: Edit Device Properties - Authentication

In the Edit Device Properties-Authentication dialog box, specify the encryption and key settings
as follows:

• Authentication Settings

○ Set Enable Bitstream Authentication to YES.

○ Specify the Input file containing RSA Private Key.

Provide an RSA private key file after specifying the encryption and authentication settings,
Click OK to apply the settings to the project. Re-run Implementation and regenerate the
bitstream file. Upon successful completion of the write_bitstream operation, the
generated .nky encryption key file appears in the same directory as the encrypted bitstream
file.

You can protect IP in bitstreams by encrypting the bitstreams with a 256-bit Advanced
Encryption Standard (AES) key, and downloading the bitstreams to run only on authorized
FPGAs. Do this by programming the 256-bit key into the BBR register of the authorized FPGAs
before downloading the encrypted bitstream.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=72

Programming the AES Key for 7 Series Devices
To program the AES key into the BBR, right-click the FPGA device in the Hardware window, and
select Program BBR Key.

Figure 32: Program the BBR Key

In the Program BBR Key dialog box, specify the AES key (.nky) file by typing the file name or
navigating to the desired file. After specifying a valid .nky file, the AES key field automatically
fills in. Click OK, to have the Hardware Manager program/load the key into the BBR.

Figure 33: Program BBR Key - 7 Series

After programming the key, program the FPGA with an encrypted bitstream that:

• was encrypted using the same AES key as was loaded into BBR.

• had BBRAM selected as the specified encryption key location.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=73

Clearing the AES Key for 7 Series Devices
To clear the AES key manually, disconnect the Vbatt pins and power-cycle the board.

Note: Pressing or pulsing the PROG pin when the board/FPGA is powered up will not clear the BBR
register.

Alternatively, you can clear the AES key in Vivado IDE by right-clicking the FPGA device in the
Hardware window, selecting Clear BBR Key

Figure 34: Clearing the AES Key for 7 Series Devices

When the Clear BBR Key dialog box appears, click OK to clear the key from the device

Figure 35: Clear BBR Key Dialog Box

IMPORTANT! When verify_hw_devices  is performed on the BBR key, an error will be shown. To verify
the BBR key, the user should test this by programming the FPGA with a bitstream that has the key. Vivado does
not support any post BBR program verify option to verify the programmed BBR key.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=74

Programming the AES Key for UltraScale and
UltraScale+ Devices

To program the AES key into the BBR, right-click the FPGA device in the Hardware window, and
select Program BBR Key.

Figure 36: Program the BBR Key from Hardware Window

The Program BBR Key dialog box appears.

Figure 37: Program BBR Key - UltraScale and UltraScale+

In the Program BBR Key dialog box, specify the AES key file (.nky) and Enable DPA PROTECT:

• AES key file (.nky)

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=75

○ Specify the AES key file (.nky) by typing the file name or navigating to the desired file. After
specifying a valid .nky file, the AES key field automatically fills in.

• Enable DPA PROTECT

○ Check the Enable DPA PROTECT check box.

○ Specify the DPA_COUNT value. The valid range is 1-256 when enabled.

Note: For more details on the BBR AES key and DPA_PROTECT feature refer to the UltraScale
Architecture Configuration User Guide (UG570).

Click OK, to have the Hardware Manager program load the key into the BBR.

After programming the key, program the FPGA with an encrypted bitstream that:

• was encrypted using the same AES key as was loaded into BBR.

• had BBRAM selected as the specified encryption key location.

IMPORTANT! For UltraScale devices, if you download an encrypted bitstream (which uses the BBR as the key
source) before programming the key into the BBR register, the FPGA device will lock up and you will not be able
to load the BBR key. You can still download unencrypted bitstreams, but you will not be able to download
encrypted bitstreams because the FPGA device will prevent you from downloading a key into BBR. You must
power-cycle the board to unlock the UltraScale device and then reload the BBR key.

IMPORTANT! When verify_hw_devices  is performed on the BBR key, an error will be shown. To verify
the BBR key, the user should test this by programming the FPGA with a bitstream that has the key. Vivado does
not support any post BBR program verify option to verify the programmed BBR key.

Clearing the AES Key for UltraScale, and UltraScale+
Devices
To clear the AES key manually, disconnect the Vbatt pins and power-cycle the board.

Note: Pressing or pulsing the PROG pin when the board/FPGA is powered up will not clear the BBR
register.

Alternatively, you can clear the AES key in Vivado IDE by right-clicking the FPGA device in the
Hardware window, selecting Clear BBR Key

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 76Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=76

Figure 38: Clearing the AES Key for UltraScale, and UltraScale+ Devices

When the Clear BBR Key dialog box appears, click OK to clear the key from the device

Figure 39: Clear BBR Key Dialog Box

eFUSE Register Access and Programming
7 Series, UltraScale, and UltraScale+ devices have one-time programmable bits called eFUSE bits
that perform specific functions. The different eFUSE bit types are as follows:

• FUSE_DNA - Stores unique device identifier bits (non-programmable).

• FUSE_USER - Stores a 32-bit user-defined code.

• FUSE_KEY - Stores a key for use by the AES bitstream decryptor.

• FUSE_CNTL - Controls key use and read/write access to eFUSE registers.

• FUSE_SEC - Controls special device security settings in UltraScale and UltraScale+ devices.

IMPORTANT! Programming eFUSE register bits is a one-time only operation. Once eFUSE register bits are
programmed (i.e., from unprogrammed state 0 to programmed 1 state), they cannot be reset to 0 and/or
programmed again. You should take great care to double-check your settings before programming any eFUSE
registers.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=77

CAUTION! If any eFUSE register bits have been previously programmed (i.e., from unprogrammed state 0 to
programmed state 1) and an attempt is made to program them again, the Vivado hardware manager issues a
critical warning indicating that some bits have already been programmed. However, despite this warning,
subsequent eFUSE register bits that have not been programmed during the previous operation (in
unprogrammed state 0) will be programmed.

IMPORTANT! Xilinx recommends programming the FUSE_USER, FUSE_KEY, and FUSE_RSA registers first,
then rerunning the eFUSE programming wizard to program the FUSE_SEC bits to control the FPGA security
settings, and then finally, the FUSE_CNTL bits to control read/write access to these eFUSE bits.

Cable Support for eFUSE Programming
The list of compatible JTAG download cables and devices that support efuse programming are:

• Xilinx® SmartLynq Data Cable (HW-SMARTLYNQ-G/DLC20)

• Xilinx Platform Cable USB II (DLC10)

• Digilent JTAG-HS1

• Digilent JTAG-HS2

• Digilent JTAG-HS3

eFUSE Register Access and Programming for 7
Series Devices

FUSE_DNA: Unique Device DNA
Each 7 Series device has a unique device ID called device DNA that has already been
programmed into it by Xilinx. 7 Series devices have a 64-bit DNA. You can read these bits by
running the following Tcl command in the Vivado Design Suite Tcl Console:

get_property [lindex [get_hw_device] 0] REGISTER.EFUSE.FUSE_DNA

You can also access the device DNA by viewing the eFUSE registers in the Hardware Device
Properties window in Vivado Design Suite as shown in the following Figure.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=78

Figure 40: eFUSE DNA

For more information on these features, see the 7 Series FPGAs Configuration User Guide (UG470).

Programming the eFUSE Registers
To program the eFUSE registers, right-click the FPGA device in the Hardware window, select
Program eFUSE Registers.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 79Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=79

Figure 41: Select Program eFUSE Registers

The Program eFUSE Registers wizard appears as shown in the following figure, and guides you to
set the various options for the eFUSE registers.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=80

Figure 42: Program eFUSE Registers Wizard

In the AES Key Setup pane, specify the following settings:

Figure 43: eFUSE AES Key Setup

• AES Key file

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=81

○ Specify the AES key file (.nky) by typing the file name or navigating to the desired file.
After specifying a valid .nky file, the AES key field automatically fills in.

• USER bits [7:0] and USER bits [31:8]

○ The USER eFUSEs bits are provided to allow users to program their own special 32-bit
pattern. The lower eight FUSE_USER bits are programmed at the same time as the 256-bit
Advanced Encryption Engine (AES) key. The upper 24 user bits can be programmed
concurrently with AES key or at a later time

In the Control Register Settings pane, specify the following settings:

Figure 44: Control Register Setup

• CFG_AES_Only: When set, forces the use of the stored AES key.

• AES_Exclusive: When set, disables use of partial reconfiguration.

• W_EN_B_Key_User: When set, disables programing of AES key and User register.

• R_EN_B_Key: When set, disables reading of AES key.

• R_EN_B_User: When set, disables reading of user code.

• W_EN_B_Cntl: When set, disables programing of this control register.

For more information on these features, see the 7 Series FPGAs Configuration User Guide (UG470).

Review the eFUSE settings in the Program eFUSE Registers Summary page.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=82

Figure 45: Program eFUSE Registers Summary

All bits set in the Program eFUSE Registers wizard panels are shown in this pane. In this pane you
will see individual bit settings in order to review the specific programming settings. Review this
summary page carefully to ensure every bit that is intended to be programmed is set.

Click Finish to bring up the Program eFUSE confirmation dialog box:

Figure 46: Program eFUSE Confirmation

Click OK the to program the specified fuse bits.

Forcing eFUSE Programming
To force any bit to be set regardless of where it is in the register or whether it has been
previously programmed the -force_efuse option to program_hw_devices can be used.
When used, only basic register boundary checking will occur.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=83

eFUSE Register Access and Programming for
UltraScale and UltraScale+ Devices

FUSE_DNA: Unique Device DNA
Each UltraScale device has a unique device ID called device DNA that has already been
programmed into it by Xilinx. The FUSE_DNA is not user programmable. UltraScale devices have
a 96-bit DNA. You can read the FUSE_DNA by running the following Tcl command in the Vivado
Design Suite Tcl Console:

get_property [lindex [get_hw_device] 0] REGISTER.EFUSE.FUSE_DNA

You can also access the device DNA by viewing the eFUSE registers in the Hardware Device
Properties window in Vivado Design Suite as shown in the following figure.

Figure 47: eFUSE DNA UltraScale, UltraScale+

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=84

For more information on these features, see the UltraScale Architecture Configuration User Guide
(UG570).

Programming the eFUSE Registers
To program the eFUSE registers, right-click the FPGA device in the Hardware window, select
Program eFUSE Registers.

Figure 48: Select Program eFUSE Registers UltraScale, UltraScale+

The Program eFUSE Registers wizard appears as shown in the following figure, and guides you to
set the various options for the eFUSE registers.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 85Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=85

Figure 49: Program eFUSE Registers Wizard

In the AES Key Setup pane, specify the following settings:

Figure 50: eFUSE Cryptographic Key Setup

In the Cryptographic Key Setup wizard pane, specify these key settings:

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=86

• Cryptographic file key (.nky): Specify a .nky file containing eFUSE AES and RSA keys

• AES Key (256-bit): The 256-bit AES eFUSE key read in from specified .nky file used to
decrypt loaded encrypted bitstream.

• RSA Key Digest (384-bit): The 384-bit RSA eFUSE key read in from specified .nky file used
by RSA.

• In the USER Register Setup wizard pane, specify the 32 bit USER or 128 bit USER register

Figure 51: eFUSE USER Register Setup

In the USER register setup pane specify user define register bits. The 32 bit USER (FUSE_USER)
and 128 bit USER register (FUSE_USER128) registers are a set of user defined one-time
programmable eFUSE bits. The bits of these registers are cumulatively programmable. This
means that if you program only one USER bit in an eFUSE programming session (e.g., USER =
0x0000_0001 or bit 0), then on subsequent eFUSE programming sessions you can program any
of the remaining 0 bits (e.g., USER = 0x0000_0002 or bit 1).

After programming the FUSE_USER and FUSE_USER_128 registers, these registers can be read
in several ways:

• Using the Tcl command

report_property [lindex [get_hw_device] 0] REGISTER.EFUSE.FUSE_USER
report_property [lindex [get_hw_devices] 0] REGISTER.EFUSE.FUSE_USER_128

• Through the Vivado Hardware Device Properties window after running a
refresh_hw_device operation.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=87

In the Control Register Setup wizard pane, specify the following settings:

Figure 52: Control Register Setup Pane

In the Control Register Setup pane, specify the eFUSE control settings.

• R_DIS_KEY: When set, disables CRC check that verifies the key & programming of the
FUSE_KEY encryption key.

• R_DIS_USER: When set, disables reading and programming the 32 bit user bits (FUSE_USER).

• R_DIS_SEC: When set, disables reading and programming of the security register bits
(FUSE_SEC).

• R_DIS_RSA: When set, disables reading and programming of the RSA key register (FUSE_RSA).

• W_DIS_USER: When set, disables programming of the 32 bit user bits (FUSE_USER).

• W_DIS_SEC: When set, disables programming of the security register bits (FUSE_SEC).

• W_DIS_RSA: When set, disables programming of the RSA key register (FUSE_RSA).

• W_DIS_USER_128: When set, disables programming of the 128 bit user bits
(FUSE_USER128).

For more details on the FUSE_SEC register refer to the UltraScale Architecture Configuration User
Guide (UG570).

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 88Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=88

Disabling Control Registers Setup

To disable the Control Register programming, run the following Tcl command:

program_hw_devices -control_efuse {20} [lindex [get_hw_devices] $deviceIdx]

Where $deviceIdx is set to the index of the UltraScale or UltraScale+ device on which you are
disabling the eFUSE Control Register bit programming.

This sets the W_DIS_CNTL bit, which in turn disables further eFUSE Control Register bit
programming.

IMPORTANT! If the W_DIS_CNTL  bit is programmed, the programming of other eFUSE control register bits is
disabled, preventing future edits to the control register of the device.

In the Security Register Setup wizard pane, specify the following settings:

Figure 53: eFUSE Security Register Setup

In the Security Register Setup wizard pane specify security control options over the type of
bitstreams allowed to load on the FPGA. The FUSE_SEC settings are:

• CFG_AES_Only: When set, only accept encrypted bitstreams.

• EFUSE_KEY_Only: When set, only the eFUSE key can be used for decryption.

• RSA_AUTH: When set, forces RSA Authentication of bitstreams.

• SCAN_DISABLE: When set, disables Xilinx access to internal test registers.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=89

• CRYPT_DISBALE: When set, permanently disables the decryptor.

For more details on the FUSE_SEC register refer to the UltraScale Architecture Configuration User
Guide (UG570).

Review the eFUSE settings in the Program eFUSE Registers Summary pane.

Figure 54: Program eFUSE Registers Summary

All bits set in the Program eFUSE Registers wizard panels are shown in this pane. In this pane you
will see individual bit settings in order to review the specific programming settings. Carefully
review this summary page to ensure every bit that is intended to be programmed is set.

Click Finish to bring up the Program eFUSE confirmation dialog box:

Figure 55: Program eFUSE Confirmation Dialog

Click OK the to program the specified fuse bits.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 90Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=90

Disabling the JTAG interface
To disable the JTAG interface through the eFUSE registers, run the following Tcl command:

program_hw_devices -force_efuse -security_efuse {08} [lindex
[get_hw_devices] $deviceIdx]

Where $deviceIdx is set to the index of the UltraScale or UltraScale+ device that will have its
JTAG interface disabled.

IMPORTANT! The Tcl command to disable the JTAG interface for 7-series differs from command used above
for UltraScale or UltraScale+ devices. If a 7 series device is used, see the entry for
XSK_EFUSEPL_DISABLE_JTAG_CHAIN  listed in Xilinx Answer Record 65110.

Note: This programming step should be performed as the last and final step after all desired eFUSE bits
have been programmed.

IMPORTANT! If the JTAG Disable bit is programmed, the JTAG interface will be disabled, preventing future test
and configuration access to the device. This bit should only be programmed if JTAG access to the device is no
longer required.

Forcing eFUSE Programming
To force any bit to be set regardless of where it is in the register or whether it has been
previously programmed the -force_efuse option to program_hw_devices can be used.
When used, only basic register boundary checking will occur.

eFUSE NKZ File
In order to capture all eFUSE programming settings in one file, and so make it easier to export
eFUSE settings to other eFUSE programmer implementations, as well as to mass-program the
same eFUSE settings into many devices, Xilinx has defined a file format called NKZ, designated
by the file extension .nkz. The NKZ format is a superset of the existing NKY format; that is,
NKZ supports all NKY fields as well as any programmable eFUSE register settings.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 91Send Feedback

https://www.xilinx.com/support/answers/65110.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=91

eFUSE Export NKZ File
Because you are advised to program eFUSE settings in multiple passes, eFUSE settings are
always exported to an externally visible NKZ file, which is updated during each eFUSE operation.
The intent of this file is to accumulate all eFUSE settings applied to a device, even if they are
applied over multiple eFUSE operations. This file is tracked by Vivado so that there is always a
single eFUSE export file containing a device's cumulative eFUSE settings in NKZ format. If no
options are specified, the default name of this file is:

export_<FUSE_DNA>.nkz

where <FUSE_DNA> is the FUSE_DNA register value of the device.

This default file is located in the launch directory of the Vivado® IDE. You can change this file by
using the -efuse_export_file option on the program_hw_devices Tcl command, as in
the following example:

program_hw_devices -user_efuse {1} -efuse_export_file {my_settings.nkz}

Vivado IDE then starts using the specified NKZ file for exported eFUSE settings without having
to repeatedly specify this file in the Tcl options. Any previously created eFUSE export file will not
be removed; it will contain all eFUSE settings applied prior to changing the eFUSE export file
name. After all eFUSE operations are performed, all eFUSE settings are stored in the current
eFUSE export file.

There is also an option to only export eFUSE settings instead of actually programming the device.
This can be useful for creating an NKZ file containing all desired eFUSE settings without affecting
the device. In addition, any eFUSE programming mistakes made in this mode can easily be
corrected by simply removing the eFUSE export file and starting over. This export-only mode can
be utilized with the following Tcl command:

program_hw_devices -user_efuse {1} -only_export_efuse

This option applies only to each individual command, so the option must be used in every eFUSE
operation to keep the device from being programmed. Since eFUSE settings are always exported
to an NKZ file regardless of whether or not programming occurs, Xilinx highly recommends that
you not intermix the programming flow with the export-only flow. Otherwise, the resulting
eFUSE export file may contain a mix of eFUSE settings actually programmed into the device and
those only exported to the NKZ file, which makes the true state of the eFUSE registers in the
device unclear. Using this export-only mode, the same exact eFUSE export file in NKZ format is
created as in the programming case, but no programming is performed on the device.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=92

System Monitor
The System Monitor (SYSMON) Analog-to-Digital Converter (ADC) measures die temperature
and voltage on the hardware device. The SYSMON monitors the physical environment via on-
chip temperature and supply sensors. The ADC provides a high-precision analog interface for a
range of applications.

Refer to the following for more information on specific device architecture:

• UltraScale Architecture System Monitor User Guide (UG580)

• 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User
Guide (UG480)

Figure 56: System Monitor

The hw_sysmon data is stored in dedicated registers called status registers accessible through the
hw_sysmon_reg object. You can get the contents of the System Monitor registers by using the
get_hw_sysmon_reg command.

Every device that supports the System Monitor automatically has one or more hw_sysmon
objects created when refresh_hw_device is called. When the hw_sysmon object is created,
it is assigned a property for all the and voltage registers, as well as the control registers. On the
hw_sysmon object, the values assigned to the temperature and voltage registers are already
translated to Celsius/Fahrenheit and Volts.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 93Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug480_7Series_XADC.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=93

Although you can use the get_hw_sysmon_reg command to access the hex values stored in
registers of a System Monitor, you can also retrieve values of certain registers as formatted
properties of the hw_sysmon object. For example, the following code retrieves the
TEMPERATURE property of the specified hw_sysmon object rather than directly accessing the
hex value of the register:

set opTemp [get_property TEMPERATURE [lindex [get_hw_sysmons] 0]

Complete list of all the System Monitor commands can be found in Description of hw_sysmon Tcl
Commands.

Chapter 7: Advanced Programming Features

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=94

Chapter 8

Serial Vector Format (SVF) File
Programming

An alternative way to program FPGAs and configuration memory devices is through the use of a
serial vector format (SVF) file. The SVF file generated through Vivado® Design Suite and Vivado
Lab Edition contains low level JTAG instructions and data required to program these devices.
Once the file is generated it can be used by boundary scan test tools independent of the Vivado
IDE.

The general steps to create an SVF file are as follows:

1. Create an SVF offline target.

2. Open the created SVF target.

3. Add devices to the target to define the SVF JTAG scan chain.

4. Program FPGAs or configuration memory devices.

5. Write SVF.

6. Close SVF target.

7. (Optional) Execute SVF.

In step 4, the program operations are recorded in sequential order and stored a cached file. The
cached file is then written out to a target destination in step 5. After the file is created, it can be
used by boundary scan tools or executed through Vivado Design Suite or Vivado Lab Edition
tools.

IMPORTANT! The XSVF file format is not supported in Vivado IDE.

Creating an SVF Target
The SVF target is similar to a live Xilinx Platform Cable USB or Digilent JTAG cable hardware
target. The properties and Tcl commands are all the same with the main distinction being that the
SVF target is not an active live cable. This means that any operations performed on this target
will not affect the hardware until the SVF is executed. Note that you do not need to have a cable
connected to your system to create an SVF.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=95

Using Vivado IDE
To create an SVF target in the Vivado Hardware Manager, open the Vivado Hardware Manager
by either launching Vivado or Vivado Lab Edition. You can create an SVF Target by selecting
Tools → Create SVF Target. This automatically opens a server on the local host, and also opens
the Create SVF Target dialog as box shown in the following figure.

On any available server you can create an offline SVF target as shown below.

Figure 57: Create SVF Target

The Create SVF Target dialog box opens as shown below.

Figure 58: Create SVF Target Dialog Box

TIP: You can copy an existing SVF chain by enabling the Copy from target option. Alternatively you can specify
an SVF file that you created using the Vivado Hardware Manager from an earlier run of the flow. Vivado IDE
saves specifics of the SVF chain, so when it is read back, the SVF chain can be recreated.

The SVF Target that you just created appears Open under the your server in the Hardware
window in Vivado Hardware Manager.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=96

Figure 59: SVF Target in Hardware Window

To delete an existing SVF target, right-click the SVF target in the Hardware window and select
Delete.

Figure 60: Delete SVF Target in Hardware Window

IMPORTANT! When you delete a target, all the devices created for that target are also deleted. Moreover, a
deleted target is also closed if it was previously opened.

You can also use the Vivado Tcl mode or the Tcl Console in the Vivado IDE to create the SVF
Target.

Following are the steps needed to create an SVF target after initially launching Vivado or Vivado
Lab Edition:

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=97

Using the Command Line
Following are the steps needed to create an SVF target after initially launching Vivado or Vivado
Lab Edition:

open_hw_manager
connect_hw_server
create_hw_target my_svf_target
if {[string length [get_hw_targets -quiet -filter
{IS_OPENED == TRUE}]] > 0} \
{close_hw_target [get_hw_targets * -filter {IS_OPENED == TRUE}
] }; \
open_hw_target [get_hw_targets *my_svf_target]
current_hw_target

The first two commands can be omitted if already connected to a server. When executed, the
create_hw_target command defines the my_svf_target. Note that you cannot have two
targets with the same name in a session. Finally, after closing any open target and opening the
svf target, the create_hw_target command is run. As a result, the final command shows the full
hardware target handle name of the created my_svf_target.

All standard operations on the target, such as get_hw_targets and open_hw_target
commandsare supported. You can use the IS_SVF hardware target property to distinguish
between a live target and an SVF target. For instance, the following is a sample command line
that reads the IS_SVF property from a target named "my_svf_target".

get_property IS_SVF [get_hw_targets -regexp .*my_svf_target]

Additionally, all the SVF hw_targets created in this session can be displayed by issuing the
following command:

get_hw_targets -filter {IS_SVF}

To delete the created target, use the delete_hw_target command. For instance, by issuing
the following command, the my_svf_target is deleted:

delete_hw_target [get_hw_targets -regexp .*my_svf_target]

IMPORTANT! When a target is deleted, all the devices created for the target are also deleted. Moreover a
deleted target is also closed if it was previously opened.

Adding Devices to an SVF Target
After the SVF target is created, devices can be added to it in order to define the SVF JTAG device
chain configuration. The SVF JTAG device chain configuration should match the target hardware
chain to ensure proper SVF file execution.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=98

Using Vivado IDE
Click on the "+" button to add either Xilinx or non-Xilinx parts to the SVF chain.

Figure 61: Add Devices to SVF Target

When you click Add Xilinx Part the Add Xilinx Device dialog box opens. You can now choose the
appropriate Xilinx device to append to the SVF chain.

Note: Devices can only be appended to an SVF device chain.

Figure 62: Add Xilinx Device Dialog Box

TIP: This dialog box is slightly different Vivado Design Edition

On selecting a Xilinx Device and clicking OK, the Xilinx Device is added to the SVF chain as
shown below.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=99

Figure 63: Xilinx Device in SVF Chain

You can also add non-Xilinx parts to the SVF device chain by right-clicking the SVF chain and
selecting Add Non-Xilinx Part as shown below.

Figure 64: Adding a Non-Xilinx Part

This opens the Add Non-Xilinx Device dialog box as shown below.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=100

Figure 65: Add Non-Xilinx Device Dialog Box

Fill in the dialog box as follows:

• The Part Name can be any part name you choose.

• The ID Code is a Hex value that represents a valid device ID code.

• The IR length is a decimal numerical value that represents the Instruction Register length.

• The Mask is a Hex bit mask value.

Note: The ID code, IR Length, and Mask values are typically provided by silicon vendors through device
BSDL files.

Click OK, and the Non-Xilinx part is added to the SVF Device chain.

Figure 66: Non-Xilinx Device in SVF Chain

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=101

Using the Command Line
To create the chain using the Vivado Tcl mode or the Tcl Console in the Vivado IDE, perform
sequential create_hw_device operations on an open SVF target. For instance, to add an
xcku9p part followed by an xcvu095 part perform the following steps:

current_hw_target my_svf_target
open_hw_target
create_hw_device -part xcku9p
create_hw_device -part xcvu095
refresh_hw_target
get_hw_devices

In this example, the first two steps can be skipped if the SVF is already created and opened. The
create_hw_device commands in the example define the devices of the JTAG chain starting
with the first device on the chain and onward.

Note: The create_hw_device command only creates devices on an open SVF hardware target.

To add user defined devices to the chain, add the -idcode, -irlength, and -mask values
along with the part type name using the -part options. For instance, if you have a part called
"my_part" with a JTAG idcode of 1234567, an ir length of 8, mask of ffffffff, then you would
create the device as shown below:

open_hw_target [current_hw_target]
create_hw_device -idcode 01234567 -irlength 8 -mask ffffffff -part my_part
print IR length for user defined devices
puts [get_property IR_LENGTH [lindex [get_hw_devices -filter {PART ==
my_part}] 0]]
puts $idcode_hex
close_hw_target

Note: The idcode for the create_hw_device should be a valid device ID code. ID code values and IR
lengths are typically provided by silicon vendors through device BSDL files.

To see a report of the target and its devices, run the report_hw_targets command. The
report shows details for all active targets in the system. Use this report to obtain properties of
the server, target, and device as shown below:

report_hw_targets
INFO: Server Property Information: localhost:3121
 CLASS: hw_server
 HOST: localhost
 NAME: localhost:3121
 PORT: 3121
 SID: TCP:localhost:3121
INFO: Target Property Information: localhost:3121/xilinx_tcf/Xilinx/
my_svf_target
 CLASS: hw_target
 DEVICE_COUNT: 3
 HW_JTAG: 0
 IS_OPENED: 1
 MAX_DEVICE_COUNT: 32
 NAME: localhost:3121/xilinx_tcf/Xilinx/my_svf_target

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=102

 FREQUENCY: 10000000
 TYPE: xilinx_tcf
 TID: jsn-XNC-my_svf_target
 UID: Xilinx/my_svf_target
 SVF: 1
 Device: xcku9p_0
 Device: xcvu095_1
 Device: my_part_2

Adding Configuration Memory Parts to Xilinx
Devices

Using Vivado IDE
When you right-click on a Xilinx device part in an SVF chain, you have the option of creating and
associating a Configuration Memory device to it.

Figure 67: Adding a Configuration Memory Device

This opens up the Add Configuration Memory Device dialog box as shown below.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=103

Figure 68: Add Configuration Memory Device Dialog Box

Select the appropriate memory device and click OK. The device is associated with the Xilinx
device and appears in the SVF device chain as shown below.

Figure 69: Configuration Memory Device in SVF Chain

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=104

Using Command Line
To create and associate a configuration memory device using the Vivado Tcl mode or the Tcl
Console in the Vivado IDE, use the create_hw_cfgmem Tcl command as shown below.

create_hw_cfgmem -hw_device [lindex [get_hw_devices xc7a200t_0] 0] [lindex
[get_cfgmem_parts {s25fl116k-spi-x1_x2_x4}] 0]

Operations on the SVF Chain
Once you have created an SVF chain that reflects all the devices and their configuration memory
in the right order, you can start adding programming operations to the devices in the SVF chain.

For example, you can right click on the Xilinx a200t device in the chain and select Add Program
Device Operation which bring up the Add Program Device Operation dialog box as shown below.
Specify the bitstream file to program the device with.

Figure 70: Add Program Device Operation Dialog Box

After you click OK, the program device operation is listed at the bottom of the SVF Operations
window.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=105

Figure 71: SVF Operations Window

Similarly, you can program the configuration memory device by right clicking on the memory
device and selecting Add Program Configuration Memory which bring up the Add Program
Configuration Memory dialog box as shown below. Specify the configuration file to program the
memory device with. You can also select additional programming options for memory devices like
Erase, Blankcheck, and Verify.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=106

Figure 72: Add Program Configuration Memory Dialog Box

After you click OK, the program configuration memory device operation is listed at the bottom of
the SVF Operations window.

Figure 73: Configuration Memory Device in SVF Operations Window

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=107

Writing SVF Files
Using the Vivado IDE
The SVF chain setup along with its operations can be saved to a file by clicking Export SVF at the
bottom of the SVF Operations window as shown below.

Figure 74: Exporting the SVF Chain Setup

IMPORTANT! You can recreate an existing SVF chain by specifying an SVF file that you created with the
Vivado Hardware Manager from an earlier run of the flow. Vivado IDE saves specifics of the SVF chain to the
file, so that when it is read back, the SVF chain can be recreated.

Using the Command Line
To write the SVF file using the Vivado Tcl mode or the Tcl Console in the Vivado IDE use the
write_hw_svf command.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=108

The SVF chain, direct FPGA and indirect flash programming operations are captured in a
temporary file. When the write_hw_svf command is called, the temporary file is moved to the
filename passed to the command. After the write_hw_svfcommand is called, the temporary
file is reset and a subsequent programing operation is added to the beginning of the SVF file
sequence.

The following code segment shows the Tcl commands used to create a file named
my_xcku9p.svf containing the direct programming of a xcku9p device:

create_hw_target my_svf_target
open_hw_target
set device0 [create_hw_device -part xcku9p]
set_property PROGRAM.FILE {my_xcku9p.bit} $device0
program_hw_devices $device0
write_hw_svf my_xcku9p.svf
close_hw_target

In this sample code the xcku9p device is created using create_hw_device command whose
return value is set to a temporary variable called device0. This temporary value is then used to
reference the object when setting the PROGRAM.FILE property to the file my_xcku9p.bit file.
Next, the program_hw_device command is called using the device0 reference. When this
program_hw_device command runs, it creates a temporary SVF file with the SVF operations
necessary to program the my_xcku9p.bit file on the xcku9p. Lastly, the write_hw_svf
command takes the temporary file and moves it to the final target destination, myxcku9p.svf.
At this point, the SVF file creation process is complete and the target can be closed.

TIP: A final note on writing SVF files is that you should first create all the devices for the JTAG chain and then
perform the programming operations. If you happen to interleave create_hw_device  commands in
between programming commands you will produce an output SVF file that has two different chain sequences.

• Example of Incorrect SVF File Creation Steps:

create_hw_target my_svf_target
open_hw_target
set device0 [create_hw_device -part xcku9p]
set_property PROGRAM.FILE {my_xcku9p1.bit} $device0
this program command will produce SVF instructions
which account for only device0 in chain
program_hw_devices $device0
set device1 [create_hw_device -part xcku9p]
set_property PROGRAM.FILE {my_xcku9p2.bit} $device1
this program command will produce SVF instructions
which account for device0 and device1 in chain
program_hw_devices $device1
write_hw_svf my_bad_xcku9p.svf
close_hw_target

The first program command only captures the chain definition containing the first device. The
second program command includes both devices in the chain when writing out the SVF
instructions. Therefore, if you attempt to play this SVF file on a chain with two devices, the first
programming operations fail because the live chain gets two devices and not one as the
command expected.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=109

To correct this problem you run the create_hw_device commands first. Then after the chain
is completely defined, perform the program operations as shown below:

• Example of Correct SVF File Creation Steps

create_hw_target my_svf_target
open_hw_target
create device chain first
set device0 [create_hw_device -part xcku9p]
set device1 [create_hw_device -part xcku9p]
program device0
set_property PROGRAM.FILE {my_xcku9p1.bit} $device0
program_hw_devices $device0
program device1
set_property PROGRAM.FILE {my_xcku9p2.bit} $device1
program_hw_devices $device1
write_hw_svf my_good_xcku9p.svf
close_hw_target

Executing SVF Files
Once the SVF file is created, you can optionally execute the SVF file through Vivado IDE. Vivado
IDE can execute SVF files generated through the SVF generation feature and is intended as the
validation test tool. The execute_hw_svf command is not intended as a general purpose SVF
execution command; take care to only use SVF files created through Vivado IDE.

To run an svf command you run the command on an open live target as follows:

execute_hw_svf my_file.svf
INFO: [Labtoolstcl 44-548] Creating JTAG TCL script from SVF file
INFO: [Labtoolstcl 44-549] Re-opening target in JTAG mode
INFO: [Labtoolstcl 44-551] Sourcing JTAG TCL script: my_file.tcl
Pass: SVF Execution completed with no errors
INFO: [Labtoolstcl 44-550] Restoring target to original mode
INFO: [Labtoolstcl 44-570] Execute SVF completed successfully

In this example, the file my_file.svf is executed. As part of the execution flow, the input SVF
file is converted via HW_JTAG Tcl operations into a temporary file. After this Tcl code is created,
the file is sourced to execute the converted SVF instructions. To see the JTAG_TCL operations,
you can run the execute_hw_svf command using the -verbose option. Once the command
completes you will see either the error at the instruction where the execution failed or a "Pass"
message at the end of the message log.

Chapter 8: Serial Vector Format (SVF) File Programming

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=110

Chapter 9

Debugging the Design
Debugging an FPGA design is a multi-step, iterative process. Like most complex problems, it is
best to break the FPGA design debugging process down into smaller parts by focusing on getting
smaller sections of the design working one at a time rather than trying to get the whole design to
work at once. Iterating through the design flow by adding one module at a time and getting it to
function properly in the context of the whole design is one example of a proven design and
debug methodology. You can use this design and debug methodology in any combination of the
following design flow stages:

• RTL-level design simulation

• Post-implemented design simulation

• In-system debugging

RTL-Level Design Simulation
The design can be functionally debugged during the simulation verification process. Xilinx
provides a full design simulation feature in the Vivado® IDE. The Vivado design simulator can be
used to perform RTL simulation of your design. The benefits of debugging your design in an RTL-
level simulation environment include full visibility of the entire design and ability to quickly
iterate through the design/debug cycle. The limitations of debugging your design using RTL-level
simulation includes the difficulty of simulating larger designs in a reasonable amount of time in
addition to the difficulty of accurately simulating the actual system environment. For more
information about using the Vivado simulator, refer to the Vivado Design Suite User Guide: Logic
Simulation (UG900).

Post-Implemented Design Simulation
The Vivado simulator can also be used to simulate the post-implemented design. One of the
benefits of debugging the post-implemented design using the Vivado simulator includes having
access to a timing-accurate model for the design. The limitations of performing post-
implemented design simulation include those mentioned in the previous section: long run-times
and system model accuracy.

Chapter 9: Debugging the Design

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 111Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=111

In-System Logic Design Debugging
The Vivado Design Suite also includes a logic analysis feature that enables you to perform in-
system debugging of the post-implemented design in an FPGA . The benefits for debugging your
design in-system include debugging your timing-accurate, post-implemented design in the actual
system environment at system speeds. The limitations of in-system debugging includes
somewhat lower visibility of debug signals compared to using simulation models and potentially
longer design/implementation/debug iterations, depending on the size and complexity of the
design.

In general, the Vivado tool provides several different ways to debug your design. You can use one
or more of these methods to debug your design, depending on your needs. In-System Logic
Design Debugging Flows focuses on the in-system logic debugging capabilities of the Vivado
Design Suite.

Related Information
In-System Logic Design Debugging Flows

In-System Serial I/O Design Debugging
To enable in-system serial I/O validation and debug, the Vivado Design Suite includes a serial I/O
analysis feature. This allows you to measure and optimize your high-speed serial I/O links in your
FPGA-based system. The Vivado serial I/O analyzer features are designed to help you address a
range of in-system debug and validation problems from simple clocking and connectivity issues
to complex margin analysis and channel optimization issues. The main benefit of using the Vivado
serial I/O analyzer over some other external instrumentation techniques is that you are
measuring the quality of the signal after the receiver equalization has been applied to the
received signal. This ensures that you are measuring at the optimal point in the TX-to-RX channel
thereby ensuring real and accurate data.

The Vivado tool provides the means to generate the design used to exercise the gigabit
transceiver endpoints as well as the run-time software to take measurements and help you
optimize your high-speed serial I/O channels. Serial I/O Hardware Debugging Flows guides you
through the process of generating the IBERT design. Debugging the Serial I/O Design in
Hardware guides you through the use of the run time Vivado serial I/O analyzer feature.

Related Information
Serial I/O Hardware Debugging Flows
Debugging the Serial I/O Design in Hardware

Chapter 9: Debugging the Design

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=112

Chapter 10

In-System Logic Design Debugging
Flows

The Vivado® tool provides many features to debug a design in-system in an actual hardware
device. The in-system debugging flow has three distinct phases:

1. Probing phase: Identifying what signals in your design you want to probe and how you want
to probe them.

2. Implementation phase: Implementing the design that includes the additional debug IP that is
attached to the probed nets.

3. Analysis phase: Interacting with the debug IP contained in the design to debug and verify
functional issues.

This in-system debug flow is designed to work using the iterative design/debug flow described in
the previous section. If you choose to use the in-system debugging flow, it is advisable to get a
part of your design working in hardware as early in the design cycle as possible. The rest of this
chapter describes the three phases of the in-system debugging flow and how to use the Vivado
logic debug feature to get your design working in hardware as quickly as possible.

Probing the Design for In-System Debugging
The probing phase of the in-system debugging flow is split into two steps:

1. Identifying what signals or nets you want to probe

2. Deciding how you want to add debug cores to your design

In many cases, the decision you make on what signals to probe or how to probe them can affect
one another. It helps to start by deciding if you want to manually add the debug IP component
instances to your design source code (called the HDL instantiation probing flow) or if you want
the Vivado tool to automatically insert the debug cores into your post-synthesis netlist (called
the netlist insertion probing flow). The following table describes some of the advantages and
trade-offs of the different debugging approaches.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=113

Table 3: Debugging Strategies

Debugging Goal Recommended Debug Programming Flow
Identify debug signals in the HDL source
code while retaining flexibility to enable/
disable debugging later in the flow.

Use mark_debug property to tag signals for debugging in HDL.
Use the Set up Debug wizard to guide you through the Netlist Insertion
probing flow.

Identify debug nets in synthesized design
netlist without having to modify the HDL
source code.

Use the Mark Debug right-click menu option to select nets for debugging in
the synthesized design netlist.
Use the Set up Debug wizard to guide you through the Netlist Insertion
probing flow.

Automated debug probing flow using Tcl
commands.

Use set_property Tcl command to set the mark_debug property on debug
nets.
Use Netlist Insertion probing flow Tcl commands to create debug cores and
connect to them to debug nets.

Explicitly attach signals in the HDL source
to an ILA debug core instance.

Identify HDL signals for debugging.
Use the HDL Instantiation probing flow to generate and instantiate an
Integrated Logic Analyzer (ILA) core and connect it to the debug signals in the
design.

Using the Netlist Insertion Debug Probing
Flow

Insertion of debug cores in the Vivado tool is presented in a layered approach to address
different needs of the diverse group of Vivado users:

• The highest level is a simple wizard that creates and configures Integrated Logic Analyzer (ILA)
cores automatically based on the selected set of nets to debug.

• The next level is the main Debug window allowing control over individual debug cores, ports
and their properties. The Debug window can be displayed when the Synthesized Design is
open by selecting the Debug layout from the Layout Selector or the Layout menu, or can be
opened directly using Window → Debug.

• The lowest level is the set of Tcl XDC debug commands that you can enter manually into an
XDC constraints file or replay as a Tcl script.

You can also use a combination of the modes to insert and customize debug cores.

Marking HDL Signals for Debug
You can identify signals for debugging at the HDL source level prior to synthesis by using the
mark_debug constraint. Nets corresponding to signals marked for debug in HDL are
automatically listed in the Debug window under the Unassigned Debug Nets folder.

Note: In the Debug window, the Debug Nets view is a more net-centric view of nets that you have selected
for debug. The Debug Cores view is a more core-centric view where you can view and set core properties.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=114

The procedure for marking nets for debug depends on whether you are working with an RTL
source-based project or a synthesized netlist-based project. For an RTL netlist-based project:

• Using the Vivado synthesis feature you can optionally mark HDL signals for debug using the
mark_debug constraint in VHDL and Verilog source files. The valid values for the mark_debug
constraint are "TRUE" or “FALSE”. The Vivado synthesis feature does not support the “SOFT”
value.

For a synthesized netlist-based project:

• Using the Synopsys® Synplify® synthesis tool, you can optionally mark nets for debug using
the mark_debug and syn_keep constraints in VHDL or Verilog, or using the mark_debug
constraint alone in the Synopsys Design Constraints (SDC) file. Synplify does not support the
“SOFT” value, as this behavior is controlled by the syn_keep attribute.

• Using the Mentor Graphics® Precision® synthesis tool, you can optionally mark nets for debug
using the mark_debug constraint in VHDL or Verilog.

The following subsections provide syntactical examples for Vivado synthesis, XST, Synplify, and
Precision source files.

Icons and ILA Core

• The hollow green icon indicates nets with MARK_DEBUG property set, but not connected
to any ILA core.

• The full green icon indicates nets with MARK_DEBUG property set, and connected to an
ILA core.

• The yellow icon indicates that there is no MARK_DEBUG on the net, but it is connected to
an ILA core.

Vivado Synthesis mark_debug Syntax Examples
The following are examples of VHDL and Verilog syntax when using Vivado synthesis.

• VHDL Syntax Example

attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

Synplify mark_debug Syntax Examples
The following are examples of Synplify syntax for VHDL, Verilog, and SDC.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=115

• VHDL Syntax Example

attribute syn_keep : boolean;
attribute mark_debug : string;
attribute syn_keep of char_fifo_dout: signal is true;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* syn_keep = "true", mark_debug = "true" *) wire [7:0] char_fifo_dout;

• SDC Syntax Example

define_attribute {n:char_fifo_din[*]} {mark_debug} {"true"}
define_attribute {n:char_fifo_din[*]} {syn_keep} {"true"}

IMPORTANT! Net names in an SDC source must be prefixed with the "n:" qualifier.

Note: Synopsys Design Constraints (SDC) is an accepted industry standard for communicating design
intent to tools, particularly for timing analysis. A reference copy of the SDC specification is available
from Synopsys by registering for the TAP-in program at: https://www.synopsys.com/Community/
Interoperability/Pages/TapinSDC.aspx

Precision mark_debug Syntax Examples
The following are examples of VHDL and Verilog syntax when using Precision.

• VHDL Syntax Example

attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

Synthesizing the Design
The next step is to synthesize the design containing the debug cores by clicking Run Synthesis in
the Vivado Design Suite or by running the following Tcl commands:

launch_runs synth_1
wait_on_run synth_1

You can also use the synth_design Tcl command to synthesize the design. Refer to the Vivado
Design Suite User Guide: Synthesis (UG901) for more details on the various ways you can
synthesize your design.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 116Send Feedback

http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx
http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=116

Marking Nets for Debug in the Synthesized Design
Open the synthesized design by clicking Open Synthesized Design in the Flow Navigator and
select the Debug window layout to see the Debug window. Any nets that correspond to HDL
signals that were marked for debugging are shown in the Unassigned Debug Nets folder in the
Debug window.

Figure 75: Unassigned Debug Nets

• Selecting a net in any of the design views (such as the Netlist or Schematic windows), then
right-click select the Mark Debug option.

• Selecting a net in any of the design views, then dragging and dropping the nets into the
Unassigned Debug Nets folder.

• Using the net selector in the Set up Debug wizard (see Using the Set Up Debug Wizard to
Insert Debug Cores for details).

Related Information
Using the Set Up Debug Wizard to Insert Debug Cores

Using the Set Up Debug Wizard to Insert Debug
Cores
The next step after marking nets for debugging is to assign them to debug cores. The Vivado
Design Suite provides an easy to use Set up Debug wizard to help guide you through the process
of automatically creating the debug cores and assigning the debug nets to the inputs of the
cores.

To use the Set up Debug wizard to insert the debug cores:

1. Optionally, select a set of nets for debugging either using the unassigned nets list or direct
net selection.

2. Select Tools → Set up Debug from the Vivado Design Suite main menu, or click Set up Debug
in the Flow Navigator under the Synthesized Design section.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=117

3. Click Next to get to the Specify Nets to Debug panel (see the following figure).

4. Optionally, click Find Nets to Add to add more nets or remove existing nets from the table.
You can also right-click a debug net and select Remove Nets to remove nets from the table.

IMPORTANT! You can also select nets in the Netlist or other windows, then drag them to the list of Nets to
Debug.

5. Right-click a debug net and select Select Clock Domain to change the clock domain to be
used to sample value on the net.

Note: The Set up Debug wizard attempts to automatically select the appropriate clock domain for the
debug net by searching the path for synchronous elements. Use the Select Clock Domain dialog
window to modify this selection as needed, but be aware that each clock domain present in the table
results in a separate ILA core instance.

TIP: Refer to ILA Core and Timing Considerations in UltraFast Design Methodology Guide for the Vivado Design
Suite (UG949) for tips on helping to minimize timing impact of the ILA Core.

6. Once you are satisfied with the debug net selection, click Next.

Note: The Set up Debug wizard inserts one ILA core per clock domain. The nets that were selected for
debug are assigned automatically to the probe ports of the inserted ILA cores. The last wizard screen
shows the core creation summary displaying the number of clocks found and ILA cores to be created
and/or removed.

7. If you want to enable either advanced trigger mode or basic capture mode, use the
corresponding check boxes to do so. Click Next to move to the last panel.

Note: The advanced trigger mode and basic capture mode features, when used in the Vivado Hardware
Manager, are described in more detail in Chapter 11: Debugging Logic Designs in Hardware.

8. If you are satisfied with the results, click Finish to insert and connect the ILA cores in your
synthesized design netlist.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 118Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf;a=xILACoreAndTimingConsiderations
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=118

9. Configure the ILA core general options such as ILA data depth (C_DATA_DEPTH), number of
input pipe stages (C_INPUT_PIPE_STAGES), enabling the capture control feature
(C_EN_STRG_QUAL), and enabling the advanced trigger feature (C_ADV_TRIGGER). Refer to
Modifying Properties on the Debug Cores for descriptions of these options.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=119

10. The debug nets are now assigned to the ILA debug core, as shown in the following figure.

Related Information
ILA Core and Timing Considerations
Debugging Logic Designs in Hardware
Modifying Properties on the Debug Cores

Using the Debug Window to Add and Customize
Debug Cores
The Debug Cores tab in the Debug window provides more fine-grained control over ILA core and
debug core hub insertion than what is available in the Set up Debug wizard. The controls
available in this window allow core creation, core deletion, debug net connection, and core
parameter changes.

The Debug Cores tab of the Debug window:

• Shows the list of debug cores that are connected to the Debug Hub (dbg_hub) core.

• Maintains the list of unassigned debug nets at the bottom of the window.

You can manipulate debug cores and ports from the popup menu or the toolbar buttons on the
top of the window.

Creating and Removing Debug Cores
To create debug cores in the Debug window, click Create Debug Core. Using this interface, you
can change the parent instance, debug core name, and set parameters for the core. To remove an
existing debug core, right-click the core in the Debug window and select Delete. Refer to
Modifying Properties on the Debug Cores for a description of the ILA core options found in the
Create Debug Core dialog.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=120

Figure 76: Creating a New Debug Core

Related Information
Modifying Properties on the Debug Cores

Adding, Removing, and Customizing Debug Core
Ports
In addition to adding and removing debug cores, you can also add, remove, and customize ports
of each debug core to suit your debugging needs. To add a new debug port:

1. Select the debug core in the Debug window.

2. Click Create Debug Port to open the dialog.

3. Select or type in the port width

4. Click OK.

5. To remove a debug port, first select the port on the core in the Debug window, then select
Delete.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=121

Connecting and Disconnecting Nets to Debug Cores

You can select, drag, and drop nets and buses (also called bus nets) from the Schematic or Netlist
windows onto the debug core ports. This expands the debug port as needed to accommodate
the net selection. You can also right-click any net or bus, and select Assign to Debug Port.

To disconnect nets from the debug core port, select the nets that are connected to the debug
core port, and click Disconnect Net.

Modifying Properties on the Debug Cores
Each debug core has properties you can change to customize the behavior of the core. To learn
how to change properties on the debug_core_hub debug core, refer to Changing the BSCAN
User Scan Chain of the Debug Core Hub.

You can also change properties on the ILA debug core. For instance, to change the number of
samples captured by the ILA debug core, do the following:

1. In the Debug window, select the desired ILA core (such as u_ila_0).

2. In the Cell Properties window, select the Debug Core Options view.

3. Using the C_DATA_DEPTH pull-down list, select the desired number of samples to be
captured.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=122

A full description of all ILA core properties can be found in the following table.

Table 4: ILA Debug Core Properties

Debug Core Property Description Possible Values
C_DATA_DEPTH Maximum number of data samples that can be stored by

the ILA core. Increasing this value causes more block RAM
to be consumed by the ILA core and can adversely affect
design performance.

1024 (Default)
2048
4096
8192
16384
32768
65536
131072

C_TRIGIN_EN Enables the TRIG_IN and TRIG_IN_ACK ports of the ILA core.
Note that you need to use the advanced netlist change
commands to connect these ports to nets in your design. If
you wish to use the ILA trigger input or output signals, you
should consider using the HDL instantiation method of
adding ILA cores to your design.

false (Default)
true

C_TRIGOUT_EN Enables the TRIG_OUT and TRIG_OUT_ACK ports of the ILA
core. Note that you need to use the advanced netlist
change commands to connect these ports to nets in your
design. If you wish to use the ILA trigger input or output
signals, you should consider using the HDL instantiation
method of adding ILA cores to your design.

false (Default)
true

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=123

Table 4: ILA Debug Core Properties (cont'd)

Debug Core Property Description Possible Values
C_ADV_TRIGGER Enables the advanced trigger mode of the ILA core. Refer to

Debugging Logic Designs in Hardware for more details on
this feature.

false (Default)
true

C_INPUT_PIPE_STAGES Enables extra levels of pipe stages (for example, flip-flop
registers) on the PROBE inputs of the ILA core. This feature
can be used to improve timing performance of your design
by allowing the Vivado tools to place the ILA core away from
critical sections of the design.

0 (Default)
1
2
3
4
5
6

C_EN_STRG_QUAL Enables the basic capture control mode of the ILA core.
Refer to Debugging Logic Designs in Hardware for more
details on this feature.

false (Default)
true

C_ALL_PROBE_SAME_MU Enables all PROBE inputs of the ILA core to have the same
number of comparators (also called "match units"). This
property should always be set to true.

true (Default)
false (not
recommended)

C_ALL_PROBE_SAME_MU_CNT The number of comparators (or match units) per PROBE
input of the ILA core. The number of comparators that are
required depends on the settings of the C_ADV_TRIGGER
and C_EN_STRG_QUAL properties:
If C_ADV_TRIGGER is false and C_EN_STRG_QUAL is false, can
be set to 1 through 16.
If C_ADV_TRIGGER is false and C_EN_STRG_QUAL is true, can
be set to 2 through 16.
If C_ADV_TRIGGER is true and C_EN_STRG_QUAL is false, can
be set to 1 through 16.
If C_ADV_TRIGGER is true and C_EN_STRG_QUAL is true, can
be set to 2 through 16.
IMPORTANT: if you do not follow the rules above, you will
encounter an error during implementation when the ILA
core is generated.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Related Information
Changing the BSCAN User Scan Chain of the Debug Core Hub
Debugging Logic Designs in Hardware

Probe as Data or Trigger or both
You can customize a probe to be used as data or trigger or both in the Vivado Hardware
Manager. Probes that participate in trigger or capture compare values are configured as "trigger"
only probes. This optimizes the use of BRAMs by the ILA core. Typically, probes whose data
needs to be captured are configured as "data" only probes. Probes that participate in both trigger
compare values, and whose data needs to be captured should be configured as "trigger and data".

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=124

You can configure probes as data or trigger or both using the Set up Debug wizard as shown in
the following figure.

Figure 77: Configuring Probes as Data or Trigger or Both Using the Set Up Debug
Wizard

When you program the device at runtime with a design containing probes configured as "data"
only, you will not be able to use these probes to configure trigger or capture setup conditions.
Conversely, you will not be able to use probes configured as "trigger" only in the Waveform
window.

Configuring the Number of Comparators Used
After you have inserted the ILA core on a post-synthesized netlist it is possible for you to set the
number of comparators used to anywhere from 1 to 16. To do that in the Vivado IDE, go to the
Debug Core Options tab of the ILA core and set the ALL_PROBE_SAME_MU_CNT property to the
desired number of comparators.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=125

Figure 78: Debug Core Options

Alternatively you can set the ALL_PROBE_SAME_MU_CNT property in the Tcl Console as follows:

set_property ALL_PROBE_SAME_MU_CNT 10 [get_debug_cores u_ila_0]

TIP: If Capture Control is enabled, you have a choice of using 1 to 15 comparators. One comparator is used by
the capture control data filtering mechanism.

IMPORTANT! It is not possible to set different number of comparators for different probes in the ILA using the
insertion flow. Xilinx recommends that you use the HDL instantiation flow to achieve that.

Using XDC Commands to Insert Debug Cores
In addition to using the Set up Debug wizard, you can also use XDC commands to create,
connect, and insert debug cores into your synthesized design netlist. Follow the these steps by
typing the XDC commands in the Tcl Console:

1. Open the synthesized design netlist from the synthesis run called synth_1.

open_run synth_1

IMPORTANT! The XDC commands in the following steps are only valid when a synthesized design netlist is
open.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=126

2. Create the ILA core black box.

create_debug_core u_ila_0 ila

3. Set the various properties of the ILA core.

set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]

4. Set the width of the clk port of the ILA core to 1 and connect it to the desired clock net.

set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk]]

Note: You do not have to create the clk port of the ILA core because it is automatically created by the
create_debug_core command.

IMPORTANT! All debug port names of the debug cores are lower case. Using upper-case or mixed-case debug
port names will result in an error.

5. Set the width of the probe0 port to the number of nets you plan to connect to the port.

Note: You do not have to create the first probe port (probe0) of the ILA core because it is automatically
created by the create_debug_core command. set_property port_width 1 [get_debug_ports u_ila_0/
probe0]

6. Connect the probe0 port to the nets you want to attach to that port.

connect_debug_port u_ila_0/probe0 [get_nets [list A_or_B]]

7. Optionally, create more probe ports, set their width, and connect them to the nets you want
to debug.

create_debug_port u_ila_0 probe
set_property port_width 2 [get_debug_ports u_ila_0/probe1]
connect_debug_port u_ila_0/probe1 [get_nets [list {A[0]} {A[1]}]]

For more information on these and other related Tcl commands, type help -category
ChipScope in the Tcl Console of the Vivado Design Suite.

Saving Constraints After Running Debug XDC
Commands
You need to save constraints after using the Set up Debug wizard, using Vivado Design Suite to
create debug cores or ports, and/or running the following XDC commands:

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=127

• create_debug_core

• create_debug_port

• connect_debug_port

• set_property (on any debug_core or debug_port object)

The corresponding XDC commands are saved to a constraints file with the suffix _debug.xdc
and are used during implementation to insert and connect the debug cores.

IMPORTANT! Saving constraints while in project mode may cause the synthesis and implementation steps to
go out-of-date. However, you do not need to re-synthesize the design since the debug XDC constraints are only
used during implementation. You can force the synthesis step up-to-date by selecting the Design Runs window,
right-clicking the synthesis run (for example, synth_1), and selecting Force up-to-date.

Implementing the Design
After inserting, connecting and customizing your debug cores, you are now ready for
implementing your design (refer to Implementing the Design Containing the Debug Cores).

Related Information
Implementing the Design Containing the Debug Cores

Debug Core Insertion in Non-Project Mode
Debug cores can be inserted in either Project Mode or Non-Project Mode. The following sample
Tcl script shows how to create the debug core, set debug core attributes, and connect the debug
core probes to the signals in the design being probed. In Non-Project Mode, the insertion of the
debug core needs to happen after synthesizing the design, and prior to the opt_design step as
shown below.

IMPORTANT! Debug core insertion is only supported for ILA cores.

The following Tcl script is an example of using the debug core insertion commands in a Non-
Project flow.

#read relevant design source files
read_vhdl [glob ./*.vhdl]
read_verilog [glob ./Sources/*.v]
read_xdc ./target.xdc
#Synthesize Design
synth_design -top top -part xc7k325tffg900-2
#Create the debug core
create_debug_core u_ila_0 ila
#set debug core properties
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=128

set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]
#connect the probe ports in the debug core to the signals being probed in
the design
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk]]
set_property port_width 1 [get_debug_ports u_ila_0/probe0]
connect_debug_port u_ila_0/probe0 [get_nets [list A_or_B]]
create_debug_port u_ila_0 probe
#Optionally, create more probe ports, set their width,
and connect them to the nets you want to debug
#Implement design
opt_design
place_design
report_drc -file ./placed_drc_rpt.txt
report_timing_summary -file ./placed_timing_rpt.txt
route_design
report_drc -file ./routed_drc_rpt.txt
report_timing_summary -file ./routed_timing_rpt.txt
write_bitstream

HDL Instantiation Debug Probing Flow
Overview

The HDL instantiation probing flow involves the manual customization, instantiation, and
connection of various debug core components directly in the HDL design source. The new debug
cores that are supported in this flow in the Vivado tool are shown in table the following table.

Table 5: Debug Cores in Vivado IP Catalog available for use in the HDL Instantiation
Probing Flow

Debug Core Version Description Run Time Analyzer Tool
ILA (Integrated Logic
Analyzer)

v6.2 Debug core that is used to trigger
on hardware events and capture
data at system speeds.

Vivado logic analyzer

VIO (Virtual Input/
Output)

v3.0 Debug core that is used to monitor
or control signals in design at JTAG
chain scan rates.

Vivado logic analyzer

JTAG-to-AXI Master v1.2 Debug core that is used to
generate AXI transactions to
interact with various AXI full and
AXI lite slave cores in a system that
is running in hardware.

Vivado logic analyzer

The new ILA core has two distinct advantages over the legacy ILA v1.x core:

• Works with the integrated Vivado logic analyzer feature (refer to Debugging Logic Designs in
Hardware).

• No ICON core instance or connection is required.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=129

Related Information
Debugging Logic Designs in Hardware

Using the HDL Instantiation Debug Probing
Flow

The steps required to perform the HDL instantiation flow are:

1. Customize and generate the ILA and/or VIO debug cores that have the right number of probe
ports for the signals you want to probe.

2. (Optional) Customize and generate the JTAG-to-AXI Master debug core and connect it to an
AXI slave interface of an AXI peripheral or interconnect core in your design.

3. Synthesize the design containing the debug cores.

4. (Optional) Modify debug hub core properties.

5. Implement the design containing the debug cores.

Customizing and Generating the Debug Cores
Use the IP Catalog button in the Project Manager to locate, select, and customize the desired
debug core. The debug cores are located in the Debug & Verification > Debug category of the IP
Catalog (see the following figure). You can customize the debug core by double-clicking on the IP
core or by right-click selecting the Customize IP menu selection.

• For more information on customizing the ILA core, refer to Integrated Logic Analyzer LogiCORE
IP Product Guide (PG172) .

• For more information on customizing the VIO core, refer to Virtual Input/Output LogiCORE IP
Product Guide (PG159).

• For more information on customizing the JTAG-to-AXI Master core, refer to JTAG to AXI
Master LogiCORE IP Product Guide (PG174).

After customizing the core, click the Generate button in the IP customization wizard. This
generates the customized debug core and add it to the Sources view of your project.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ila;v=latest;d=pg172-ila.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=vio;v=latest;d=pg159-vio.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=130

Figure 79: Debug Cores in the IP Catalog

Configuring the Number of Comparators Used
During the process of customizing the ILA IP, it is possible for you to set the number of
comparators used. The range allowed is 1 to 16. It is possible to set a common number of
comparators for all the probes in the ILA IP.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=131

Figure 80: ILA IP Comparators in General Options

It is also possible to set the comparators for each IP as shown below. It is possible to have
multiple probes of different width within a single ILA. To do that you need to uncheck the Same
Number of Comparators for All Probe Ports field under General Options.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=132

Figure 81: Same Number of Comparators for All Ports Field

You then set the exact number of comparators to be use per probe by selecting the Probe_Ports
tab and setting the Number of Comparators field with the desired number of comparators.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=133

Figure 82: Number of Comparators

TIP: If Capture Control is enabled, you have a choice of using 1 to15 comparators. One comparator is used by
the capture control data filtering mechanism.

TIP: Depending on the number of comparators chosen, the tool automatically recalculates the number of
probes that you can use in the ILA IP. The maximum number of comparators allowed per ILA is 1024.

Probe as Data or Trigger
Probes can be configured as data or trigger or both in the ILA IP Configuration wizard as shown
in the following figure.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=134

Figure 83: Configurng Probes as Trigger and Data

Probes that participate in trigger or capture compare values are configured as "trigger" only
probes. This optimizes the use of BRAMs by the ILA core. Typically, probes whose data needs to
be captured are configured as "data" only probes. Probes that participate in both trigger compare
values, and whose data needs to be captured should be configured as "trigger and data".

ILA Cross Trigger
ILA Cross Triggering feature enables cross triggering between ILA cores, and between ILA cores
and a processor for example, Zynq®-7000 SoC. This feature is useful for when you want to
trigger between two ILA cores that are in different clock domains, or perform hardware/software
cross triggering between a processor and an ILA core.

For using cross trigger feature, at core generation time, you should configure the ILA core to have
dedicated trigger input ports (TRIG_IN and TRIG_IN_ACK) and dedicated trigger output ports
(TRIG_OUT and TRIG_OUT_ACK). If you want to use the ILA trigger input or output signals, you
must use the HDL instantiation method of adding ILA cores to your design.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=135

Figure 84: ILA Cross Trigger Feature

TRIG_OUT_ACK signal is an indication to the ILA core (another ILA, user design, or processor)
that TRIG_OUT is properly received and causes the ILA to lower the TRIG_OUT signal on
receiving TRIG_OUT_ACK.

In other words, TRIG_OUT will remain HIGH until TRIG_OUT_ACK is available. If
TRIG_OUT_ACK signal is tied to LOW then TRIG_OUT remains HIGH until the user re-arms the
ILA. Only then the TRIG_OUT goes LOW. You can rearm the ILA if TRIG_OUT_ACK is tied to
LOW.

A typical cross trigger setup is illustrated below where ILA2 cross triggers into ILA1. The
TRIG_OUT signal of ILA2 is connected to the TRIG_IN signal of ILA1. The TRIG_IN_ACK signal of
ILA 1 is connected to the TRIG_OUT_ACK signal of ILA2.

(ILA 2) trig_out -> (ILA 1) trig_in
(ILA 1) trig_in_ack -> (ILA 2) trig_out_ack

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=136

Figure 85: Typical Cross Trigger Setup

ILA 1 ILA 2

trig_in

trig_in_ack

trig_out

trig_out_ack

trig_out

trig_out_ack

trig_in

trig_in_ack

X16408-031616

Figure 86: ILA Cross Trigger Timing

• It is assumed that the logic driving the trig_in port is synchronous to the ILA clk.

• It takes 1 clk cycle for the trig_in_ack signal to get asserted after trig_in is asserted.

• It takes 9 clk cycles for the trig_out signal to get asserted when trig_in is used or trigger
condition is met.

• The trig_in_ack and trig_out_ack signals go low only when trigger signals are de-
asserted.

For a detailed tutorial that covers using the Cross Trigger feature between the FPGA fabric and
the Zynq-7000 SoC processor, see the Vivado Design Suite Tutorial: Embedded Processor Hardware
Design (UG940).

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 137Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=137

Instantiating the Debug Cores
After generating the debug core, instantiate it in your HDL source code and connect it to the
signals that you wish to probe for debugging purposes. Following is an example of the ILA
instance in a Verilog HDL source file:

u_ila_0
(
 .clk(clk),
 .probe0(counterA),
 .probe1(counterB),
 .probe2(counterC),
 .probe3(counterD),
 .probe4(A_or_B),
 .probe5(B_or_C),
 .probe6(C_or_D),
 .probe7(D_or_A)
);

Note: Unlike the legacy VIO and ILA v1.x cores, the new ILA core instance does not require a connection to
an ICON core instance. Instead, a debug core hub (dbg_hub) is automatically inserted into the synthesized
design netlist to provide connectivity between the new ILA core and the JTAG scan chain.

Synthesizing the Design Containing the Debug Cores
In the next step, synthesize the design containing the debug cores by clicking Run Synthesis in
the Vivado Design Suite or by running the following Tcl commands:

launch_runs synth_1
wait_on_run synth_1

You can also use the synth_design Tcl command to synthesize the design. Refer to Vivado Design
Suite User Guide: Synthesis (UG901)for more details on the various ways you can synthesize your
design.

Viewing the Debug Cores in the Synthesized Design
After synthesizing your design, you can open the synthesized design to view the debug cores and
modify their properties. Open the synthesized design by clicking Open Synthesized Design in the
Flow Navigator, and select the Debug window layout to see the Debug window that shows your
ILA debug cores connected to the debug hub core (dbg_hub) (see the following figure).

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 138Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=138

Figure 87: Debug Window Showing ILA Core and Debug Core Hub

Changing the BSCAN User Scan Chain of the Debug
Core Hub
You can view and change the BSCAN user scan chain index of the debug core hub by selecting
the dbg_hub in the Debug window, selecting the Debug Core Options view in the Properties
window, then changing the value of the C_USER_SCAN_CHAIN property (see the following
figure).

IMPORTANT! The default values for C_USER_SCAN_CHAIN is 1 for the debug hub core. If using a scan chain
value other than 1 for the debug hub core, you must manually change them on the device in the Hardware
Manager. Refer to Programming the Hardware Device for more details.

IMPORTANT! If you plan to use the Microprocessor Debug Module (MDM) or other IP that uses the BSCAN
primitive with the Vivado logic debug cores, you need to set the C_USER_SCAN_CHAIN property of the
dbg_hub  to a user scan chain that does not conflict with the other IPs Boundary Scan Chain setting. Failure to
do so results in errors later in the implementation flow.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=139

Figure 88: Changing the User Scan Chain Property of the Debug Core Hub

Related Information
Programming the Hardware Device

Debug Flow in IP Integrator
The System ILA IP in Vivado IP integrator allows you to perform in-system debugging of post-
implemented designs on an FPGA . Use this feature when you need to monitor interfaces and
signals in the IP integrator Block Design. This feature enables you to debug AXI Read and Write
Transactions in addition to AXI Read and Write, Data, and Address channel events in the Vivado
Hardware Manager.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=140

See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) for the steps to debug interfaces and/or nets in the Block Design.

Debugging Nets and Interfaces in the IP Integrator
Block Design
In the IP integrator Block Design Canvas, you can debug both nets and interfaces. As shown
below, you can right-click an interface or net in the Block Design and select Debug. This sets the
Debug and MARK_DEBUG attributes to true. In addition, this also enables the Designer
Assistance to run Connection Automation, where you can choose the net and/or interface to a
System Interface ILA core, and also customize the various attributes of the debug core.

Figure 89: IP Integrator Mark Debug

To clear a net and/or interface of debug attributes, right-click the net/interface and then click
Clear Debug.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 141Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf;a=xUsingTheILAToDebugIPIntegratorDesigns
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=141

Viewing System ILA Debug Cores in the Synthesized
Design
The System ILA IP in the IP integrator Block Design must be instantiated. The figure below is a
snapshot of the Block Design with two debug cores instantiated in the design, the System ILA,
and the JTAG to AXI Master IP cores.

Figure 90: Block Design

After this Block Design has been validated and synthesized, you can open the Debug window in
the synthesized design to view the debug cores instantiated and inserted into the design. The
System ILA and JTAG to AXI Master debug cores are displayed as shown below.

Figure 91: System ILA and JTAG to AXI Master Debug Cores

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=142

For more details on how these interfaces can be used for debug in the Hardware Manager and to
take advantage of the AXI Event level debug, see Debugging AXI Interfaces in the Hardware
Manager.

Related Information
Debugging AXI Interfaces in the Hardware Manager

Implementing the Design Containing the
Debug Cores

The Vivado software creates the debug core hub initially as a black box. This core must be
implemented prior to running the placer and router.

Implementing the Design
Implement the design containing the debug core by clicking Run Implementation in the Vivado
Design Suite or by running the following Tcl commands:

launch_runs impl_1
wait_on_run impl_1

You can also implement the design using the implementation commands opt_design,
place_design, and route_design. Refer to the Vivado Design Suite User Guide:
Implementation (UG904) for more details on the various ways you can implement your design.

ILA Core and Timing Considerations
The configuration of the ILA core has an impact in meeting the overall design timing goals. Follow
the recommendations below to minimize the impact on timing:

• Choose probe width judiciously. The bigger the probe width the greater the impact on both
resource utilization and timing.

• Choose ILA core data depth judiciously. The bigger the data depth, the greater the impact on
both block RAM resource utilization and timing.

• Ensure that the clocks chosen for the ILA cores are free-running clocks. Failure to do so could
result in an inability to communicate with the debug core when the design is loaded onto the
device.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 143Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=143

• Ensure that the clock going to the dbg_hub is a free running clock. Failure to do so could
result in an inability to communicate with the debug core when the design is loaded onto the
device. You can use the connect_debug_port Tcl command to connect the clk pin of the
debug hub to a free-running clock.

• Close timing on the design prior to adding the debug cores. Xilinx does not recommend using
the debug cores to debug timing related issues.

• If you still notice that timing has degraded due to adding the ILA debug core, and the critical
path is in the dbg_hub, perform the following steps:

1. Open the synthesized design.

2. Find the dbg_hub cell in the netlist.

3. Go to the Properties of the dbg_hub.

4. Find property C_CLK_INPUT_FREQ_HZ.

5. Set it to frequency (in Hz) of the clock that is connected to the dbg_hub.

6. Find property C_ENABLE_CLK_DIVIDER and enable it.

7. Re-implement design.

• Make sure the clock input to the ILA core is synchronous to the signals being probed. Failure
to do so results in timing issues and communication failures with the debug core when the
design is programmed into the device.

• Make sure that the design meets timing before running it on hardware. Failure to do so results
in unreliable results.

Debug Cores Clocking Guidelines
The Vivado Hardware Manager uses the JTAG interface to communicate with the Vivado Debug
Hub core, which provides an interface between the JTAG Boundary Scan (BSCAN) interface of
the FPGA device and the Vivado Debug cores.

• JTAG Clock: This clock synchronizes the internal state machine operation of the JTAG
Boundary Scan (BSCAN) interface. You will typically choose the JTAG clock frequency in the
Vivado Hardware Manager while connecting to the target device. If your design contains
debug cores, ensure that the JTAG clock is 2.5x times slower than the debug hub clock.

You can modify the JTAG frequency by using the Open New Hardware Target wizard or the
following Tcl command:

set_property PARAM.FREQUENCY 250000 [get_hw_targets
*/xilinx_tcf/Digilent/210203327962A]

• Debug Hub Clock:

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=144

The Vivado Debug Hub core, which provides an interface between the JTAG Boundary Scan
(BSCAN) interface of the FPGA device and the Vivado Debug cores. The Debug Hub core is
inserted automatically by the Vivado IDE during the design implementation step if it detects
debug cores in the design. The Vivado IDE chooses the clock driving the Debug Hub core
during the design implementation step.

Xilinx recommends that the Debug Hub clock frequency be around 100 MHz or less because
the JTAG clock speeds do not require a particularly high frequency.

You can change the Debug Hub Clock using the following TCL command.

connect_debug_port dbg_hub/clk [get_nets <clock net name>]

Note: You need to run this command after the design has been synthesized, but before implementation.

You can also reduce the Debug Hub Clock Frequency to a 100 MHz using the following TCL
commands.

set_property C_CLK_INPUT_FREQ_HZ 200000000 [get_debug_cores dbg_hub]
set_property C_ENABLE_CLK_DIVIDER true [get_debug_cores dbg_hub]

Note: You need to run this command after the design has been synthesized, but before implementation.
This is recommended for designs which have very high speed clocks. This command enables the
inclusion of an MMCM based clock divider inside of the Debug Hub core to achieve a clock frequency
of 100 MHz.

Debug Core Clocks
All of the debug cores available in the Vivado IP catalog require a clock, that ensures
synchronization with the input probes being monitored or any output signals being driven by the
debug cores. During core discovery and debug measurement phase, it is expected that the clock
is free running and stable. It is also expected that the clock is synchronous to the signals being
monitored or driven. Failure to do so could result in cycle inaccurate data.

The Debug Hub IP bridges between host machine (through BSCAN Primitive which supports a
serial interface) and debug cores on the chip (through XSDB interface which supports a parallel
interface). The BSCAN primitive clock shifts the data in and out of the chip to the Debug Hub IP
serially. The Debug Hub IP collects the data and sends it to all the debug cores on parallel
interface using the Debug Hub clock and vice versa. If any of the debug core clocks are not free
running or not stable, we end up with corrupted data which results in a "Debug Cores not
detected" message. To avoid any corruption of data, it is important to ensure that the JTAG
clock and Debug Hub clocks are stable and free running during the debug core detection process.

1. The Debug Hub Clock must be free running and stable. Xilinx recommends that the clock be
driven from a clock driver that is properly constrained and whose timing is met.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=145

2. If the clocks are driven from MMCM/PLL, ensure that the MMCM/PLL LOCKED signal is
high prior to any debug core measurements. If the clock is connected to the Debug Hub or
any of the debug cores and the MMCM/PLL LOCKED signal transitions to a 0 in the middle
of debug operations, the clock may have significant jitter that might result in unpredictable
behavior of the debug logic.

3. In order to detect the debug cores, take measurements using those cores and capture data. It
is required to have all the associated clocks free running and stable.

The following table lists the various debugging phases and the clocks required during the specific
phases.

Table 6: Debugging Phase Clock Requirements

Debugging Phase JTAG Clock Debug Hub Clock Debug Core Clock2

Connect to Target Stable1 NA NA

Programming Stable1 NA NA

Debug Core Discovery Stable1 Stable NA

Debug Core Measurement3 Stable1 Stable1 Stable

Notes:
1. Stable Clock: A clock that does not pause/stop during the event.
2. Assumes the Debug Core Clock is different from the Debug Hub Clock.
3. A Debug Core Measurement phase includes any step that does a get or set of properties on the debug core.

Vivado Hardware Manager Clocking Related Error
Messages
If the JTAG Clock is inactive or unavailable, you will not be able to connect to the hardware
target.

If the Debug Hub Clock is inactive or unavailable, the Vivado Hardware Manager issues the
following error message:

INFO: [Labtools 27-1434] Device xxx (JTAG device index = 0) is programmed
with a
design that has no supported debug core(s) in it.
WARNING: [Labtools 27-3123] The debug hub core was not detected at User
Scan Chain 1
or 3.
Resolution:
1. Make sure the clock connected to the debug hub (dbg_hub) core is a free
running
clock and is active OR
2. Manually launch hw_server with -e "set xsdb-user-bscan
<C_USER_SCAN_CHAIN
scan_chain_number>" to detect the debug hub at User Scan Chain of 2 or 4.
To determine
the user scan chain setting, open the implemented design and use:
get_property
C_USER_SCAN_CHAIN [get_debug_cores dbg_hub].

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=146

If any of the Debug Core Clocks are inactive or unavailable, the Vivado Hardware Manager issues
the following error message:

INFO: [Labtools 27-2302] Device xxx (JTAG device index = 1) is programmed
with a
design that has 1 ILA core(s).
CRITICAL WARNING: [Labtools 27-1433] Device xxx (JTAG device index = 1) is
programmed
with a design that has an unrecognizable debug core (slave type = 17) at
user chain
= 1, index = 0.
Resolution:
1) Ensure that the clock signal connected to the debug core and/or debug
hub is clean
and free-running.
2) Ensure that the clock connected to the debug core and/or debug hub meets
all timing
constraints.
3) Ensure that the clock connected to debug core and/or debug hub is faster
than the
JTAG clock frequency.

The following figure is an example of a design with 2 ILA cores:

Figure 92: Debug Core Clocking Example

The example design contains two ILA cores, ILA "A" and ILA"B".

The clocking topology of this debug network is as follows. After the design has been
programmed into the device, the Vivado Hardware Manager tries to discover the existence of the
Debug Hub core in the design. The Debug Hub in turn tries to discover and account for all the
debug cores connected to it. In this design the debug cores are ILA "A" and ILA "B". Notice that
CLKA drives both the ILA "A" and the Debug Hub core. CLKB drives the ILA "B" debug core.

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=147

When you connect to the target and program the device, we expect an active JTAG clk. In the
Debug Core Discovery Phase, we expect a free running and stable clock driving the Debug Hub
core, which in this case is CLKA. During Debug Core Measurement phase (i.e. anything that
involves getting/setting properties on the debug core), we expect an active JTAG, Debug Hub
and Debug Core clocks. If we expect to trigger and capture data on ILA "B", we expect free
running and stable JTAG, Debug Hub (CLKA), and Debug Core (CLKB) Clocks.

Adding Vivado Debug Cores to a Partial
Reconfiguration Design

Vivado Debug cores can be instantiated in a Partial Reconfiguration design including within the
Reconfigurable Modules. There are specific requirements and a methodology to adding and
connecting these cores. See this link in the Vivado Design Suite User Guide: Dynamic Function
eXchange (UG909) for the methodology needed to add and connect these Vivado Debug cores.

For an example of instantiating debug cores in a Partial Reconfiguration design as well as a
description of the functionality within the Vivado Hardware Manager, see this link in Vivado
Design Suite Tutorial: Dynamic Function eXchange (UG947).

Chapter 10: In-System Logic Design Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 148Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug909-vivado-partial-reconfiguration.pdf;a=xUsingVivadoDebugCores
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xVivadoDebugAndThePRProjectFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=148

Chapter 11

Debugging Logic Designs in
Hardware

Once you have the debug cores in your design, you can use the run time logic analyzer features
to debug the design in hardware.

Using Vivado Logic Analyzer to Debug the
Design

The Vivado® logic analyzer feature is used to interact with new ILA, VIO, and JTAG-to-AXI
Master debug cores that are in your design. To access the Vivado logic analyzer feature, click the
Open Hardware Manager button in the Program and Debug section of the Flow Navigator.

The steps to debug your design in hardware using an ILA debug core are:

1. Connect to the hardware target and program the FPGA with the .bit file.

2. Set up the ILA debug core trigger and capture controls.

3. Arm the ILA debug core trigger.

4. View the captured data from the ILA debug core in the Waveform window.

5. Use the VIO debug core to drive control signals and/or view design status signals.

6. Use the JTAG-to-AXI Master debug core to run transactions to interact with various AXI
slave cores in your design.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=149

Connecting to the Hardware Target and
Programming the Device

Programming an FPGA prior to debugging uses exactly the same steps as described in
Programming the FPGA . After programming the device with the .bit file that contains the new
ILA, VIO, and JTAG-to-AXI Master debug cores, the Hardware window now shows the debug
cores with the RTL instance name shown in parenthesis, that were detected when scanning the
device.

Figure 93: Hardware Window Showing Debug Cores

For more information on using the ILA core, refer to Setting up the ILA Core to take a
Measurement. For more information on using the VIO core, refer to Setting up the VIO Core to
take a Measurement.

IMPORTANT! Ensure the JTAG clock is slower than the clocks input to the debug cores. You can modify the
JTAG frequency using the Open New Hardware Target wizard or the following Tcl command: set_property
PARAM.FREQUENCY 250000 [get_hw_targets */xilinx_tcf/Digilent/210203327962A]

Related Information
Programming the Device
Setting up the ILA Core to Take a Measurement
Setting Up the VIO Core to Take a Measurement

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=150

Vivado Hardware Manager Dashboards
The Vivado Hardware Manager Dashboards help you manage the various windows for your
System Monitor, ILA, and VIO Debug cores. The dashboards enable you to create, modify, and
save the configuration of these windows in your Vivado Design Suite project.

Default Dashboards
When debug cores are detected upon refreshing a hardware device, the default dashboard for
each debug core is automatically opened.

Default Dashboard Windows
Every default dashboard contains windows relevant to the debug core the dashboard is created
for. The default dashboard created for the ILA debug core contains five windows:

• Settings window

• Status window

• Trigger Setup window

• Capture Setup window

• Waveform window

An example of the default ILA Dashboard can be seen below.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=151

Figure 94: Default ILA Dashboard

You can start adding probes to the Trigger Setup window by clicking the "+" button in the center
of the window, and selecting probes from the Add Probes window as seen in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=152

Figure 95: Add Probes Window

The VIO Default dashboard starts out empty to which you can add VIO probes to as shown in
the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=153

Figure 96: Adding VIO Probes

To view a dashboard associated with a debug core, right-click the debug core object in the
Hardware window, select the Dashboard option, and click the dashboard name. Double-clicking a
debug core in the hardware window will pop up the dashboards associated with that debug core.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=154

Figure 97: Associated Dashboards

Window Controls within a Dashboard

Each window has the following title bar controls, which enable you to manipulate the window:

• Minimize

• Maximize

• Close

Moving Windows

To move windows:

1. Select the window tab or title bar, and drag the window. A gray outline indicates where the
window will be located after the move.

2. To commit to the placement, release the mouse button.

Note: Dropping one window onto an existing window places the two window tabs in the same region.

IMPORTANT! You cannot move windows into or out of the workspace. However, you can resize and move the
windows within the workspace.

Resizing Windows

• To resize windows, click and drag a window border.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=155

Note: The mouse cursor changes to a resize cursor when positioned over a window border or drag
handle, indicating that you can click and drag the window border to resize the window.

• To expand a window to use the all of the viewing environment, click the Maximize button in
the upper right corner of the window.

• To restore a window to its original size, double-click the window title bar or tab.

Closing Windows

• To close windows, click the Close button in the upper right corner of the window.

Note: In some cases, this button is also available in the window tab.

• Right-click a window tab or title bar, and select Close from the popup menu.

Window Tabs

Each window has a tab that you can select to make that the window is active. The tab is at the
bottom of some windows, such as the Trigger Setup and Capture Setup windows.

TIP: To make the next tab active, press Ctrl+Tab. To make the previous tab active, press Ctrl+Shift+Tab. To
maximize or minimize the window, double-click the window tab.

Customizing Dashboards
Typically the windows in the default dashboards should be enough to debug your design and
view the results. However there are times when you might want to move windows around (i.e.
customize your dashboards). For example you may want to be able to view both the ILA status
and Waveform window in addition to controlling VIO probes in the same dashboard. In those
situations Xilinx recommends customizing the dashboard to fit your needs.

Dashboard Options

Every dashboard has a Dashboard Options slideout on the left. Use the Dashboard Options
button on the left side of a dashboard to open its Dashboard Options settings. The Dashboard
Options settings allow you to control the windows that appear in a specific dashboard. For
example you may want to customize the ILA dashboard to include one of the VIO windows as
well. As shown below you click on the VIO window to include it in the Dashboard Options and
the VIO window shows up in the ILA Dashboard. You can now add the VIO probes you are
interested in and trigger the ILA window.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=156

Figure 98: Adding Dashboard Options

Click the Dashboard Options button on the left side of a dashboard to open and close the
Dashboard Options slideout.

Creating New Dashboards

In addition to customizing Default Dashboards using the Dashboard Options, you can also create
brand new dashboards. To do that right-click the debug core object in the Hardware window and
select the Dashboard  → New Dashboard option as shown in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=157

Figure 99: Creating New Dashboard

When the New Dashboard dialog appears, you can customize the dashboard as necessary and
click OK.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=158

Figure 100: New Dashboard Dialog

You can also use the Dashboard toolbar button to create new dashboards as shown below.

Figure 101: Dashboard Toolbar Button

TIP: To view all the dashboards associated with a debug core, right click the debug core in the Hardware view
and click on Dashboard. Alternatively double-click the debug core in the Hardware view and the list of
dashboards associated with the debug core pop-up.

TIP: To float a single window in a dashboard, Xilinx recommends that you create a dashboard with just that
window and float the dashboard.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=159

ILA Waveform window in dashboards

Each ILA Waveform window can only appear in a single dashboard. If you click a Waveform
window that is located in another dashboard you will get a notification that the window is being
relocated as shown in the following figure.

Figure 102: ILA Waveform Confirmation

Click OK, and the Waveform window relocates to the specified dashboard.

TIP: Save ILA data when closing Waveform window.

System Monitor Dashboards

You can also include the XADC/System Monitor window into another dashboard or its own
dashboard.

Figure 103: System Monitor Dashboard

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=160

Resetting to Default Dashboards

You can reset the dashboards back to their default state by clicking Dashboard on the toolbar
and selecting Reset to Default.

Figure 104: Resetting to Default Dashboard

Closing Dashboards

You can close all the Dashboards by clicking Dashboard on the toolbar and selecting Close All.
This will delete all of the dashboards and the user settings in those dashboards.

You can also close a single dashboard by clicking the "X" button on the upper right hand corner.
This will delete the dashboard and all of the user settings in the dashboard.

Saving User Dashboard Preferences and Settings

User Dashboard settings and preferences are saved automatically by Vivado IDE. Upon closing
and reopening the project the user settings and preferences are restored back into the Hardware
Manager.

Setting up the ILA Core to Take a
Measurement

The ILA cores that you add to your design appear in the Hardware window under the target
device. If you do not see the ILA cores appear, right-click the device and select Refresh Device.
This re-scans the FPGA and refreshes the Hardware window.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=161

Note: If you still do not see the ILA core after programming and/or refreshing the FPGA , check to make
sure the device was programmed with the appropriate .bit file and check to make sure the implemented
design contains an ILA core. Also, check to make sure the appropriate .ltx probes file that matches
the .bit file is associated with the device.

Click the ILA core (called hw_ila_1 in the following figure) to see its properties in the ILA Core
Properties window. You can see all the probes corresponding to the ILA core by using the
Windows → Debug Probes menu option, which displays the Debug Probes window as shown in
the following figure.

Figure 105: Selection of the ILA Core in Various Views

Adding Probes
You can add relevant probes to specific windows in an ILA Dashboard by clicking on the "+"
button on the window toolbar or workspace.

Writing Debug Probes Information

The Debug Probes window contains information about the nets that you probed in your design
using the ILA and/or VIO cores. This debug probe information is extracted from your design and
is stored in a data file that typically has an .ltx file extension.

Normally, the debug probes file is automatically created during the implementation process.
However, you can also use the write_debug_probes Tcl command to write out the debug
probes information to a file:

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=162

1. Open the Synthesized or Netlist Design.

2. Run the write_debug_probes filename.ltx Tcl command.

IMPORTANT! If you are using non-project mode, you must manually call the write_debug_probes 
command immediately following the opt_design  command.

Reading Debug Probes Information

The debug probes file is automatically associated with the hardware device if the Vivado IDE is in
project mode and a probes file is called debug_nets.ltx is found in the same directory as the
bitstream programming (.bit) file that is associated with the device.

You can also specify the location of the probes file:

1. Select the hardware device in the Hardware window.

2. Set the Probes file location in the Hardware Device Properties window.

3. Right-click the hardware device in the Hardware window and select Refresh Device to read
the contents of the debug probes file and associate and validate the information with the
debug cores found in the design running in the hardware device.

You can also set the location using the following Tcl commands to associate a debug probes file
called C:\myprobes.ltx with the first device on the target board:

% set_property PROBES.FILE {C:/myprobes.ltx} [lindex [get_hw_devices] 0]
% refresh_hw_device [lindex [get_hw_devices] 0]

Renaming Debug Probes

You can use the Debug Probes window to rename debug probes that belong to an ILA or VIO
core. You can rename the debug probes and add them to an existing Waveform Viewer for the
core, or you can add them to the various trigger and/or capture windows of the ILA Dashboard.
These names could be the custom, long or short name associated with the debug probe.

To perform these operations, right-click an ILA/VIO core's debug probe(s) and select one of the
following:

• Rename: Prompts you to rename the probe to a custom name.

• Name: Allows you to select the long, short, or custom name of the debug probe. Subsequent
references to the debug probe in the Vivado IDE window will use the name that you selected.

• Long: Displays the full hierarchical name of the signal or bus being probed.

• Short: Displays the name of the signal or bus being probed.

• Custom: Displays the custom name given to the signal or bus when renamed.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=163

Using Multiple Comparators
If you have customized the probes and/or ILA debug cores to use more than 1 comparator in the
Basic/Advanced mode, you can use these comparators both in the Basic and Advanced Trigger
Setup window.

You can add the probe into the Basic trigger setup window and set up the trigger conditions. The
comparator usage column gives you information on the comparator used within the probe for the
specific compare condition out of the total number of comparators associated with the probe.

Figure 106: Basic Trigger Setup - Comparator Usage

TIP: The Comparator Usage column is a hidden column. To enable this column right-click the Trigger Setup
column title row as shown below and select Comparator Usage.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=164

Figure 107: Comparator Usage Column

Using the ILA Default Dashboard
The ILA Dashboard (see the following figure) is a central location for all status and control
information pertaining to a given ILA core. When an ILA core is first detected upon refreshing a
hardware device, the Default ILA Dashboard for the core is automatically opened. If you need to
manually open or re-open the dashboard, just right-click the ILA core object in the Hardware
window and select Default Dashboard.

Figure 108: ILA Dashboard

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=165

You can use the ILA Dashboard to interact with the ILA debug core in several ways:

• Set the trigger mode to trigger on various events in hardware:

○ BASIC_ONLY: The ILA Basic Trigger Mode can be used to trigger the ILA core when a basic
AND/OR functionality of debug probe comparison result is satisfied.

○ ADVANCED_ONLY: The ILA Advanced Trigger Mode can be used to trigger the ILA core as
specified by a user defined state machine.

○ TRIG_IN_ONLY: The ILA TRIG_IN Trigger Mode can be used to trigger the ILA core when
the TRIG_IN pin of the ILA core transitions from a low to high.

○ BASIC_OR_TRIG_IN: The ILA BASIC_OR_TRIG_IN Trigger Mode can be used to trigger the
ILA core when a logical OR-ing of the TRIG_IN pin of the ILA core and BASIC_ONLY trigger
mode is desired.

○ ADVANCED_OR_TRIG_IN: The ILA ADVANCED_OR_TRIG_IN Trigger Mode can be used
to trigger the ILA core when a logical OR-ing of the TRIG_IN pin of the ILA core and
ADVANCED_ONLY trigger mode is desired.

• Set the trigger output mode.

• Use ALWAYS and BASIC capture modes to control filtering of data to be captured.

• Set the number of ILA capture windows.

• Set the data depth of the ILA capture window.

• Set the trigger position to any sample within the capture window.

• Monitor the trigger and capture status of the ILA debug core.

User-Defined Debug Probes
Using user-defined debug probes (also called hw_probes) in the Hardware Manager allows you
the ability to create probes from combinations of physical ILA probe ports and constant values.
You can then use these probes in the Trigger Setup or Waveform windows in the Hardware
Manager. On successful creation of these probes, they are listed in the Debug Probes window as
part of the debug core they were associated with during creation.

You can create the following types of user defined probes:

• An ILA probe port.

• One or more constant values of 0 and/or 1.

• A mix of ILA probe port and constant values.

IMPORTANT! User-defined probes that involve constant values can only be used in the Waveform window.
They cannot be used in the Trigger Setup window.

TIP: You can only create user-defined probes on ILA debug cores. Creating user-defined debug probes for VIO
cores is not currently supported.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=166

Creating a User-Defined Debug Probe

GUI Flow

To create a user-defined debug probe in the Vivado IDE Hardware Manager, in the Hardware
window, right-click the ILA core that you want to probe and select Create User Defined Probe.

Figure 109: Selecting Create User Defined Probe

This brings up the Create User Defined Probe dialog box. Select the ILA core you want to create
the probes on, the name of the new probe, and finally the probe bits, and/or constants that make
up this new probe.

To add specific probe bits to this new probe, click the "+" button and select Add Probe.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=167

Figure 110: Create User Defined Probe Dialog Box

This brings up the Add Probes dialog that allows you to choose an existing probe or specific bits
of an existing probe.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=168

Figure 111: Add Probes Dialog Box

You can also add or remove bits in the Create User Defined dialog box. Move specific bits up or
down as shown in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=169

Figure 112: Editing Bits in Create User Defined Probe Dialog Box

Tcl Flow

To create a user-defined debug probe use the create_hw_probe Tcl command.

create_hw_probe [-verbose] [-map <arg>] <name> <core>

Where:

• name: is the name of the hw_probe. Must be unique for hw_probes belonging to the same
device. Bus probes must have their range specified. For example, myNewProbe[31:0].

• core: is the hw_ila to associate the probe with.

• -map: is the declaration of bits to base the user-defined probe on.

Examples of creating user-defined debug probes:

Given a 512-bit counter "counterA[511:0]": Connects [255:223] to
ILA probe port 0 [31:0]
Create a user-defined probe called foobar pointing at the
ILA buffer specified range [255:223]
 create_hw_probe -map {probe0[31:0]} {foobar [255:223]} [get_hw_ilas

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=170

hw_ila_1]
Constant only probe. NO triggering allowed on constant ONLY probes.
 create_hw_probe -map {0} {my_constant_gnd[0:0]} [get_hw_ilas hw_ila_1]
Create a user-defined probe as a mix of constants and ILA probe ports
 create_hw_probe -map {0000 probe0[31:0] 1010} {my_mixed_probe[47:8]}
[get_hw_ilas
hw_ila_1]
Creating scalar hw_probe called "foobar" from probe1:
create_hw_probe -map {probe1} foobar [get_hw_ilas hw_ila_1]
Creating scalar hw_probe called "foobar" from bit 3 of probe0:
create_hw_probe -map {probe0[3]} foobar [get_hw_ilas hw_ila_1]
Creating vector hw_probe called "foobar[0:0]" from probe1:
create_hw_probe -map {probe1} foobar[0:0] [get_hw_ilas hw_ila_1]
Creating vector probe called "foobar[3:0]" from probe0:
create_hw_probe -map {probe0} foobar[3:0] [get_hw_ilas hw_ila_1]
Creating vector probe called "foobar[3:2]" from probe0[1:0]:
create_hw_probe -map {probe0[1:0]} foobar[3:2] [get_hw_ilas hw_ila_1]

Deleting a User-Defined Debug Probe

GUI Flow

To delete a user defined probe in the Vivado IDE Hardware Manager, select Window → Debug
Probe. This will bring up the Debug Probes window beside the Hardware Manager dashboards.
Right-click the appropriate probe in this window and click Delete as shown below.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=171

Figure 113: Deleting a Debug Probe

Tcl Flow

You can delete user-defined debug probes using the delete_hw_probe Tcl command.

For example, to delete a probe foobar created earlier using create_hw_probe do the
following:

delete_hw_probe [get_hw_probes foobar -of_objects [get_hw_ilas -of_objects
[get_hw_devices xc7k325t_0] -filter {CELL_NAME=~"i_fast_ila"}]]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=172

Persistence of User-Defined Debug Probes
Any of the user-defined probes created in the Hardware Manager in the project flow are
automatically persisted by the tool. The next time the project is opened and you connect to the
hardware target using Vivado Hardware Manager, these user-defined probes are resurrected. If
these user-defined debug probes participated in Basic triggering or were added to the Waveform
window, on project open and connecting to the target in the Hardware Manager, you will see the
probe setup in all the windows exactly as when you closed the project earlier.

Interacting with a User-Defined Probe
Any of the user-defined debug probes created in the Hardware Manager can participate in Basic
triggering, Advanced Triggering, and/or the Waveform window. The only exception are user-
defined debug probes that involve constant values. These types of debug probes can only be
used in the Waveform window.

Using Basic Trigger Mode
Use the basic trigger mode to describe a trigger condition that is a global Boolean equation of
participating debug probe comparators. Basic trigger mode is enabled when the Trigger Mode is
set to either BASIC_ONLY or BASIC_OR_TRIG_IN. Use the Basic Trigger Setup window (see the
following figure) to create this trigger condition and debug probe compare values.

Figure 114: ILA Basic Trigger Setup Window

You can also use the set_property Tcl command to change the trigger mode of the ILA core.
For instance, to change the trigger mode of ILA core hw_ila_1 to BASIC_ONLY, use the
following command:

set_property CONTROL.TRIGGER_MODE BASIC_ONLY [get_hw_ilas hw_ila_1]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=173

Adding Probes to Basic Trigger Setup Window

The first step in using the basic trigger mode is to decide what ILA debug probes you want to
participate in the trigger condition. Do this by selecting the desired ILA debug probes from the
Debug Probes window and either right-click selecting Add Probes to Basic Trigger Setup or by
dragging and dropping the probes into the Basic Trigger Setup window.

Note: You can drag-and-drop the first probe anywhere in the Basic Trigger Setup window, but you must
drop the second and subsequent probes on top of the first probe. The new probe is always added above
the previously added probe in the table. You can also use drag-and-drop operations in this manner to re-
arrange probes in the table.

IMPORTANT! Only probes that are in the Basic Trigger Setup window participate in the trigger condition. Any
probes that are not in the window are set to "don't care" values and are not used as part of the trigger condition.

You can remove probes from the Basic Trigger Setup window by selecting the probe and hitting
the Delete key or by right-click selecting the Remove option.

Setting Basic Trigger Compare Values

Use the ILA debug probe trigger comparators to detect specific equality or inequality conditions
on the probe inputs to the ILA core. The trigger condition is the result of a Boolean "AND", "OR",
"NAND", or "NOR" calculation of each of the ILA probe trigger comparator results. To specify the
compare values for a given ILA probe, select the Value cell in for a given ILA debug probe in the
Basic Trigger Setup window to open the (see the following figure).

Figure 115: ILA Probe Compare Value Dialog Box

TIP: Prior to changing the Radix ensure that the value is set to a string that applies to the new Radix.

ILA Probe Compare Value Settings

The Basic Trigger Setup window has three cells that you can configure in a specific row
corresponding to a probe:

1. Operator: This is the comparison operator that you can set to the following values:

• == (equal)

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=174

• != (not equal)

• < (less than)

• <= (less than or equal)

• > (greater than)

• >= (greater than or equal)

2. Radix: This is the radix or base of the Value that you can set to the following values:

• [B] Binary

• [H] Hexadecimal

• [O] Octal

• [U] Unsigned Decimal

• [S] Signed Decimal

3. Value: This is the comparison value that will be compared (using the Operator) with the real-
time value on the net(s) in the design that are connected to the probe input of the ILA debug
core. Depending on the Radix settings, the Value string is as follows:

• Binary

○ 0: logical zero

○ 1: logical one

○ X: don't care

○ R: rising or low-to-high transition

○ F: falling or high-to-low transition

○ B: either low-to-high or high-to-low transitions

○ N: no transition (current sample value is the same as the previous value)

• Hexadecimal

○ X: All bits corresponding to the value string character are "don't care" values

○ 0-9: Values 0 through 9

○ A-F: Values 10 through 15

• Octal

○ X: All bits corresponding to the value string character are "don't care" values

○ 0-7: Values 0 through 7

• Unsigned Decimal

○ Any non-negative integer value

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=175

• Signed Decimal

○ Any integer value

Setting Basic Trigger Condition

You can set up the trigger condition using the toolbar button on the left side of the Basic Trigger
Setup window that has an icon the shape of a logic gate on it (see the following figure). You can
also use the set_property Tcl command to change the trigger condition of the ILA core:

set_property CONTROL.TRIGGER_CONDITION AND [get_hw_ilas hw_ila_1]

The meaning of the four possible values is shown in the following table.

Figure 116: Setting the Basic Trigger Condition

Table 7: Basic Trigger Condition Setting Descriptions

Trigger Condition
Setting in GUI

CONTROL.TRIGGER_CONDITION
property value Trigger Condition Output

Global AND AND Trigger condition is "true" if all participating
probe comparators evaluate “true”, otherwise
trigger condition is “false.”

Global OR OR Trigger condition is "true" if at least one
participating probe comparator evaluates
"true", otherwise trigger condition is "false."

Global NAND NAND Trigger condition is “true” if at least one
participating probe comparator evaluates
“false”, otherwise trigger condition is “false.”

Global NOR NOR Trigger condition is "true" if all participating
probe comparators evaluate "false", otherwise
trigger condition is "false."

IMPORTANT! If the ILA core has two or more debug probes that concatenated together to share a single
physical probe port of the ILA core, then only the "Global AND" (AND) and "Global NAND" (NAND) trigger
condition settings are supported. The "Global OR" (OR) and "Global NOR" (NOR) functions are not supported
due to limitations of the probe port comparator logic. If you want to use the "Global OR" (OR) or "Global NOR"
(NOR) trigger condition settings, then make sure you assign each unique net or bus net to separate probe ports
of the ILA core.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=176

Using Advanced Trigger Mode
The ILA core can be configured at core generation or insertion time to have advanced trigger
capabilities that include the following features:

• Trigger state machine consisting of up to 16 states.

• Each state can consist of one-, two-, or three-way conditional branching.

• Up to four counters can be used in a trigger state machine program to keep track of multiple
events.

• Up to four flags can be used in a trigger state machine program to indicate when certain
branches are taken.

• The state machine can execute "goto", "trigger", and various counter- and flag-related actions.

If the ILA core in the design that is running in the hardware device has advanced trigger
capabilities, the advanced trigger mode features can be enabled by setting the Trigger mode
control in the ILA Properties window of the ILA Dashboard to ADVANCED_ONLY or
ADVANCED_OR_TRIG_IN.

Specifying the Trigger State Machine Program File

When you set the Trigger mode to ADVANCED_ONLY or ADVANCED_OR_TRIG_IN, two
changes happen in the ILA Dashboard:

1. A new control called Trigger State Machine appears in the ILA Properties window

2. The Basic Trigger Setup window is replaced by a Trigger State Machine code editor window.

If you are specifying an ILA trigger state machine program for the first time, the Trigger State
Machine code editor window will appear as the one shown in the following figure.

Figure 117: Creating or Opening a Trigger State Machine Program File

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=177

To create a new trigger state machine, click the Create new trigger state machine link, otherwise
click the Open existing trigger state machine link to open a trigger state machine program file
(.tsm extension). You can also open an existing trigger state machine program file using the
Trigger state machine text field and/or browse button in the ILA Properties window of the ILA
Dashboard.

Editing the Trigger State Machine Program

If you created a new trigger state machine program file, the Trigger State Machine code editor
window will be populated with a simple trigger state machine by default (see the following
figure).

Figure 118: Simple Default Trigger State Machine Program

The simple default trigger state machine program is designed to be valid for any ILA core
configuration regardless of debug probe or trigger settings. This means that you can click the Run
Trigger for the ILA core without modifying the trigger state machine program.

However, it is likely that you will want to modify the trigger state machine program to implement
some advanced trigger condition. The comment block at the top of the simple state machine
shown in the previous figure gives some instructions on how to use the built-in language
templates in the Vivado IDE to construct a trigger state machine program (see the following
figure). A full description of the ILA trigger state machine language, including examples, is found
in Trigger State Machine Language Description.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=178

Figure 119: Trigger State Machine Language Templates

Related Information
Trigger State Machine Language Description

Compiling the Trigger State Machine

The trigger state machine is compiled every time you run the ILA trigger. If you would like to
compile the trigger state machine without running or arming the ILA trigger, click the Compile
trigger state machine button in the ILA Dashboard (see the following figure).

Figure 120: Compiling the Trigger State Machine without Arming the Trigger

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=179

Enabling Trigger In and Out Ports
The ILA core can be configured at core generation-time to have dedicated trigger input ports
(TRIG_IN and TRIG_IN_ACK) and dedicated trigger output ports (TRIG_OUT and
TRIG_OUT_ACK). If the ILA core has trigger input ports enabled, then you can use the following
Trigger Mode settings to trigger on events on the TRIG_IN port:

• BASIC_OR_TRIG_IN: used to trigger the ILA core when a logical OR-ing of the TRIG_IN pin of
the ILA core and BASIC_ONLY trigger mode is desired.

• ADVANCED_OR_TRIG_IN: used to trigger the ILA core when a logical OR-ing of the TRIG_IN
pin of the ILA core and ADVANCED_ONLY trigger mode is desired.

• TRIG_IN_ONLY: used to trigger the ILA core when the TRIG_IN pin of the ILA core transitions
from a low to high.

If the ILA core has trigger output ports enabled, then you can use the following TRIG_OUT Mode
to control the propagation of trigger events to the TRIG_OUT port:

• DISABLED: disables the TRIG_OUT port.

• TRIGGER_ONLY: enables the result of the basic/advanced trigger condition to propagate to
the TRIG_OUT port.

• TRIG_IN_ONLY: propagates the TRIG_IN port to the TRIG_OUT port.

• TRIGGER_OR_TRIG_IN: enables the result of a logical OR-ing of the basic/advanced trigger
condition and TRIG_IN port to propagate to the TRIG_OUT port.

Configuring Capture Mode Settings
The ILA core can capture data samples when the core status is Pre-Trigger, Waiting for Trigger, or
Post-Trigger (refer to the section called Viewing Trigger and Capture Settings for more details).
The Capture mode control is used to select what condition is evaluated before each sample is
captured:

• ALWAYS: Store a data sample during a given clock cycle regardless of any capture conditions

• BASIC: Store a data sample during a given clock cycle only if the capture condition evaluates
"true"

You can also use the set_property Tcl command to change the capture mode of the ILA core.
For instance, to change the capture mode of ILA core hw_ila_1 to BASIC, use the following
command:

set_property CONTROL.CAPTURE_MODE BASIC [get_hw_ilas hw_ila_1]

Related Information
Viewing Trigger and Capture Status

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=180

Using BASIC Capture Mode

Use the basic capture mode to describe a capture condition that is a global Boolean equation of
participating debug probe comparators. Use the Basic Capture Setup window (see the following
figure) to create this capture condition and debug probe compare values.

Figure 121: Setting the Basic Capture Condition

Configuring the Basic Capture Setup Window

The process for configuring debug probes and basic capture condition in the Basic Capture
window is very similar to working with debug probes in the Basic Trigger Setup window:

• For information on adding probes to the Basic Capture Setup window, refer to the section
called Adding Probes to Basic Trigger Setup Window.

• For information on setting the compare values on each probe in the Basic Capture Setup
window, refer to the section called ILA Probe Compare Value Settings.

• For information on setting the basic capture condition in the Basic Capture Setup window,
refer to the section called Setting Basic Trigger Condition. One key difference is the ILA core
property used to control the capture condition is called CONTROL.CAPTURE_CONDITION.

Related Information
Adding Probes to Basic Trigger Setup Window
ILA Probe Compare Value Settings
Setting Basic Trigger Condition

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=181

Setting the Number of Capture Windows

The ILA capture data buffer can be subdivided into one or more capture windows, the depth
each of which is a power of 2 number of samples from 1 to (((buffer size) / (number of windows))
- 1). For example, if the ILA data buffer is 1024 samples deep and is segmented into four capture
windows, then each window can be up to 256 samples deep. Each capture window has its own
trigger mark corresponding to the trigger event that caused the capture window to fill.

TIP: Clicking Stop Trigger before the entire ILA data capture buffer is full will upload and display all capture
windows that have been filled. For example, if the ILA data buffer is segmented into four windows and three of
them have filled with data, clicking Stop Trigger will halt the ILA core and upload and display the three filled
capture windows.

The table below illustrates the interaction between the Vivado runtime software and hardware
when a you set the Number of Capture Windows to more than 1 and the Trigger Position to 0.

Table 8: Number of Capture Windows > 1 and Trigger Position = 0

Software Hardware
User Runs Trigger on the ILA core Window 0: ILA is armed

Window 0: ILA triggers
Window 0: ILA fills capture window 0
Window 1: ILA is rearmed
Window 1: ILA triggers
Window 1: ILA fills capture window 1
...
Window n-1: ILA is rearmed
Window n-1: ILA triggers
Window n-1: ILA fills capture window n
Entire ILA Capture Buffer is Full

Data is uploaded and displayed The ILA core is rearmed such that it is ready to trigger on the clock
cycle immediately following the last sample captured of the previous
window.

The table below illustrates the interaction between the Vivado runtime software and hardware
when a you set the Number of Capture Windows to more than 1 and the Trigger Position to
greater than 0.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=182

Table 9: Number of Capture Windows > 1 and Trigger Position > 0

Software Hardware
User Runs Trigger on the ILA core Window 0: ILA is armed

Window 0: ILA fills capture buffer up to trigger position
Window 0: ILA triggers
Window 0: ILA fills the rest of capture window 0
Window 1: ILA is rearmed
Window 1: ILA fills capture buffer up to trigger position
Window 1: ILA triggers
Window 1: ILA fills capture buffer
Window 1: ILA fills window 1
...
Window n-1: ILA is rearmed
Window n-1: ILA fills capture buffer up to trigger position
Window n-1: ILA triggers
Window n-1: ILA fills capture buffer
Window n-1: ILA fills window n
Entire ILA Capture Buffer is Full

Data is uploaded and displayed Triggers could be missed between two windows since the ILA now
has to fill the capture data up to the trigger position.

Setting the Trigger Position in the Capture Window

Use the Trigger position control in the Capture Mode Settings window (or the Trigger Position
property in the ILA Core Properties window) to set the position of the trigger marker in the
captured data window. You can set the trigger position to any sample number in the captured
data window. For instance, in the case of a captured data window that is 1024 samples deep:

• Sample number 0 corresponds to the first (left-most) sample in the captured data window.

• Sample number 1023 corresponds to the last (right-most) sample in the captured data
window.

• Samples numbers 511 and 512 correspond to the two "center" samples in the captured data
window.

You can also use the set_property Tcl command to change the ILA core trigger position:

set_property CONTROL.TRIGGER_POSITION 512 [get_hw_ilas hw_ila_1]

Setting the Data Depth of the Capture Window

Use the Data Depth control in the Capture Mode Settings window (or the Capture data depth
property in the ILA Core Properties window) to set the data depth of the ILA core's captured data
window. You can set the data depth to any power of two from 1 to the maximum data depth of
the ILA core (set during core generation or insertion time).

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=183

Note: Refer to the section called Modifying Properties on the Debug Cores for more details on how to set
the maximum capture buffer data depth on ILA cores that are added to the design using the Netlist
Insertion probing flow.

You can also use the set_property Tcl command to change the ILA core data depth:

set_property CONTROL.DATA_DEPTH 512 [get_hw_ilas hw_ila_1]

Related Information
Modifying Properties on the Debug Cores

Running the Trigger
You can run or arm the ILA core trigger in two different modes:

• Run Trigger: Selecting the ILA core(s) to be armed followed by clicking the Run Trigger button
on the ILA Dashboard or Hardware window toolbar arms the ILA core to detect the trigger
event that is defined by the ILA core basic or advanced trigger settings.

• Run Trigger Immediate: Selecting the ILA core(s) to be armed followed by clicking the Run
Trigger Immediate button on the ILA Dashboard or Hardware window toolbar arms the ILA
core to trigger immediately regardless of the ILA core trigger settings. This command is useful
for detecting the "aliveness" of the design by capturing any activity at the probe inputs of the
ILA core.

You can also arm the trigger by selecting and right-clicking on the ILA core and selecting Run
Trigger or Run Trigger Immediate from the popup menu (see the following figure).

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=184

Figure 122: ILA Core Trigger Commands

TIP: You can run or stop the triggers of multiple ILA cores by selecting the desired ILA cores, then using the Run
Trigger, Run Trigger Immediate, or Stop Trigger buttons in the Hardware window toolbar. You can also run or
stop the triggers of all ILA cores in a given device by selecting the device in the Hardware window and click the
appropriate button in the Hardware window toolbar.

Stopping the Trigger
You can stop the ILA core trigger by selecting the appropriate ILA core followed by clicking on
the Stop Trigger button on the ILA Dashboard or Hardware window toolbar. You can also stop
the trigger by selecting and right-clicking on the appropriate ILA core(s) and selecting Stop
Trigger from the popup menu (see Running the Trigger).

Related Information
Running the Trigger

Using Auto Re-Trigger
Select the Enable Auto Re-Trigger right-click menu option (or corresponding button on the ILA
Dashboard toolbar) on the ILA core to enable Vivado IDE to automatically re-arm the ILA core
trigger after a successful trigger+upload+display operation has completed. The captured data
displayed in the waveform viewer corresponding to the ILA core will be overwritten upon each
successful trigger event. The Auto Re-Trigger option can be used with the Run Trigger and Run
Trigger Immediate operations. Click Stop Trigger to stop the trigger currently in progress.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=185

The table below illustrates the interaction between the Vivado IDE runtime software and
hardware when you invoke the Auto Re-Trigger option.

Table 10: Auto Re-Trigger

Software Hardware
Click the Auto Re-trigger option on the ILA core ILA is armed

ILA triggers
ILA fills capture buffer
ILA is full

Data is uploaded and displayed ILA is rearmed
ILA triggers
ILA fills capture buffer
ILA is full
Lots of cycles are missed between the ILA "full" event and display of
the ILA data

IMPORTANT! As there is a delay between the time the ILA data is full and the data is uploaded and displayed
in the GUI, there is a very high probability of missing cycles between these events where the ILA could have
triggered.

Viewing Trigger and Capture Status
The ILA debug core trigger and capture status is displayed in two places in Vivado IDE:

• In the Hardware window Status column of the row(s) corresponding to the ILA debug core(s).

• In the Trigger Capture Status window of the ILA Dashboard.

The Status column in the Hardware window indicates the current state or status of each ILA core
(see the following table).

Table 11: ILA Core Status Description

ILA Core
Status Description

Idle The ILA core is idle and waiting for its trigger to be run. If the trigger position is 0, then the ILA core will
transition to the Waiting for Trigger status once the trigger is run, otherwise the ILA core will transition
to the Pre-Trigger status.

Pre-Trigger The ILA core is capturing pre-trigger data into its data capture window. Once the pre-trigger data has
been captured, the ILA core will transition to the Waiting for Trigger status.

Waiting for
Trigger

The ILA core trigger is armed and is waiting for the trigger event to occur as described by the basic or
advanced trigger settings. Once the trigger occurs, the ILA core will transition to the Full status if the
trigger position is set to the last data sample in the capture window, otherwise it will transition to the
Post-Trigger status.

Post-Trigger The ILA core is capturing post-trigger data into its data capture window. Once the post-trigger data has
been captured, the ILA core will transition to the Full status.

Full The ILA core capture buffer is full and is being uploaded to the host for display. The ILA core will
transition to the Idle status once the data has been uploaded and displayed.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=186

The contents of the Trigger Capture Status window in the ILA Dashboard depend on the Trigger
Mode setting of the ILA core.

Partial Buffer Capture

Clicking Stop Trigger before the entire ILA data capture buffer is full uploads and displays all
capture windows that have been filled. For example, if the ILA data buffer is segmented into four
windows and three of them have filled with data, clicking Stop Trigger halts the ILA core and
uploads and displays the three filled capture windows. In addition, clicking Stop Trigger will halt
the ILA core and display a partially filled capture window so long as the trigger event occurred in
that capture window.

Basic Trigger Mode Trigger and Capture Status

The Trigger Capture Status window contains two status indicators when the Trigger Mode is set
to BASIC (see the following figure):

• Core status: indicates the status of the ILA core trigger/capture engine (see Viewing Trigger
and Capture Status for a description of the status indicators).

• Capture status: indicates the current capture window, the current number of samples
captured in the current capture window, and the total number of samples captured by the ILA
core. These values are all reset to 0 once the ILA core status is Idle.

Figure 123: Basic Trigger Mode Trigger Capture Status Window

Related Information
Viewing Trigger and Capture Status

Advanced Trigger Mode Trigger and Capture Status

The Trigger Capture Status window contains four status indicators when the Trigger Mode is set
to ADVANCED (see the following figure):

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=187

• Core status: indicates the status of the ILA core trigger/capture engine (see Viewing Trigger
and Capture Status for a description of the status indicators).

• Trigger State Machine Flags: indicates the current state of the four trigger state machine flags.

• Trigger State: when the core status is Waiting for Trigger, this field indicates the current state
of the trigger state machine.

• Capture status: indicates the current capture window, the current number of samples
captured in the current capture window, and the total number of samples captured by the ILA
core. These values are all reset to 0 once the ILA core status is Idle.

Figure 124: Advanced Trigger Mode Trigger Capture Status Window

Related Information
Viewing Trigger and Capture Status

Writing ILA Probes Information
The ILA Cores tab view in the Debug Probes window contains information about the nets that
you probed in your design using the ILA core. This ILA probe information is extracted from your
design and is stored in a data file that typically has an .ltx file extension.

Normally, the ILA probe file is automatically created during bitstream generation. However, you
can also use the write_debug_probes Tcl command to write out the debug probes
information to a file:

1. If you are in project mode, open the Implemented Design. If you are in non-project mode,
open the implemented design checklist.

2. Run the write_debug_probes filename.ltx Tcl command.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=188

Reading ILA Probes Information
The ILA probe file is automatically associated with the FPGA hardware device if the probes file is
called debug_nets.ltx and is found in the same directory as the bitstream programming
(.bit) file that is associated with the device.

You can also specify the location of the probes file:

1. Select the FPGA in the Hardware window.

2. Set the Probes file location in the Hardware Device Properties window.

3. Click Apply to apply the change.

You can also set the location using the set_property Tcl command:

set_property PROBES.FILE {C:/myprobes.ltx} [lindex [get_hw_devices] 0]

Viewing Captured Data from the ILA Core in
the Waveform Viewer

Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the
Waveform Viewer. See Viewing ILA Probe Data for details on using the Waveform Viewer to
view captured data from the ILA core.

Related Information
Viewing ILA Probe Data in the Waveform Viewer

Using Waveform ILA Trigger and Export
Features

You can use the icons in the waveform window to arm ILAs and run trigger, stop the trigger, and
export ILA data as shown below.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=189

Figure 125: Waveform ILA Trigger and Export Features

Auto Re-Trigger

Run Trigger

Run Trigger Immediate

Stop Trigger

Export ILA Data

X16755-032717

Enable Auto Re-Trigger: Select the Enable Auto Re-Trigger button on the Waveform window
toolbar to enable Vivado IDE to automatically re-arm the ILA core associated with the Waveform
window trigger after a successful trigger+upload+display operation has completed.

The captured data displayed in the Waveform window corresponding to the ILA core is
overwritten upon each successful trigger event. The Auto Re-Trigger option can be used with the
Run Trigger and Run Trigger Immediate operations. Click the Stop Trigger button to stop the
trigger currently in progress.

Run Trigger: Arms the ILA core associated with the Waveform window to detect the trigger
event that is defined by the ILA core basic or advanced trigger settings.

Run Trigger Immediate: Arms the ILA core associated with the Waveform window to trigger
immediately regardless of the ILA core trigger settings. This command is useful for detecting the
"aliveness" of the design by capturing any activity at the probe inputs of the ILA core.

Stop Trigger: Stops the ILA core trigger of the ILA associated with the Waveform window.

Export ILA Data: Captures data from an ILA core and saves it to a file. The data can be captured
in either native, .csv, or .vcd format. On clicking this icon on the Waveform window toolbar
the following dialog box appears.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=190

Figure 126: Export ILA Data Dialog Box

The ILA core is the name of the ILA debug core to export data for. The format is a selection
among Native, CSV, and VCD formats.

• Native format configures the write_hw_ila_data command to export the ILA data in
native ILA format.

This ILA file can be imported back into Vivado IDE so that you can view previously captured
ILA data. The read_hw_ila_data TCL command can be used to import the ILA data back
into Vivado IDE as shown in the example below:

read_hw_ila_data {./iladata.ila}
display_hw_ila_data

• CSV format configures the write_hw_ila_data command to export the ILA data in the
form of a .csv file that can be used to import the data into a spreadsheet or third-party
application.

• VCD file format configures the write_hw_ila_data command to export the ILA data in the
form of a .vcd file that can be used to import into a third-party application or viewer.

IMPORTANT! While ILA data can be exported in the CSV, VCD, and native ILA format, only the native ILA
format can be imported into Vivado. Also, native ILA data imported into Vivado is supported only for offline
viewing of previously captured data. The probe signals cannot be used for other purposes such as triggering, etc.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=191

Saving and Restoring Captured Data from the
ILA Core

In addition to displaying the captured data that is directly uploaded from the ILA core, you can
also write the captured data to a file then read the data from a file and display it in the waveform
viewer.

Saving Captured ILA Data to a File
Currently, the only way to upload captured data from an ILA core and save it to a file is to use the
following Tcl command:

write_hw_ila_data my_hw_ila_data_file.ila [upload_hw_ila_data hw_ila_1]

This Tcl command sequence uploads the captured data from the ILA core and writes it to an
archive file called my_hw_ila_data_file.ila. The archive file contains the waveform
database file, the waveform configuration file, a waveform comma separated value file, and a
debug probes file.

TIP: Use the -csv_file  option to generate a comma-separated values (CSV) file. This configures the
write_hw_ila_data  command to export the ILA data in the form of a CSV file that can be used to import
into a spreadsheet or third-party application, rather than the default binary ILA file format.

TIP: Use the -vcd_file  option to generate a value change dump (VCD) file. This configures the
write_hw_ila_data command to export the ILA data in the form of a VCD file that can be used to import
into a third-party application or viewer, rather than the default binary ILA file format.

Probe Data Radix

Every probe has a DISPLAY_RADIX property associated with it. This property is set to HEX for a
multi-bit probe and BINARY for a one-bit probe by default. The exported probe data in the .csv
files use probe radix.

You can change the DISPLAY_RADIX property of all the probes of all ILAs in the design as
follows in the Vivado Hardware Manager Tcl Console:

foreach probe [get_hw_probes -of [get_hw_ilas]] {
 set_property DISPLAY_RADIX binary $probe
 set_property DISPLAY_AS_ENUM false $probe
 }

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=192

Note: Here we are changing the radix of all the probes in all the ILAs to BINARY. To change the radix to
HEX, use the script below.

foreach probe [get_hw_probes -of [get_hw_ilas]] {
 set_property DISPLAY_RADIX hex $probe
 set_property DISPLAY_AS_ENUM false $probe
 }

Listing data samples associated with a single probe

You can also list data samples associated with individual probes using the list_hw_samples
Tcl command.

An example of listing the samples associated with probe fast_cnt_incr_val_1 on ILA
named i_fast_ila is shown below:

list_hw_samples [get_hw_probes fast_cnt_incr_val_1 -of_objects [get_hw_ilas
-of_objects [get_hw_devices xc7k325t_0] -filter {CELL_NAME=~"i_fast_ila"}]]
00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000001
00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000001
00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000001
00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000001...

Restoring Captured ILA Data from a File
Currently, the only way to restore captured data from a file and display it in the waveform viewer
is to use the following Tcl command:

display_hw_ila_data [read_hw_ila_data my_hw_ila_data_file.ila]

This Tcl command sequence reads the previously saved captured data from the ILA core and
displays it in the Waveform window.

Note: The waveform configuration settings (dividers, markers, colors, probe radices, etc.) for the ILA Data
Waveform window is also saved in the ILA captured data archive file. Restoring and displaying any
previously saved ILA data uses these stored waveform configuration settings.

IMPORTANT! Do NOT use the open_wave_config  command to open a waveform created from ILA
captured data. This is a simulator-only command and will not function correctly with ILA captured data
waveforms.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=193

Enumeration of Probe Values
This feature provides a way to refer to probe values, both during Trigger/Capture Setup to
compare values, and in the Waveform window, by symbolic names.

Some common use cases include the following.

• state machine state values

• op codes

• any probe match value, that you want to refer to by name, instead of value.

The process involves entering enumeration name-value pairs and associating them with a probe.
The enumeration name-value pair associations are available using Tcl commands and are stored
between sessions.

In cases where the mark_debug attribute is used to probe a state register in a state machine with
enumerated states, the state enumeration will be preserved though implementation, and
displayed automatically in the Waveform window.

Figure 127: RTL with State Encoding

Figure 128: State Encoding Preserved and Displayed as a Probe Enumeration in the
Waveform Viewer

Probe compare values can be set using enumeration names in the Trigger Setup and Capture
Control Setup windows. Probes and their enumeration names corresponding to values can be
displayed in the Waveform window as well.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=194

Add/Edit Enumerations

Define new Enumerations using the Hardware Manager

To associate a new enumeration name-value pair to a debug probe, right-click the debug probe
either in the Debug Probes window or the Trigger/Capture Setup window and select Edit
Enumeration.

Figure 129: Edit Enumeration from Trigger Setup Window

Editing Enumeration Associated with a Debug Probe in the Trigger
Setup Window

You can also associate a new enumeration name-value pair to a debug probe by selecting the
debug probe in the Debug Probes window or Trigger Setup window. The Enumeration tab of the
Debug Probe Properties window also allows you to associate a new enumeration name-value
pair to the probe.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=195

Figure 130: Debug Probe Properties Dialog

Click Edit Enumeration to open the Edit Enumeration dialog box.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=196

Figure 131: Edit Enumeration Dialog

Select the name-value pair and use the "+" and “-” buttons on the left to add or delete
enumerations. You can change the name, radix, and values fields in the table.

Add Enumerations Using Tcl Commands
The add_hw_probe_enum command, associates an enumeration name-value pair to a debug
probe. You can add add_hw_probe commands to a Tcl file, to have the definitions appear in a
separate file. The enumeration names maintain the case they were entered in, but lookup is case-
insensitive.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=197

Example:

set probe [get_hw_probes fast_cnt_count -of_objects [get_hw_ilas -
of_objects
[get_hw_devices xc7k325t_0] -filter {CELL_NAME=~"i_fast_ila"}]]
add_hw_probe_enum ZERO eq5'h00 $probe
add_hw_probe_enum TWELVE eq5'u12 $probe
add_hw_probe_enum THIRTEEN eq5'u13 $probe
add_hw_probe_enum FOURTEEN eq5'u14 $probe
add_hw_probe_enum FIFTEEN eq5'u15 $probe
add_hw_probe_enum SIXTEEN eq5'u16 $probe
add_hw_probe_enum SEVENTEEN eq5'u17 $probe

Delete Enumerations using Tcl commands
Use the remove_hw_probe_enum command to remove explicitly named enumerations entries,
or all enumerations for a hw_probe.

Example:

remove_hw_probe_enum -list {zero } [get_hw_probes U_SINEGEN/sel -of_objects
[get_hw_ilas -of_objects [get_hw_devices xc7k325t_0] -filter
{CELL_NAME=~"u_ila_0"}]]

TIP: Using the -remove_all  option on remove_hw_probe_enum  removes all of the enumerations
associated with the probe.

Access Enumeration
Enumerations are stored as hw_probe properties, so set_property, get_property, and
report_property commands can be used on these properties.

The enumeration properties have a prefix ENUM, which needs to be used when using it with
set_property and get_property commands. See the following example.

get_property ENUM.FIFTEEN -of_objects [get_hw_ilas -of_objects
[get_hw_devices
xc7k325t_0] -filter {CELL_NAME=~"i_fast_ila"}]]
eq5'u15
report_property [get_hw_probes fast_vio_slice5_fb -of_objects [get_hw_ilas
hw_ila_1]] ENUM*
Property Type Read-only Visible Value
ENUM.FIFTEEN string true true eq5'u15
ENUM.FOURTEEN string true true eq5'u14
ENUM.SEVENTEEN string true true eq5'u17
ENUM.SIXTEEN string true true eq5'u16
ENUM.THIRTEEN string true true eq5'u13
ENUM.TWELVE string true true eq5'u12
ENUM.ZERO string true true eq5'h00
set_property ENUM.FIFTEEN eq5'h0F [get_hw_probes fast_vio_slice5_fb -
of_objects
[get_hw_ilas hw_ila_1]]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=198

Using Enumerations in Trigger Setup window
Setting compare values with enumerations in the Trigger Setup window, has similar syntax to
numeric compare values. The radix char is 'e'. Only the operators 'eq' and 'neq' are supported for
enumeration compare values.

Figure 132: Enumerations in Trigger Setup Window

set_property TRIGGER_COMPARE_VALUE eq2'ethree [get_hw_probes U_SINEGEN/sel
-of_objects [get_hw_ilas -of_objects [get_hw_devices xc7k325t_0] -filter
{CELL_NAME=~"u_ila_0"}]]

Using Enumerations in Capture Setup window
You can also compare values using enumeration in the Capture Setup window in the Vivado IDE
or using Tcl commands.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=199

Figure 133: Enumerations in Capture Setup Window

set_property CAPTURE_COMPARE_VALUE eq2'eone [get_hw_probes locked -
of_objects
[get_hw_ilas -of_objects [get_hw_devices xc7k325t_0] -filter
{CELL_NAME=~"u_ila_0_0"}]]

Advanced Trigger
You can compare values using enumeration in the Advanced Trigger State Machine scripts as in
the following example.

state my_state0:
 if (fast_ila_slice5_fb == 5'eFIFTEEN) then
 set_flag $flag1;
 goto my_state0;
 elseif (fast_ila_slice5_fb == 5'eTWELVE) then
 trigger;
 else
 clear_flag $flag1;
 goto my_state0;
 endif

Using Enumerations in the Waveform window
You can show enumerations in the Waveform window by choosing the Show as Enumeration
option for each signal. Right-click the signal in the Waveform window and select Show as
Enumeration in the menu that appears. When not shown as an enumeration, bus values are
displayed according to regular radix selection.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=200

Figure 134: Show as Enumeration option in the Waveform Window

Enumeration information is saved to waveform data files and is used in subsequent displays of
waveform data. The default for waveform probes that have Enumerations defined is to have the
Enumerations displayed.

Figure 135: Waveforms with Enumerations

When a waveform object has Show as Enumeration selected, enumeration names are displayed.
If there is no matching Enumeration for the waveform value, it will instead be displayed
according to the selected radix.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=201

IMPORTANT! If the waveform has been created prior to creating the enumerations, you can apply new
enumerations to the waveform by saving the waveform ILA data using the Tcl commands below:

 write_hw_ila_data -force data_ila_3.ila [upload_hw_ila_data hw_ila_3]
display_hw_ila_data [read_hw_ila_data ./data_ila_3.ila]

Debugging AXI Interfaces in the Hardware
Manager

The System ILA IP in IP integrator allows you to perform in-system debugging of designs on an
FPGA. Use this feature when there is a need to monitor interfaces and signals in the IP integrator
Block Design.

See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) for the steps to debug interfaces and/or nets in the Block Design.

If you have instantiated System ILA debug cores in your IP integrator Block Design, you can
debug and monitor AXI transactions and their corresponding read and write events in the
waveform window.

Waveform and AXI Interfaces
The System ILA debug core enables you to debug and monitor interfaces as slots. Each slot
corresponds to an interface being debugged in IP integrator Block Design. In the figure below
there are two AXI Memory Map interfaces being probed by the System ILA IP in slot 0, slot 1.

Figure 136: Probing 2 AXI Memory Map Interfaces

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 202Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf;a=xUsingTheILAToDebugIPIntegratorDesigns
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=202

AXI Transactions in the Waveform Viewer
Transactions associated with AXI3, AXI4, and AXI4-Lite interfaces that are being debugged by
the System ILA can be viewed in the waveform viewer as shown in the following figure

Figure 137: AXI Transactions in the Waveform Viewer

AXI transactions are defined as follows:

• Read transactions start with the beginning of the Address Command event on the AR (Read
Address) channel.

• Read transactions end with the Last Read Data event on the R (Read Data) channel.

• Write transactions start with the beginning of the Address Command event on the AW (Write
Address) channel.

• Write transactions end with the Write Response event on the B (Write Response) channel.

Transactions are only shown when the address, data, and/or response events have matching IDs.
In addition, transactions are only shown in the waveform if both the start and end events occur
within the captured data waveform. When multiple outstanding/overlapping transactions are
displayed in the Waveform window, multiple transaction rows are used.

It is possible that the transactions on the interface can cause the outstanding transaction
tracking logic within the System ILA IP to overflow as shown in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=203

Figure 138: AXI Transaction Counter Overflow Condition

Two overflow conditions can result:

• The number of outstanding transactions for a particular ID overflow the transaction counter
capacity.

• The number of IDs that have outstanding transactions overflow the number of available
counters.

In either case, an overflow condition can be resolved by re-customizing the System ILA core in
the IP integrator block design to increase the number of outstanding read and/or write
transactions. See the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=204

Figure 139: Increasing the Number of Outstanding Transactions That Can Be Tracked
by System ILA

AXI Interface Events
In the Vivado Hardware Manager, if you debug a design AXI interface with a System ILA IP, the
Waveform window displays the interface slots, events, and signal groups corresponding to the
interfaces being probed by the System ILA. As you can see in the figure below, the Waveform
window displays both of the 2 interface slots that were probed by the System ILA IP. You can see
the AXI Transactions, Write Address Channel Events, the Write Data Channel Events on slot 1.
You can also see the Write Data CAXI interface slots in the Waveform window.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=205

Figure 140: AXI Interface Transactions and Events

This waveform reports AXI interface related transactions and events on the Read, Write, Address,
and Data channel events.

AXI Transactions
The AXI Transaction reports on the Read and Write Transactions of the AXI Read Address, AXI
Read Data, Write Address, and Write Data channels.

Hovering over a specific read or write Transaction in the Waveform window brings up a window
that highlights the Address, ID, Start, End, and Duration associated with the specific transaction
as shown below.

Figure 141: AXI Transactions

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=206

AXI Channel Events
The AXI Channel Events group reports on the AXI events in the AXI Read Address (AR), Read
Data (R), Write Address (AW), and Write Data (W), and Write Response (B) channels.

Read Address (AR) Channel Events

Name Description
No Read Addr Cmds Indicates that no address command events occurred on the Read Address channel.

Addr Cmd Indicates a valid address command phase of a read transaction. This event starts when
ARVALID = '1'. This event ends when both ARVALID = '1' and ARREADY = '1' in the same
clock cycle.

Read Address Channel Signal Group

This signal group is composed of all the signals that participate in a Read Address Channel Event.
The signals are as follows:

• Net Name

○ ARVALID

○ ARREADY

○ ARID

○ ARADDR

○ ARBURST

○ ARLEN

○ ARSIZE

○ ARCACHE

○ ARPROT

○ ARLOCK

○ ARQOS

○ AR_CNT

Read Data Channel Events

Name Description
No Read Data Beats Indicates that no events occurred on the Read Data channel

Data Beat Indicates a (non-last) data beat of a read transaction. This event occurs when RAVLID =
'1' and RREADY = '1' in the current clock cycle.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=207

Name Description
Last Data Indicates the last data beat of a read transaction. This event occurs when RVALID = '1'

and RREADY = '1' and RLAST = '1' in the current clock cycle.

Read Data Channel Signal Group

This signal group is composed of all the signals that participate in a Read Data Channel Event.
The signals are as follows:

• Net Name

○ RVALID

○ RREADY

○ RLAST

○ RID

○ RDATA

○ RRESP

○ R_CNT

Write Address Channel Events

Name Description
No Write Addr Cmds Indicates that no address command events occurred on the Write Address channel.

Addr Cmd Indicates a valid address command phase of a write transaction. This event starts when
AWVALID = '1'. This event ends when both AWVALID = '1' and AWREADY = '1' in the same
clock cycle.

Write Address Channel Signal Group

This signal group is composed of all the signals that participate in a Write Address Channel Event.
The signals are as follows:

• Net Name

○ AWVALID

○ AWREADY

○ AWID

○ AWADDR

○ AWBURST

○ AWLEN

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=208

○ AWSIZE

○ AWCACHE

○ AWPROT

○ AWLOCK

○ AWQOS

○ AW_CNT

Write Data Channel Events

Name Description
No Write Data Beats Indicates that no events occurred on the Write Data channel.

Data Beat Indicates a (non-last) data beat of a write transaction. This event occurs when WVALID =
'1' and WREADY = '1' in the current clock cycle, and either of the two signals were '0' in
the previous clock cycle.

Last Data Indicates the last data beat of a write transaction. This event occurs when WVALID = '1'
and WREADY = '1' and WLAST = '1' in the current clock cycle.

Write Data Channel Signal Group

This signal group is composed of all the signals that participate in a Write Data Channel Event.
The signals are as follows:

• Net Name

○ WVALID

○ WREADY

○ WLAST

○ WDATA

○ WSTRB

Write Response Channel Events

Name Description
No Write Responses Indicates that no events occurred on the Write Response channel.

Write Response Indicates response phase of a write transaction. This event occurs when BVALID = '1' and
BREADY = '1' in the current clock cycle.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=209

Write Response Channel Signal Group

This signal group is composed of all the signals that participate in a Write Response Channel
Event. The signals are as follows:

• Net Name

○ BVALID

○ BREADY

○ BID

○ BRESP

○ B_CNT

Triggering on AXI Address Command and Data Beats
Debugging AXI interfaces often involves triggering on three specific kinds of AXI events: End of
the Address Command, End of Data Beat, and Write Response. It is often required to trigger on
one or more of these events on different interface channels. For instance, to implement the
trigger condition of "End of Read Address Command OR End of Write Address Command", the
following equation is required:

Trigger Condition = (((ARVALID == 1) && (ARREADY == 1)) || ((AWVALID == 1)
&& (AWREADY == 1)))

However, this requires a "Sum of Products" or "SOP"-style Boolean equation that is not possible
to implement when the required AXI signals (such as ARVALID and ARREADY) reside on different
probe ports. To facilitate this type of triggering, the required *VALID, *READY, and *LAST control
signals are concatenated together onto a single probe port as shown in the following table.

Table 12: AXI Channel Control Signal Probes

Description Probe Name Bit 2 Bit 1 Bit 0
Read Address channel control signals *ar_ctrl[1:0] N/A ARREADY ARVALID

Read Data channel control signals *r_ctrl[2:0] RLAST RREADY RVALID

Write Address channel control signals *aw_ctrl[1:0] N/A AWREADY AWVALID

Write Data channel control signals *w_ctrl[2:0] WLAST WREADY WVALID

Write Response channel control signals *b_ctrl[1:0] N/A BREADY BVALID

The following table shows how to use both the individual AXI control signal probes as well as the
AXI channel control probes to implement useful basic trigger and capture control equations. The
following figure shows how to implement the "End of Read Address Command OR End of Write
Address Command" event using the basic trigger setup GUI.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=210

Table 13: Trigger and/or Capture Control Event

AXI Event Individual AXI Control Signals
Combined AXI

Channel Control
Probe

End of the Read Address Command ((ARVALID == 1) && (ARREADY == 1)) (*ar_ctrl == 2'b11)

End of the Last Read Data Beat ((RVALID == 1) && (RREADY == 1) && (RLAST == 1)) (*r_ctrl == 3'b111)

End of the (Non-Last) Read Data
Beat

((RVALID == 1) && (RREADY == 1) && (RLAST == 0)) (*r_ctrl == 3'b011)

End of the Write Address Command ((AWVALID == 1) && (AWREADY == 1)) (*aw_ctrl == 2'b11)

End of the Write Read Data Beat ((WVALID == 1) && (WREADY == 1) && (WLAST == 1)) (*w_ctrl == 3'b111)

End of the (Non-Last) Read Data
Beat

((WVALID == 1) && (WREADY == 1) && (WLAST == 0)) (*w_ctrl == 3'b011)

Figure 142: Basic Trigger Setup for "End of Read Address Command OR End of Write
Address Command" Event

Setting Up the VIO Core to Take a
Measurement

The VIO cores that you add to your design appear in the Hardware window under the target
device. If you do not see the VIO cores appear, right-click the device and select Refresh
Hardware. This re-scans the FPGA and refreshes the Hardware window.

Note: If you still do not see the VIO core after programming and/or refreshing the FPGA , check to make
sure the device was programmed with the appropriate .bit file and check to make sure the implemented
design contains an VIO core. Also, check to make sure the appropriate .ltx probes file that matches
the .bit file is associated with the device.

Click the VIO core (called hw_vio_1 in the following figure) to see its properties in the VIO Core
Properties window. By selecting the VIO core, you should also see the probes corresponding to
the VIO core in the Debug Probes window as well as the corresponding VIO Dashboard in the
Vivado IDE workspace (see the following figure).

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=211

Figure 143: VIO Core in the Hardware Window

Figure 144: Selection of the VIO Core in Various Views

The VIO core can become out-of-sync with the Vivado IDE. Refer to Viewing the VIO Core
Status for more information on how to interpret the VIO status indicators.

The VIO core operates on an object property-based set/commit and refresh/get model:

• To read VIO input probe values, first refresh the hw_vio object with the VIO core values.
Observe the input probe values by getting the property values of the corresponding hw_probe
object. Refer to the section called Interacting with VIO Core Input Probes for more
information.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=212

• To write VIO output probe values, first set the desired value as a property on the hw_probe
object. These property values are then committed to the VIO core in hardware in order to
write these values to the output probe ports of the core. Refer to the section called
Interacting with VIO Core Input Probes for more information.

Related Information
Viewing the VIO Core Status
Interacting with VIO Core Input Probes
Interacting with VIO Core Output Probes

Viewing the VIO Core Status
The VIO core can have zero or more input probes and zero or more output probes (note that the
VIO core must have at least one input or output probe). The VIO core status shown in the
Hardware window is used to indicate the current state of the VIO core output probes. The
possible status values and any action that you need to take are described in the following table.

Table 14: VIO Core Status and Required User Action

VIO Status Description Required User Action
OK – Outputs Reset The VIO core outputs are in sync with

the Vivado IDE and the outputs are in
their initial or "reset" state.

None

OK The VIO core outputs are in sync with
the Vivado IDE, however, the outputs are
not in their initial or "reset” state.

None

Outputs out-of-sync The VIO core outputs are not in sync
with the Vivado IDE.

You must choose one of two user actions:
Write the values from the Vivado IDE to the VIO core
by right-clicking the VIO core in the Hardware
window and selecting the Commit VIO Core
Outputs option.
Update the Vivado IDE with the current values of the
VIO core output probe ports by right-clicking the
VIO core in the Hardware window and selecting the
Refresh Input and Output Values from VIO Core
option.

Viewing VIO Cores in the Debug Probes Window
The "+" button in the VIO Dashboard window is used to view, add, and delete the debug probes
that belong to VIO core.

Using the VIO Dashboard
The VIO Default Dashboard starts out empty to which you can add VIO probes to as showing the
following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=213

Figure 145: VIO Default Dashboard

The VIO Dashboard is a central location for all status and control information pertaining to a
given VIO core. When a VIO core is first detected upon refreshing a hardware device, the VIO
Dashboard for the core is automatically opened. If you need to manually open or re-open the
dashboard, right-click the VIO core object in either the Hardware or Debug Probes windows and
select Open Dashboard.

Interacting with VIO Core Input Probes
The VIO core input probes are used to read values from a design that is running in an FPGA in
actual hardware. The VIO input probes are typically used as status indicators for a design-under-
test. VIO debug probes need to be added manually to the VIO Probes window in the VIO
Dashboard. Refer to the section called Viewing VIO Cores in the Debug Probes Window on how
to do this. An example of what VIO input probes look like in the VIO Probes window of the VIO
Dashboard is shown in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=214

Figure 146: Core Input Probes

Related Information
Viewing VIO Cores in the Debug Probes Window

Reading VIO Inputs Using the VIO Cores View
The VIO input probes can be viewed using the VIO Probes window of the VIO Dashboard
window. Each input probe is viewed as a separate row in the table. The value of the VIO input
probes are shown in the Value column of the table (see Interacting with VIO Core Input Probes).
The VIO core input values are periodically updated based on the value of the refresh rate of the
VIO core. You can set the refresh rate by changing the Refresh Rate (ms) in the VIO Properties
window or by running the following Tcl command:

set_property CORE_REFRESH_RATE_MS 1000 [get_hw_vios hw_vio_1]

Note: Setting the refresh rate to 0 causes all automatic refreshes from the VIO core to stop. Also note that
very small refresh values may cause your Vivado IDE to become sluggish. Xilinx recommends a refresh rate
of 500 ms or longer.

If you want to manually read a VIO input probe value, you can use Tcl commands to do so. For
instance, if you wanted to refresh and get the value of the input probe called BUTTON_IBUF of
the VIO core hw_vio_1, run the following Tcl commands:

refresh_hw_vio [get_hw_vios {hw_vio_1}]
get_property INPUT_VALUE [get_hw_probes BUTTON_IBUF]

Related Information
Interacting with VIO Core Input Probes

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=215

Setting the VIO Input Display Type and Radix
The display type of VIO input probes can be set by right-clicking a VIO input probe in the VIO
Probes window of the VIO Dashboard window and selecting:

• Text to display the input as a text field. This is the only display type for VIO input probe
vectors (more than one bit wide).

• LED to display the input as a graphical representation of a light-emitting diode (LED). This
display type is only applicable to VIO input probe scalars and individual elements of VIO input
probe vectors. You can set the high and low values to one of four colors:

○ Gray (off)

○ Red

○ Green

○ Blue

When the display type of the VIO input probe is set to Text, you can change the radix by
right-clicking a VIO input probe in the VIO Probes window of the VIO Dashboard window and
selecting:

• Radix > Binary to change the radix to binary.

• Radix > Octal to change the radix to octal.

• Radix > Hex to change the radix to hexadecimal.

• Radix > Unsigned to change the radix to unsigned decimal.

• Radix > Signed to change the radix to signed decimal.

You can also set the radix of the VIO input probe using a Tcl command. For instance, to change
the radix of a VIO input probe called "BUTTON_IBUF", run the following Tcl command:

set_property INPUT_VALUE_RADIX HEX [get_hw_probes BUTTON_IBUF]

Observing and Controlling VIO Input Activity
In addition to reading values from the VIO input probes, you can also monitor the activity of the
VIO input probes. The activity detectors are used to indicate when the values on the VIO inputs
have changed in between periodic updates to the Vivado IDE.

The VIO input probe activity values are shown as arrows in the activity column of the VIO
Probes window of the VIO Dashboard window:

• An up arrow indicates that the input probe value has transitioned from a 0 to a 1 during the
activity persistence interval.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=216

• A down arrow indicates that the input probe value has transitioned from a 1 to a 0 during the
activity persistence interval.

• A double-sided arrow indicates that the input probe value has transitioned from a 1 to a 0 and
from a 0 to a 1 at least once during the activity persistence interval.

The persistence of how long the input activity status is displayed can be controlled by right-
clicking a VIO input probe in the VIO Probes window of the VIO Dashboard window and
selecting:

• Activity Persistence > Infinite to accumulate and retain the activity value until you reset it.

• Activity Persistence > Long (80 samples) to accumulate and retain the activity for a longer
period of time.

• Activity Persistence > Short (8 samples) to accumulate and retain the activity for a shorter
period of time.

You can also set the activity persistence using a Tcl command. For instance, to change the activity
persistence on the VIO input probe called BUTTON_IBUF to a long interval, run the following Tcl
command:

set_property ACTIVITY_PERSISTENCE LONG [get_hw_probes BUTTON_IBUF]

The activity for all input probes for a given core can be reset by right-clicking the VIO core in the
Hardware window and selecting Reset All Input Activity. You can also do this by running the
following Tcl command:

reset_hw_vio_activity [get_hw_vios {hw_vio_1}]

TIP: You can change the type, radix, and/or activity persistence of multiple scalar members of a VIO input probe
vector by right-clicking the whole probe or multiple members of the probe, then making a menu choice. The
menu choice applies to all selected probe scalars.

Interacting with VIO Core Output Probes
The VIO core output probes are used to write values to a design that is running in an FPGA in
actual hardware. The VIO output probes are typically used as low-bandwidth control signals for a
design-under-test. VIO debug probes need to be added manually to the VIO Probes window in
the VIO Dashboard. Refer to the section called Viewing VIO Cores in the Debug Probes Window
on how to do this. An example of what VIO output probes look like in the VIO Probes window of
the VIO Dashboard is shown in the following figure.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=217

Figure 147: VIO Outputs in the VIO Probes window of the VIO Dashboard

Related Information
Viewing VIO Cores in the Debug Probes Window

Writing VIO Outputs Using the VIO Cores View
The VIO output probes can be set using the VIO Probes window of the VIO Dashboard window.
Each output probe is viewed as a separate row in the table. The value of the VIO output probes
are shown in the Value column of the table (see Interacting with VIO Core output Probes). The
VIO core output values are updated whenever a new value is entered into the Value column.
Clicking on the Value column causes a pull-down dialog to appear. Type the desired value into
the Value text field and click OK.

You can also write out a new value to the VIO core using Tcl commands. For instance, if you
wanted to write a binary value of "11111" to the VIO output probe called vio_slice5_fb_2
whose radix is already set to BINARY, run the following Tcl commands:

set_property OUTPUT_VALUE 11111 [get_hw_probes vio_slice5_fb_2]
commit_hw_vio [get_hw_probes {vio_slice5_fb_2}]

Related Information
Interacting with VIO Core Output Probes

Setting the VIO Output Display Type and Radix
The display type of VIO output probes can be set by right-clicking a VIO output probe in the VIO
Probes window of the VIO Dashboard window and selecting:

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=218

• Text to display the output as a text field. This is the only display type for VIO input probe
vectors (more than one bit wide).

• Toggle Button to display the output as a graphical representation of a toggle button. This
display type is only applicable to VIO output probe scalars and individual elements of VIO
input probe vectors.

When the display type of the VIO output probe is set to "Text", you can change the radix by
right-clicking a VIO output probe in the VIO Cores tabbed view of the Debug Probes window
and selecting:

• Radix → Binary to change the radix to binary.

• Radix → Octal to change the radix to octal.

• Radix → Hex to change the radix to hexadecimal.

• Radix → Unsigned to change the radix to unsigned decimal.

• Radix → Signed to change the radix to signed decimal.

You can also set the radix of the VIO output probe using a Tcl command. For instance, to change
the radix of a VIO output probe called “vio_slice5_fb_2” to hexadecimal, run the following Tcl
command:

set_property OUTPUT_VALUE_RADIX HEX [get_hw_probes vio_slice5_fb_2]

Resetting the VIO Core Output Values
The VIO v2.0 core has a feature that allows you to specify an initial value for each output probe
port. You can reset the VIO core output probe ports to these initial values by right-clicking the
VIO core in the Hardware window and selecting the Reset VIO Core Outputs option. You can
also reset the VIO core outputs using a Tcl command:

reset_hw_vio_outputs [get_hw_vios {hw_vio_1}]

Note: Resetting the VIO output probes to their initial values may cause the output probe values to become
out-of-sync with the Vivado IDE. Refer to the section called Synchronizing the VIO Core Output Values to
the Vivado IDE on how to handle this situation.

Related Information
Synchronizing the VIO Core Output Values to the Vivado IDE

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=219

Synchronizing the VIO Core Output Values to the
Vivado IDE
The output probes of a VIO core can become out-of-sync with the Vivado IDE after resetting the
VIO outputs, re-programming the FPGA , or by another Vivado tool instance setting output
values before the current instance has started. In any case, if the VIO status indicates "Outputs
out-of-sync", you need to take one of two actions:

• Write the values from the Vivado IDE to the VIO core by right-clicking the VIO core in the
Hardware window and selecting the Commit VIO Core Outputs option. You can also do this
running a Tcl command:

 commit_hw_vio [get_hw_vios {hw_vio_1}]

• Update the Vivado IDE with the current values of the VIO core output probe ports by right-
clicking the VIO core in the Hardware window and selecting the Refresh Input and Output
Values from VIO Core option. You can also do this running a Tcl command:

 refresh_hw_vio -update_output_values 1 [get_hw_vios {hw_vio_1}]

Hardware System Communication Using the
JTAG-to-AXI Master Debug Core

The JTAG-to-AXI Master debug core is a customizable core that can generate the AXI
transactions and drive the AXI signals internal to an FPGA at run time. The core supports all
memory mapped AXI and AXI-Lite interfaces and can support 32- or 64-bit wide data interfaces.

The JTAG-to-AXI Master (JTAG-AXI) cores that you add to your design appear in the Hardware
window under the target device. If you do not see the JTAG-AXI cores appear, right-click the
device and select Refresh Hardware. This re-scans the FPGA device and refreshes the Hardware
window.

Note: If you still do not see the ILA core after programming and/or refreshing the FPGA device, check to
make sure the device was programmed with the appropriate .bit file and check to make sure the
implemented design contains an ILA core.

Click to select the JTAG-AXI core (called hw_axi_1 in the following figure) to see its properties in
the AXI Core Properties window.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=220

Figure 148: JTAG-to-AXI Master Core in the Hardware Window

Interacting with the JTAG-to-AXI Master Debug Core
in Hardware
The JTAG-to-AXI Master debug core can only be communicated with using Tcl commands. You
can create and run AXI read and write transactions using the create_hw_axi_txn and
run_hw_axi commands, respectively.

Resetting the JTAG-to-AXI Master Debug Core
Before creating and issuing transactions, it is important to reset the JTAG-to-AXI Master core
using the following Tcl command:

reset_hw_axi [get_hw_axis hw_axi_1]

Creating and Running a Read Transaction
The Tcl command used to create an AXI transaction is called create_hw_axi_txn. For more
information on how to use this command, type "help create_hw_axi_txn" at the Tcl
Console in the Vivado IDE. Here is an example on how to create a 4-word AXI read burst
transaction from address 0:

create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -address
00000000 -len 4

where:

• read_txn is the user-defined name of the transaction

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object

• -address 00000000 is the start address

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=221

• -len 4 sets the AXI burst length to 4 words

The next step is to run the transaction that was just created using the run_hw_axi command.
Here is an example on how to do this:

run_hw_axi [get_hw_axi_txns read_txn]

The last step is to get the data that was read as a result of running the transaction. You can use
either the report_hw_axi_txn or report_property commands to print the data to the screen
or you can use the get_property command to return the value for use elsewhere.

report_hw_axi_txn [get_hw_axi_txns read_txn]
0 00000000 00000000
8 00000000 00000000
report_property [get_hw_axi_txns read_txn]
Property Type Read-only Visible Value
CLASS string true true hw_axi_txn
CMD.ADDR string false true 00000000
CMD.BURST enum false true INCR
CMD.CACHE int false true 3
CMD.ID int false true 0
CMD.LEN int false true 4
CMD.SIZE enum false true 32
DATA string false true 00000000000000000000000000000000
HW_AXI string true true hw_axi_1
NAME string true true read_txn
TYPE enum false true READ

Creating and Running a Write Transaction
Here is an example on how to create a 4-word AXI write burst transaction from address 0:

create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -address
00000000 \
 -len 4 -data {11111111_22222222_33333333_44444444}

where:

• write_txn is the user-defined name of the transaction

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object

• -address 00000000 is the start address

• -len 4 sets the AXI burst length to 4 words

• -data {11111111_22222222_33333333_44444444}- The -data direction is LSB to the
left (i.e., address 0) and MSB to the right (i.e., address 3).

The next step is to run the transaction that was just created using the run_hw_axi command.
Here is an example on how to do this:

run_hw_axi [get_hw_axi_txns write_txn]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 222Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_hw_axi_txn
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=222

IMPORTANT! If you reprogram the device, all the existing jtag_axi transactions will be deleted. You may need
to recreate these transactions again.

TIP: The -queue  optional argument to the run_hw_axi Tcl command allows you to specify hw_axi transactions
in queue mode. Queued operation allows up to 16 read and 16 write transactions to be queued in the JTAG to
AXI Master FIFO and issued back-to-back for low latency and higher performance between the transactions.
Non-queued transactions are simply run as submitted.

Using Vivado Logic Analyzer in a Lab
Environment

The Vivado logic analyzer feature is integrated into the Vivado IDE and Vivado Lab Edition. To
use Vivado logic analyzer feature to debug a design that is running on a target board that is in a
lab environment, you need to do one of three things:

• Install and run the Vivado Lab Edition on your lab machine. For more details refer to Vivadoo
Lab Edition of this user guide.

• Install and run the full Vivado IDE on your lab machine.

• Install latest version of the Vivado Design Suite or Vivado Hardware Server (Standalone) on
your remote lab machine, and use the Vivado logic analyzer feature on your local machine to
connect to a remote instance of the Vivado Hardware Server (hw_server).

Related Information
Vivado Lab Edition

Connecting to a Remote hw_server Running on a Lab
Machine
If you have a network connection to your lab machine, you can also connect to the target board
by connecting to a Hardware Server that is running on that remote lab machine. Here are the
steps to using the Vivado logic analyzer feature to connect to a Vivado Hardware Server
(hw_server.bat on Windows platforms or hw_server on Linux platforms) that is running on
the lab machine:

1. Install the latest version of the Vivado Design Suite or Vivado Hardware Server (Standalone)
on the lab machine.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=223

IMPORTANT! You do NOT need to install the full Vivado Design Suite or Vivado Lab Edition on the lab
machine to only use the remote hardware server feature. However, if you do want to use the Vivado Hardware
Manager features (such as the Vivado logic analyzer or Vivado serial I/O analyzer) on the lab machine, then you
will need to install the Vivado Lab Edition on the lab machine. Also, you do NOT need any software licenses to
run the Hardware Server, any of the Hardware Manager features of the Vivado Design Suite, or the Vivado Lab
Edition.

2. Start up the hw_server application on the remote lab machine. Assuming you installed the
Vivado Hardware Server (Standalone) to the default location and your lab machine is a 64-bit
Windows machine, here is the command line:

C:\Xilinx\VivadoHWSRV\vivado_release.version\bin\hw_server.bat

3. Start Vivado IDE in GUI mode on a different machine than your lab machine.

4. Follow the steps in the Connecting to the Hardware Target and Programming the Device
section to open a connection to the target board that is connected to your lab machine.
However, instead of connecting to a Vivado CSE server running on localhost, use the host
name of your lab machine.

5. Follow the steps in the Setting up the ILA Core to Take a Measurement section and beyond to
debug your design in hardware.

Related Information
Connecting to the Hardware Target and Programming the Device
Setting up the ILA Core to Take a Measurement

Description of Hardware Manager Tcl Objects
and Commands

You can use Tcl commands to interact with your hardware under test. The hardware is organized
in a set of hierarchical first class Tcl objects (see the following table).

Table 15: Hardware Manager Tcl Objects

Tcl Object Description
hw_server Object referring to hardware server. Each hw_server can have one or more hw_target

objects associated with it.

hw_target Object referring to JTAG cable or board. Each hw_target can have one or more hw_device
objects associated with it.

hw_device Object referring to a device in the JTAG chain, including Xilinx FPGAs . Each hw_device
can have one or more hw_ila objects associated with it.

hw_ila Object referring to an ILA core in the Xilinx FPGA . Each hw_ila object can have only one
hw_ila_data object associated with it. Each hw_ila object can have one or more hw_probe
objects associated with it.

hw_ila_data Object referring to data uploaded from an ILA debug core.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=224

Table 15: Hardware Manager Tcl Objects (cont'd)

Tcl Object Description
hw_probe Object referring to the probe input of an ILA debug core.

hw_vio Object referring to a VIO core in the Xilinx FPGA .

For more information about the Hardware Manager commands, run the help -category
hardware Tcl command in the Tcl Console.

Description of hw_server Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with hardware
servers.

Table 16: Descriptions of hw_server Tcl Commands

Tcl Command Description
connect_hw_server Open a connection to a hardware server.

current_hw_server Get or set the current hardware server.

disconnect_hw_server Close a connection to a hardware server.

get_hw_servers Get list of hardware server names for the hardware servers.

refresh_hw_server Refresh a connection to a hardware server.

Description of hw_target Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with hardware
targets.

Table 17: Descriptions of hw_target Tcl Commands

Tcl Command Description
close_hw_target Close a hardware target.

current_hw_target Get or set the current hardware target.

get_hw_targets Get list of hardware targets for the hardware servers.

open_hw_target Open a connection to a hardware target on the hardware server.

refresh_hw_target Refresh a connection to a hardware target.

Description of hw_device Tcl Commands
The following table contains descriptions of hw_device Tcl Commands contains descriptions of all
Tcl commands used to interact with hardware devices.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=225

Table 18: Descriptions of hw_device Tcl Commands

Tcl Command Description
current_hw_device Get or set the current hardware device.

get_hw_devices Get list of hardware devices for the target.

program_hw_device Program Xilinx FPGA devices.

refresh_hw_device Refresh a hardware device.

Description of hw_ila Tcl Commands
The following table contains descriptions of hw_ila Tcl Commands contains descriptions of all Tcl
commands used to interact with ILA debug cores.

Table 19: Descriptions of hw_ila Tcl Commands

Tcl Command Description
current_hw_ila Get or set the current hardware ILA.

get_hw_ilas Get list of hardware ILAs for the target.

reset_hw_ila Reset hw_ila control properties to default values.

run_hw_ila Arm hw_ila triggers.

wait_on_hw_ila Wait until all data has been captured.

Description of hw_ila_data Tcl Commands
The following table contains descriptions of hw_ila_data Tcl Commands contains descriptions of
all Tcl commands used to interact with captured ILA data.

Table 20: Descriptions of hw_ila_data Tcl Commands

Tcl Command Description
current_hw_ila_data Get or set the current hardware ILA data.

display_hw_ila_data Display hw_ila_data in waveform viewer.

get_hw_ila_data Get list of hw_ila_data objects.

list_hw_samples Lists data samples associated with an individual hardware probe.

read_hw_ila_data Read hw_ila_data from a file.

upload_hw_ila_data Stop the ILA core from capturing data and upload any captured data.

write_hw_ila_data Write hw_ila_data to a file.

Description of hw_probe Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with captured ILA
data.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=226

Table 21: Descriptions of hw_probe Tcl Commands

Tcl Command Description
create_hw_probe Creates a new hardware probe from physical ILA probe ports and/or constant

values.

delete_hw_probe Deletes a user-defined hardware probe creating using the create_hw_probe
command

get_hw_probes Get list of hardware probes.

Description of hw_vio Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with VIO cores.

Table 22: Descriptions of hw_vio Tcl Commands

Tcl Command Description
commit_hw_vio Write hw_probe OUTPUT_VALUE properties values to VIO cores.

get_hw_vios Get a list of hw_vios

refresh_hw_vio Update hw_probe INPUT_VALUE and ACTIVITY_VALUE properties with values read
from VIO cores.

reset_hw_vio_activity Reset VIO ACTIVITY_VALUE properties, for hw_probes associated with specified
hw_vio objects.

reset_hw_vio_outputs Reset VIO core outputs to initial values.

Description of hw_axi and hw_axi_txn Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with JTAG-to-AXI
Master cores.

Table 23: Description of hw_axi and hw_axi_txn Tcl Commands

Tcl Command Description
create_hw_axi_txn Creates hardware AXI transaction object.

delete_hw_axi_txn Deletes hardware AXI transaction objects.

get_hw_axi_txns Gets a list of hardware AXI transaction objects.

get_hw_axis Gets a list of hardware AXI objects.

refresh_hw_axi Refreshes hardware AXI object status.

report_hw_axi_txn Reports formatted hardware AXI transaction data.

reset_hw_axi Resets hardware AXI core state.

run_hw_axi Runs hardware AXI read/write transactions and update transaction status in the
corresponding hw_axi object.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=227

Description of hw_sysmon Tcl Commands
The following table contains descriptions of all Tcl commands used to interact with System
Monitor core.

Table 24: Descriptions of hw_sysmon Tcl commands

Tcl Command Description
commit_hw_sysmon Commits the current property values defined on a hw_sysmon object

to the System Monitor registers on the hardware device.

get_hw_sysmon_reg Returns the hex value of the System Monitor register defined at the
specified address of the specified hw_sysmon object.

get_hw_sysmons Returns the list of Sysmon debug core objects defined on the current
hardware device.

refresh_hw_sysmon Refreshes the properties of the hw_sysmon object with the values on
the System Monitor from the current hw_device.

set_hw_sysmon_reg Sets the System Monitor register at the specified address to the hex
value specified.

Note: Detailed help for each of these commands can be obtained by typing <command name> -help on
the Vivado Tcl Console.

Using Tcl Commands to Interact with a JTAG-
to-AXI Master Core

Below is an example Tcl command script that interacts with the following example system:

• One KC705 board's Digilent JTAG-SMT1 cable (serial number 12345) accessible via a Vivado
hw_server running on localhost:3121.

• Single JTAG-to-AXI Master core in a design running in the XC7K325T device on the KC705
board.

• JTAG-to-AXI Master core is in an AXI-based system that has an AXI BRAM Controller Slave
core in it.

Example Tcl Command Script
Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/12345]
open_hw_target
Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
set_property PROBES.FILE {C:/design.ltx} [lindex [get_hw_devices] 0]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=228

program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]
Reset the JTAG-to-AXI Master core
reset_hw_axi [get_hw_axis hw_axi_1]
Create a read transaction bursts 128 words starting from address 0
create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type read \
-address 00000000 -len 128
Create a write transaction bursts 128 words starting at address 0
using a repeating fill value of 11111111_22222222_33333333_44444444
(where LSB is to the left)
create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type write \
-address 00000000 -len 128 -data {11111111_22222222_33333333_44444444}
Run the write transaction
run_hw_axi [get_hw_axi_txns wrte_txn]
Run the read transaction
run_hw_axi [get_hw_axi_txns read_txn]

Using Tcl Commands to Take an ILA
Measurement

Below is an example Tcl command script that interacts with the following example system:

• One KC705 board's Digilent JTAG-SMT1 cable (serial number 12345) accessible via a Vivado
CSE server running on localhost:3121.

• Single ILA core in a design running in the XC7K325T device on the KC705 board.

• ILA core has a probe called counter[3:0].

Example Tcl Command Script
Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/12345]
open_hw_target
Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
set_property PROBES.FILE {C:/design.ltx} [lindex [get_hw_devices] 0]
program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]
Set Up ILA Core Trigger Position and Probe Compare Values
set_property CONTROL.TRIGGER_POSITION 512 [get_hw_ilas hw_ila_1]
set_property COMPARE_VALUE.0 eq4'b0000 [get_hw_probes counter]
Arm the ILA trigger and wait for it to finish capturing data
run_hw_ila hw_ila_1
wait_on_hw_ila hw_ila_1
Upload the captured ILA data, display it, and write it to a file
current_hw_ila_data [upload_hw_ila_data hw_ila_1]
display_hw_ila_data [current_hw_ila_data]
write_hw_ila_data my_hw_ila_data [current_hw_ila_data]

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=229

Trigger At Startup
The Trigger at Startup feature is used to configure the trigger settings of an ILA core in a
design .bit file so that it is pre-armed to trigger immediately after device startup. You do this
by taking the various trigger settings that ordinarily get applied to an ILA core running in a design
in hardware, and applying them to the ILA core in the implemented design.

IMPORTANT! The following process for using Trigger at Startup assumes that you are have a valid ILA design
working in hardware, and that the ILA core has NOT been flattened during the synthesis flow.

To use the Trigger at Startup feature perform the following steps:

1. Run through the first pass of the ILA flow as usual to set up the trigger condition.

a. Open the target, configure the device, and bring up the ILA Dashboard.

b. Enter the trigger equations for the ILA core in the ILA Dashboard.

2. From the Vivado Tcl command line, export the trigger register map file for the ILA core. This
file contains all of the register settings to "stamp" back on to the implemented netlist. The
output from this is a single file.

% run_hw_ila -file ila_trig.tas [get_hw_ilas hw_ila_1]

3. Go back and open the previously implemented routed design in Vivado IDE. There are two
ways to do this depending on your project flow.

a. Project Mode: Use the Flow Navigator to open the implemented design.

b. Non-Project Mode: Open your routed checkpoint: %open_checkpoint <file>.dcp

4. At the Implemented Design Tcl Console, apply the trigger settings to the current design in
memory, which is your routed netlist.

%apply_hw_ila_trigger ila_trig.tas

Note: If you see an ERROR indicating that the ILA core has been flattened during synthesis, you will
need to regenerate your design and force synthesis to preserve hierarchy for the ILA core. Ensure that
you are have a valid ILA design working in hardware, and that the ILA core has NOT been flattened
during the synthesis flow.

5. At the Implemented Design Tcl Console, write the bitstream with Trigger at Startup settings.

IMPORTANT! To pick up the routed design changes do this at the Tcl command console only:
 write_bitstream trig_at_startup.bit

6. Go back to the Hardware Manager and reconfigure with the new .bit file that you
generated in the previous step. You will have to set the property for the updated .bit file
location either through the GUI or through a Tcl command. Make sure you set the new .bit
file as the one to use for configuration in the hardware tool.

a. Select the device in the hardware tree.

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=230

b. Assign the .bit file generated in step 5.

7. Program the device using the new .bit file.

Once programmed, the new ILA core should immediately arm at startup. You should see an
indication in the Trigger Capture Status for the ILA core. If trigger or capture events have
occurred, the ILA core is now populated with captured data samples.

Memory Calibration Debug
Memory Interface IPs in Vivado support calibration debug. They store useful core configuration,
calibration, and data window information that is accessible in the Vivado Hardware Manager. The
Memory Calibration Debug can be used at any point to read out this information and get
valuable statistics and feedback from the memory interface IPs. The information can be viewed
through a Memory Calibration Debug GUI in the Vivado Hardware Manager or through available
Memory Calibration Debug Tcl commands.

Memory Calibration Debug GUI Usage
Upon configuring the device, the memory interfaces are visible in the Vivado Hardware Manager.

Memory calibration content are shown in a a debug interface that can be used to very quickly
identify calibration status, and read and write window margin. This debug interface is always
included in the generated Memory Interface (UltraScale, and UltraScale+) designs.

Figure 149: Memory Calibration Debug Interface

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=231

Memory Calibration Debug Tcl Usage
Use the following Tcl commands in the Vivado Tcl Console when connected to the hardware in
Vivado Hardware Manager to output all memory calibration debug content that is displayed in
the Vivado IDE.

• get_hw_migs

○ Displays what memory interfaces exist in the design.

• refresh_hw_mig [lindex [get_hw_migs] 0]

○ Refreshes only the memory interfaces denoted by index (index begins with 0).

• report_propery[lindex [get_hw_migs] 0]

○ Reports all of the parameters available for the memory interface.

○ Where 0 is the index of the memory interface to be reported (index begins with 0).

For more specific details see the UltraScale or 7 Series Memory Calibration debug commands
in the following documents:

• Xilinx Answer 43879, MIG 7 Series DDR3/DDR2 - Hardware Debug Guide.

• UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP Product Guide (PG150)

Debugging Partial Reconfigurable Designs in
Vivado Hardware Manager

Vivado® Hardware Manager supports debugging on Partial Reconfigurable designs. In order to
successfully debug such a design it is necessary to program the full design bitstream before
programming the partial bitstream to replace specific reconfigurable modules.

For an example of instantiating debug cores in a Partial Reconfiguration design, as well as
functionality within the Vivado Hardware Manager, see this link in Vivado Design Suite Tutorial:
Dynamic Function eXchange (UG947).

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 232Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=43879.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xVivadoDebugAndThePRProjectFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=232

High Bandwidth Memory (HBM) Monitor
Certain Virtex® UltraScale+ FPGAs include an integrated High Bandwidth Memory (HBM)
controller and memory stacks. The integrated HBM controller and memory stacks contain both
performance counters and temperature sensors. The HBM monitor can be used at any time to
gain real-time access, capture, and export of performance monitoring and temperature sensors
on the HBM die.

HBM Monitor GUI Usage
After configuring an HBM enabled device with a design that contains an instance of the AXI High
Bandwidth Memory Controller, you can see the HBM interfaces in the Vivado Hardware
Manager.

Support for the HBM monitor is always included in the generated High Bandwidth Memory
Controller. The HBM monitor displays the stack temperature, read, write, and overall throughput.

You can export the captured data to a comma separated value (CSV) formatted text file for
further post-processing or analysis.

Figure 150: Viewing Live Performance

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=233

HBM Monitor Tcl Usage
Use the following Tcl commands in the Vivado Tcl Console when connected to the hardware in
the Vivado Hardware Manager to interact with the HBM Monitor.

• get_hw_hbms - Displays a list of the HBM interfaces that exist in the design.

• refresh_hw_hbm [lindex [get_hw_hbms] 0] - Refreshes the status of the specified
hardware HBM(s), in this case the HBM denoted by index 0.

• report_property [lindex [get_hw_hbms] 0] - Reports all the parameters available
for the HBM interface specified, in this case for the HBM interface denoted by index 0.

• run_hw_hbm_amon [lindex [get_hw_hbms] 0] - Enables the activity monitor runs for
the specified hardware HBM(s).

• stop_hw_hbm_amon [lindex [get_hw_hbms] 0] - Disables the Activity Monitor runs
for the specified hardware HBM(s).

More specific details and examples can be found in Appendix D of AXI High Bandwidth Controller
LogiCORE IP Product Guide (PG276).

Chapter 11: Debugging Logic Designs in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 234Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=hbm;v=latest;d=pg276-axi-hbm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=234

Chapter 12

Viewing ILA Probe Data in the
Waveform Viewer

The ILA waveform viewer in the Vivado® Integrated Design Environment (IDE) provides a
powerful way to analyze data captured from the ILA Debug Core. After successfully triggering an
ILA core and capturing data, Vivado automatically populates a corresponding waveform viewer
with data collected from the ILA core. When using Vivado in project mode, configurable
waveform settings such as coloring, radix selection, and signal ordering persist and are
conveniently remembered between Vivado sessions.

ILA Data and Waveform Relationship
It is useful to understand the relationship between the hw_ila_data captured ILA data object and
the waveform, as shown in the following figure.

Figure 151: ILA Data and Waveform Relationship

The hw_ila Tcl object represents the ILA core in hardware. Every time an ILA core uploads
captured data, it is stored in memory in a corresponding Tcl hw_ila_data object. These objects
are named predictably so the first ILA core in hardware 'hw_ila_1' produces data in a
corresponding Tcl data object named 'hw_ila_data_1' after trigger and upload. When working
online with hardware, every waveform is backed by the in-memory hw_ila_data object and

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=235

has a 1:1 correspondence with this object illustrated by the diagram in the previous figure. For
each Tcl hw_ila_data object, a wave database (WDB) file and wave configuration (WCFG) file
are created and automatically tracked in a directory of the Vivado project. The previous figure
illustrates the flow of data from the hardware hw_ila on the left through to the waveform display
on the right.

The combination of the wave configuration, WCFG, file and wave transition database, WDB, file
contain the waveform database and customizations displayed in the Vivado waveform user
interface. These waveform files are automatically managed in the Vivado ILA flow and users are
not expected to modify the WDB or WCFG files directly. The wave configuration can be
modified by changing objects in the waveform viewer (such as signal color, bus radix, signal order,
markers, etc). This automatically saves the wave configuration changes to the appropriate WCFG
file in the Vivado project.

It is possible to archive waveform configurations and data for later viewing by using the Tcl
command write_hw_ila_data. This stores the hw_ila_data, wave database and wave
configuration in an archive for later viewing offline. See the section, Saving and Restoring
Captured Data from the ILA Core for details on using read_hw_ila_data and
write_hw_ila_data for offline storage and retrieval of waveforms.

Related Information
Saving and Restoring Captured Data from the ILA Core

Waveform Viewer Layout
The ILA waveform viewer (sometimes referred to as waveform configuration) is composed of
several dynamic objects working together to provide a complete visualization tool for the
captured ILA data, as shown in the following figure.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=236

Figure 152: Waveform Viewer Showing Captured ILA Data

1 2 3 5 4

6

7

3

X18959-032717

The description for the labeled objects in the previous figure is as follows:

1. Net or Bus Name from the ILA probes file (.ltx)

2. Net or Bus Value at the cursor

3. Trigger Markers (red lines)

4. Cursor (yellow line)

5. Markers (blue line)

6. ILA capture window transitions (alternating clear/grey regions)

7. Floating measurement ruler (yellow bar)

Waveform Viewer Operation
The scalars and buses shown in the Name column of the wave viewer represent the names of the
probe design objects in the waveform (see the following figure). These correspond to the
hardware probes of the ILA core (see the get_hw_probes Tcl command).

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=237

Figure 153: ILA Probe Names and Values Shown in Waveform Viewer

Immediately after triggering and uploading ILA data for the first time, the waveform viewer
populates with all probes connected to the ILA core. It is possible to customize probes in the
viewer in addition to removing existing probes or adding new probes to the viewer. This section
covers the basic operation of the waveform viewer.

Removing Probes from the Waveform
All probes by default are added to the waveform during the first trigger and upload operation. If
you do not want the waveform to contain all probes, it is simple to remove probes from the
viewer.

To remove a probe from the waveform viewer, right-click the scalar or bus to delete in the Name
column and select Delete from the pop up menu. Alternatively, select the signal or bus to delete
and press the Delete key. Probe transition data is not actually deleted from memory it is just
hidden from view when probes are removed.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=238

Adding Probes to the Waveform
To add probes to the waveform, select the Probes to add for the associated ILA core in the
Debug Probes window, right-click, and select Add Probes to Waveform from the pop-up menu.

To add another copy of a signal or bus to the Waveform window, select the signal or bus in the
Waveform window. Then select Edit → Copy or type Ctrl+C. This copies the object to the
clipboard. Select Edit → Paste or type Ctrl+V to paste a copy of the object in the waveform.

You can do the same using the Tcl command add_wave as shown below.

add_wave -into {hw_ila_data_1.wcfg} -radix hex { {counter1} }

In this example, probe counter1 is added to the Waveform Configuration window of
hw_ila_1 and its display radix in the Waveform window is set to hex.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=239

Using Waveform ILA Trigger and Export
Features

Figure 154: Waveform ILA Trigger and Export Features

Auto Re-Trigger

Run Trigger

Run Trigger Immediate

Stop Trigger

Export ILA Data

X16755-032717

• Enable Auto Re-Trigger: Select the Enable Auto Re-Trigger button on the Waveform window
toolbar to enable Vivado IDE to automatically re-arm the ILA core associated with the
Waveform window trigger after a successful trigger+upload+display operation has completed.

The captured data displayed in the Waveform window corresponding to the ILA core is
overwritten upon each successful trigger event. The Auto Re-Trigger option can be used with
the Run Trigger and Run Trigger Immediate operations. Click the Stop Trigger button to stop
the trigger currently in progress.

• Run Trigger: Arms the ILA core associated with the Waveform window to detect the trigger
event that is defined by the ILA core basic or advanced trigger settings.

• Run Trigger Immediate: Arms the ILA core associated with the Waveform window to trigger
immediately regardless of the ILA core trigger settings. This command is useful for detecting
the "aliveness" of the design by capturing any activity at the probe inputs of the ILA core.

• Stop Trigger: Stops the ILA core trigger of the ILA associated with the Waveform window.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=240

• Export ILA Data: Captures data from an ILA core and saves it to a file. The data can be
captured in either native, .csv, or .vcd format. On clicking this icon on the Waveform
window toolbar the following dialog box appears.

Figure 155: Export ILA Data Dialog Box

The ILA core is the name of the ILA debug core to export data for. The format is a selection
among Native, CSV, and VCD formats.

• Native format configures the write_hw_ila_data command to export the ILA data in the
form of a default ILA file format file that can be used to import into Vivado and back again at
another point in time so that you can view previously captured ILA data.

• CSV format configures the write_hw_ila_data command to export the ILA data in the
form of a .csv file that can be used to import the data into a spreadsheet or third-party
application.

• VCD file format configures the write_hw_ila_data command to export the ILA data in the
form of a .vcd file that can be used to import into a third-party application or viewer.

IMPORTANT! While ILA data can be exported in the CSV, VCD, and native ILA format, only the native ILA
format can be imported into Vivado. Also, native ILA data imported into Vivado is supported only for offline
viewing of previously captured data. The probe signals cannot be used for other purposes such as triggering, etc.

Using the Zoom Features
Toolbar buttons provide quick access to waveform zooming features (see the following figure).
Alternatively, use the mouse wheel combined with the Ctrl key to zoom in and out of the
currently selected waveform. It is important to note the zoom level is not persistent and will be
reset between Vivado sessions.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=241

Figure 156: Waveform Zoom Buttons

Waveform Settings
The waveform viewer allows you do customize the way objects are displayed.

When you select the Waveforms Settings button the Waveform Settings window in the following
figure opens:

Figure 157: Waveform Settings

The options are as follows:

• Colors tab: Lets you choose custom colors for waveform objects

• Radix: Sets the default radix for bus probes

• Draw waveform shadow: Displays a light green shadow under scalar '1' to help differentiate
between '1' and '0'

• Show signal indices: Display index position number to the left side of scalar and bus names

• Show trigger markers: Show (or hide) the red trigger markers in the wave viewer

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=242

Customizing the Configuration
You can customize the Waveform configuration using the features that are listed and briefly
described in the following table; the feature name links to the subsection that fully describes the
feature.

Table 25: Customization Features in the Waveform Configuration

Feature Description
Cursors The main cursor and secondary cursor in the Waveform window let you display and

measure time, and they form the focal point for various navigation activities.

Markers You can add markers to navigate through the waveform, and to display the waveform
value at a particular time.

Dividers You can add a divider to create a visual separator of signals.

Using Groups You can add a group, that is a collection to which signals and buses can be added in the
wave configuration as a means of organizing a set of related signals.

Using Virtual Buses You can add a virtual bus to your wave configuration, to which you can add logic scalars
and arrays.

Renaming Objects You can rename objects, signals, buses, and groups.

Radixes The default radix controls the bus radix that displays in the wave configuration, Objects
panel, and the Console panel.

Bus Bit Order You can change the Bus bit order from Most Significant Bit (MSB) to Least Significant Bit
(LSB) and vice versa.

Related Information
Cursors
Markers
Dividers
Using Groups
Using Virtual Buses
Renaming Objects
Radixes
Bus Bit Order

Cursors
Cursors are used primarily for temporary indicators of sample position and are expected to be
moved frequently, as in the case when you are measuring the distance (in samples) between two
waveform edges.

TIP: For more permanent indicators, used in situations such as establishing a time-base for multiple
measurements, add markers to the Wave window instead. See Markers for more information.

You can place the main cursor with a single click in the Waveform window.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=243

To place a secondary cursor, Ctrl+Click and hold the waveform, and drag either left or right. You
can see a flag that labels the location at the top of the cursor.

Alternatively, you can hold the Shift key and click a point in the waveform. The main cursor
remains the original position, and the other cursor is at the point in the waveform that you
clicked.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold the Shift key
while clicking. When placing the secondary cursor by dragging, you must drag a minimum distance before
the secondary cursor appears.

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag the
cursor to the new location.

As you drag the cursor in the Waveform window, you see a hollow or filled-in circle if the Snap to
Transition button is selected, which is the default behavior.

• A hollow circle indicates that you are between transitions in the waveform of the selected
signal.

• A filled-in circle indicates that you are hovering over the waveform transition of the
selected signal. A secondary cursor can be hidden by clicking anywhere in the Waveform
window where there is no cursor, marker, or floating ruler.

Related Information
Markers

Markers
Use a marker when you want to mark a significant event within your waveform in a permanent
fashion. Markers allow you to measure distance (in samples) relevant to that marked event.

You can add, move, and delete markers as follows:

• You add markers to the wave configuration at the location of the main cursor.

1. Place the main cursor at the sample number where you want to add the marker by clicking
in the Waveform window at the sample number or on the transition.

2. Select Edit → Markers → Add Marker, or click the Add Marker button.

A marker is placed at the cursor, or slightly offset if a marker already exists at the location
of the cursor. The sample number of the marker displays at the top of the line.

• You can move the marker to another location in the waveform using the drag and drop
method. Click the marker label (at the top of the marker) and drag it to the location.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=244

○ The drag symbol indicates that the marker can be moved. As you drag the marker in the
Waveform window, you see a hollow or filled-in circle if the Snap to Transition button is
selected, which is the default behavior.

○ A filled-in circle indicates that you are hovering over a transition of the waveform for the
selected signal or over another marker.

○ For markers, the filled-in circle is white.

○ A hollow circle indicates that are you between transitions in the waveform of the
selected signal.

○ Release the mouse key to drop the marker to the new location.

• You can delete one or all markers with one command. Right-click over a marker, and do one of
the following:

○ Select Delete Marker from the popup menu to delete a single marker.

○ Select Delete All Markers from the popup menu to delete all markers.

Note: You can also use the Delete key to delete a selected marker.

○ Use Edit → Undo to reverse a marker deletion.

Trigger Markers
The red trigger marker (whose label is a red letter 'T') a special marker that indicates the
occurrence of the trigger event in the capture buffer. The position of the trigger marker in the
buffer directly corresponds to the Trigger Position setting (see Using the ILA Default Dashboard).

Note: The trigger markers are not movable using the same technique as regular markers. Set their position
using the ILA core's Trigger Position property setting.

Related Information
Using the ILA Default Dashboard

Dividers
Dividers create a visual separator between signals. You can add a divider to your wave
configuration to create a visual separator of signals, as follows:

1. In a Name column of the Waveform window, click a signal to add a divider below that signal.

2. From the popup menu, select Edit → New Divider, or right-click and select New Divider.

The change is visual and nothing is added to the HDL code. The new divider is saved with the
wave configuration file when you save the file.

You can move or delete Dividers as follows:

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=245

• Move a Divider to another location in the waveform by dragging and dropping the divider
name.

• To delete a Divider, highlight the divider, and click the Delete key, or right-click and select
Delete from the popup menu.

You can also rename Dividers; see Renaming Objects.

Related Information
Renaming Objects

Using Groups
A Group is a collection of expandable and collapsible categories, to which you can add signals
and buses in the wave configuration to organize related sets of signals. The group itself displays
no waveform data but can be expanded to show its contents or collapsed to hide them. You can
add, change, and remove groups.

To add a Group:

1. In a wave configuration, select one or more signals or buses to add to a group.

Note: A group can include dividers, virtual buses, and other groups.

2. Select Edit → New Group, or right-click and select New Group from the popup menu.

A Group that contains the selected signal or bus is added to the wave configuration.

A Group is represented with the Group button.

The change is visual and nothing is added to the ILA core.

You can move other signals or buses to the group by dragging and dropping the signal or bus
name.

You can move or remove Groups as follows:

• Move Groups to another location in the Name column by dragging and dropping the group
name.

• Remove a group, by highlighting it and selecting Edit → Wave Objects → Ungroup, or right-
click and select Ungroup from the popup menu. Signals or buses formerly in the group are
placed at the top-level hierarchy in the wave configuration.

Groups can be renamed also; see Renaming Objects.

CAUTION! The Delete key removes the group and its nested signals and buses from the wave configuration.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=246

Related Information
Renaming Objects

Using Virtual Buses
You can add a virtual bus to your wave configuration, which is a grouping to which you can add
logic scalars and arrays. The virtual bus displays a bus waveform, which shows the signal
waveforms in the vertical order that they appear under the virtual bus, flattened to a one-
dimensional array. You can then change or remove virtual buses after adding them.

To add a virtual bus:

1. In a wave configuration, select one or more signals or buses you want to add to a virtual bus.

2. Select Edit → New Virtual Bus, or right-click and select New Virtual Bus from the popup
menu.

The virtual bus is represented with the Virtual Bus button .

The change is visual and nothing is added to the HDL code.

You can move other signals or buses to the virtual bus by dragging and dropping the signal or bus
name. The new virtual bus and its nested signals or buses are saved when you save the wave
configuration file. You can also move it to another location in the waveform by dragging and
dropping the virtual bus name.

You can rename a virtual bus; see Renaming Objects.

To remove a virtual bus, and ungroup its contents, highlight the virtual bus, and select Edit → 
Wave Objects → Ungroup, or right-click and select Ungroup from the popup menu.

CAUTION! The Delete key removes the virtual bus and its nested signals and buses from the wave
configuration.

Related Information
Renaming Objects

Renaming Objects
You can rename any object in the Waveform window, such as signals, dividers, groups, and virtual
buses.

1. Select the object name in the Name column.

2. Select Rename from the popup menu.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=247

3. Replace the name with a new one.

4. Press Enter or click outside the name to make the name change take effect.

You can also double-click the object name and then type a new name. The change is effective
immediately. Object name changes in the wave configuration do not affect the names of the nets
attached to the ILA core probe inputs.

Radixes
Understanding the type of data on your bus is important. You need to recognize the relationship
between the radix setting and the data type to use the waveform options of Digital and Analog
effectively. See Bus Radixes for more information about the radix setting and its effect on Analog
waveform analysis.

You can change the radix of an individual signal (ILA probe) in the Waveform window as follows:

1. Right-click a bus in the Waveform window.

2. Select Radix and the format you want from the drop-down menu:

• Binary

• Hexadecimal

• Unsigned Decimal

• Signed Decimal

• Octal

IMPORTANT! Changes to the radix of an item in the Objects window do not apply to values in the Waveform
window or the Tcl Console. To change the radix of an individual signal (ILA probe) in the Waveform window, use
the Waveform window popup menu.

• Maximum bus width of 64 bits on real. Incorrect values are possible for buses wider than
64 bits.

• Floating point supports only 32- and 64-bit arrays.

Related Information
Bus Radixes

Using the Floating Ruler
The floating ruler assists with sample measurements using a sample number base other than the
absolute sample numbers shown on the standard ruler at the top of the Waveform window.

You can display (or hide) a floating ruler and move it to a location in the Waveform window. The
sample base (sample 0) of the floating ruler is the secondary cursor, or, if there is no secondary
cursor, the selected marker.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=248

The floating ruler button and the floating ruler itself are visible only when the secondary cursor
(or selected marker) is present.

1. Do either of the following to display or hide a floating ruler:

• Place the secondary cursor.

• Select a marker.

2. Select View → Floating Ruler.

You only need to follow this procedure the first time. The floating ruler displays each time the
secondary cursor is placed or a marker is selected.

Select the command again to hide the floating ruler.

Bus Bit Order
You can reverse the bus bit order in the wave configuration to switch between MSB-first and
LSB-first signal representation.

To reverse the bit order:

1. Select a bus.

2. Right-click and select Reverse Bit Order.

The bus bit order is reversed. The Reverse Bit Order command is marked to show that this is the
current behavior.

Bus Radixes
Bus values are interpreted as numeric values, which are determined by the radix setting on the
bus wave object, as follows:

• Binary, octal, hexadecimal, ASCII, and unsigned decimal radixes cause the bus values to be
interpreted as unsigned integers. The format of data on the bus must match the radix setting.

• Any non-0 or -1 bits cause the entire value to be interpreted as 0.

• The signed decimal radix causes the bus values to be interpreted as signed integers.

Viewing Analog Waveforms
To convert a digital waveform to analog, do the following:

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=249

1. In the Name area of a Waveform window, right-click the bus.

2. Select Waveform Style and then Analog Settings to choose an appropriate drawing setting.

The digital drawing of the bus converts to an analog format.

You can adjust the height of either an analog waveform or a digital waveform by selecting and
then dragging the rows.

The following figure shows the Analog Settings dialog box with the settings for analog waveform
drawing.

Figure 158: Analog Settings Dialog Box

The Analog Settings dialog box options are as follows:

• Row Height: Specifies how tall to make the select wave objects, in pixels. Changing the row
height does not change how much of a waveform is exposed or hidden vertically, but rather
stretches or contracts the height of the waveform.

When switching between Analog and Digital waveform styles, the row height is set to an
appropriate default for the style (20 for digital, 100 for analog).

• Y Range: Specifies the range of numeric values to be shown in the waveform area.

• Auto: Specifies that the range should continually expand whenever values in the visible
time range of the window are discovered to lie outside the current range.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=250

• Fixed: Specifies that the time range is to remain at a constant interval.

• Min: Specifies the value displays at the bottom of the waveform area.

• Max: Specifies the value displays at the top.

Both values can be specified as floating point; however, if radix of the wave object radix is
integral, the values are truncated to integers.

• Interpolation Style: Specifies how the line connecting data points is to be drawn.

• Linear: Specifies a straight line between two data points.

• Hold: Specifies that of two data points, a horizontal line is drawn from the left point to the
X-coordinate of the right point, then another line is drawn connecting that line to the right
data point, in an L shape.

• Off Scale: Specifies how to draw waveform values that lie outside the Y range of the
waveform area.

• Hide: Specifies that outlying values are not shown, such that a waveform that reaches the
upper or lower bound of the waveform area disappears until values are again within the
range.

• Clip: Specifies that outlying values be altered so that they are at the top or bottom of the
waveform area, such that a waveform that reaches the upper- or lower-bound of the
waveform area follows the bound as a horizontal line until values are again within the
range.

• Overlap: Specifies that the waveform be drawn wherever its values are, even if they lie
outside the bounds of the waveform area and overlap other waveforms, up to the limits of
the wave window itself.

• Horizontal Line: Specifies whether to draw a horizontal rule at the given value. If the check-
box is on, a horizontal grid line is drawn at the vertical position of the specified Y value, if that
value is within the Y range of the waveform.

As with Min and Max, the Y value accepts a floating point number but truncates it to an
integer if the radix of the selected wave objects is integral.

IMPORTANT! Analog settings are saved in a wave configuration; however, because control of zooming in the Y
dimension is highly interactive, unlike other wave object properties such as radix, they do not affect the
modification state of the wave configuration. Consequently, zoom settings are not saved with the wave
configuration.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=251

Bus Plot Viewer
In addition to the analog waveform viewer the Vivado® Hardware Manager also supports the Bus
Plot Viewer, which allows viewing a bus's values over time, or one bus' values vs. another bus'
values plotted on an X vs Y axis.

It can be helpful to view a Bus Plot when it is necessary to perform either of the following:

• Plotting analog sample data vs. time

• Plotting analog sample data vs. analog sample data

Figure 159: Bus Plot Showing Trigger Data vs. the Sample in Buffer

Creating a Bus Plot
The Bus Plot viewer can be used to plot previously captured ILA trace data. As such, it requires
the path to an ILA bus plot data file (either .csv or .ila). By default, the Show Bus Plot dialog
selects the last auto-saved ILA trigger data.

Example of Bus Plot Creation
1. To create a Bus Plot, open the Vivado Hardware Manager and select Tools → Show Bus Plot.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=252

2. The Show Bus Plot dialog box appears allowing the selection of a previously saved ILA data
file. By default, the auto-saved ILA data file corresponding to the last ILA trace is auto-
selected. To select a previously saved ILA data file, enter the path to the corresponding .ila
or .csv file.

3. Click OK and a blank Bus Plot window appears. To add a Bus Plot, click the "+" symbol, and a
dialog box appears with options to configure the new Bus Plot.

The Add New Bus Plot options are as follows:

• Data for X Axis: Specifies the bus data to use for the X axis.

○ Sample in Buffer: ILA sample number in the ILA capture buffer.

○ Sample in Window: ILA sample number in the capture window. If one capture window
is selected, this number is the same as the sample in buffer, however if you use multiple
capture windows, this number indicates the sample number for the given capture
window.

○ TRIGGER: Trigger position in the capture window.

• X Axis Radix: Specifies the radix to use when plotting the X Axis data.

○ Signed Integer.

○ Unsigned Integer.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=253

• Data for Y Axis: Specifies the bus data to use for the Y axis.

○ Sample in Buffer: ILA sample number in the ILA capture buffer.

○ Sample in Window: ILA sample number in the capture window. If one capture window
is selected, this number is the same as the sample in buffer, however if you use multiple
capture windows, this number indicates the sample number for the given capture
window.

○ TRIGGER: Trigger position in the capture window.

• Y Axis Radix: Specifies the radix to use when plotting the Y Axis data.

○ Signed Integer.

○ Unsigned Integer.

• Graph Type

○ Line: Display bus plot as a continuous line connected between discreet samples.

○ Point: Display bus plot as points representing discreet samples.

• Line Width: Specifies the width to use for drawing the signals in the Bus Plot viewer.

• Plot Color: Allows choosing a different color to draw the Bus Plot.

4. After configuring the Bus Plot, click OK to add the Bus Plot to the Vivado Hardware Manager.
The Bus Plot is displayed.

Note: Bus Plot settings are not saved when exiting the Vivado Hardware Manager. Be sure that all
desired measurements are completed before closing Vivado IDE.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=254

Zoom Gestures
In addition to the zoom gestures supported for zooming in the X dimension, when over an analog
waveform, additional zoom gestures are available, as shown in the following figure.

Figure 160: Analog Zoom Options

To invoke a zoom gesture, hold down the left mouse button and drag in the direction indicated in
the diagram, where the starting mouse position is the center of the diagram.

The additional Zoom gestures are as follows:

• Zoom Out Y: Zooms out in the Y dimension by a power of 2 determined by how far away the
mouse button is released from the starting point. The zoom is performed such that the Y value
of the starting mouse position remains stationary.

• Zoom Y Range: Draws a vertical curtain which specifies the Y range to display when the
mouse is released.

• Zoom In Y: Zooms in toward the Y dimension by a power of 2 determined by how far away
the mouse button is released from the starting point.

The zoom is performed such that the Y value of the starting mouse position remains
stationary.

• Reset Zoom Y: Resets the Y range to that of the values currently displayed in the wave
window and sets the Y Range mode to Auto.

All zoom gestures in the Y dimension set the Y Range analog settings. Reset Zoom Y sets the Y
Range to Auto, whereas the other gestures set Y Range to Fixed.

Chapter 12: Viewing ILA Probe Data in the Waveform Viewer

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=255

Chapter 13

Debugging Designs Post
Implementation

You might want to modify, add, or delete your debug cores post implementation. There are two
ways to do it in Vivado® Design Suite.

If you want to replace the existing connections to the ILA cores, Xilinx recommends that you use
the ECO flow. The ECO flow operates on an implemented checkpoint (DCP) and could save you
time that could otherwise be spent in a complete re-route of the design.

If you want to add new ILA cores, delete existing ILA cores, or modify existing ILA cores (eg
resizing probe width, changing the data depth etc.), Xilinx recommends that you use the
Incremental Compile flow. The Incremental flow for debug cores operates on a synthesized
design or checkpoint (DCP) and uses a reference implemented checkpoint (ideally from a
previous run of implementation). This could save you time that could otherwise be spent in a
complete re-implementation of the design.

The sections below discuss each of these debug related flows in detail.

Using Vivado ECO Flow to Replace Existing
Debug Probes

It is possible to replace debug nets connected to an ILA core in a placed and routed design
checkpoint. You can do this by using the Engineering Change Order (ECO) flow. This is an
advanced design flow used for designs that are nearing completion, where you need to swap
nets connected to an ILA probe port. This method serves two purposes:

• It saves you time. This feature lets you swap existing debug nets that are being probed for
different nets.

• It is minimally invasive. After replacing probed nets, it is necessary to route those nets to the
inputs of the debug core. The rest of the design remains intact, thereby not only preserving
previous implementation results, but also reducing the possibility that a re-implementation
will hide the bug you are trying to find.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=256

IMPORTANT! This flow is only applicable to designs where ILA cores have already been instantiated or
inserted.

The following figure shows the process of replacing debug nets using the ECO design flow.

Figure 161: Debug ECO Design Flow

Need to swap
nets probed

by ILA

Program Device, Start
Debug

Bitstream
(.bit)

LTX
(.ltx)

Done

Open
Routed

Checkpoint

Change Vivado GUI

Write
Checkpoint

(DCP)(optional)

Write
Bitstream

Write Debug
Probe
(LTX)

ECO FLOW

Yes

No

Replace Debug Probes

X16399-040516

Replacing Debug Probes on a Placed and
Routed Design Checkpoint

When using the Vivado Hardware Manager to debug a design that has been programmed on a
device, the nets being probed for debug sometimes need to be swapped for other alternative
nets. Instead of going back and changing your RTL code, or changing the nets being probed in
the inserted debug cores, you can use the ECO flow to replace the debug nets.

To use the ECO flow, open the placed and routed design checkpoint (DCP), in the Vivado IDE,
and change the layout to ECO.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=257

Figure 162: Selecting the ECO Layout

The Flow Navigator now changes to ECO Navigator with a different set of options

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=258

Figure 163: ECO Navigator

In the ECO Navigator, click Replace Debug Probes to bring up the Replace Debug Probes dialog
box.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=259

Figure 164: Replace Debug Probes Dialog Box

In the Replace Debug Probes dialog box, highlight the probes whose nets you want to change,
and click the Edit Probes button. Use the Edit Probes button to the right of each probe to change
individual nets. Alternatively, you can use the Edit Probes button on the left edge of the window
to change the nets for multiple probes.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=260

Figure 165: Edit Probes Button

Click the Edit Probes button to bring up the Choose Nets dialog box, where you can choose nets
to replace the existing ones.

Enter the Find criterion to select the nets you want to replace the existing nets. If the Find
criterion returns more than 10000 nets, refine you criterion and try again. Select the preferred
nets on the Find Results on the left and click the arrow (->) to add those nets to the Selected
Names column on the right. Ensure the nets in the Selected Names column on the right
correspond to the number of nets being replaced. Click OK to continue.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=261

Figure 166: Choose Nets Dialog Box

IMPORTANT! Once you have completed replacing all the debug probes necessary, rerouted them, and
regenerated the bitstream, you must regenerate the debug probes file (.ltx).

TIP: You can also choose multiple nets or a bus by clicking on the Edit Probes button on the left in the Replace
Debug Probes dialog box.

After you replace all the desired nets on the debug cores, click OK to bring up a confirmation
dialog box to confirm the changes about to be made.

IMPORTANT! Check the Tcl Console to ensure that there are no Warnings/Errors.

Figure 167: Modify Debug Probe Tcl Messages

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=262

Deleting any net segment on the path of a net being probed could have an impact on the probe
names displayed in the Hardware Manager. Vivado IDE picks the net segment closest to the net
being probed with a MARK_DEBUG attribute on it. If there is no net segment with a
MARK_DEBUG attribute, then the top level net is picked. If there is more than one net segment
with a MARK_DEBUG attribute, the tool randomly selects one of those nets.

After you have replaced all the debug probe ports, you can save your modifications to a new
checkpoint using the Save Checkpoint As option in the ECO Navigator. The Replace Debug
Probes command in the ECO Navigator needs to be run to generate a new .ltx file for the
debug probes. You should then generate a new bit file to program the device. You can then
connect to the Vivado Hardware Manager to debug the design with the new changes.

Vivado ECO TCL Flow to Replace Existing
Debug Probes

You can use the Vivado Tcl flow as an alternative to the GUI flow described in the previous
sections. Use the following Tcl command to modify nets being probed by the debug cores.

modify_debug_ports -probes [list {top/x_ila/probe0 0 top/inst_A/net_0} \
 {top/x_ila/probe1 1 top/inst_A/net_a} {top/x_ila/probe1 2 top/inst_A/
net_b}]

This command performs all of the netlist modifications to disconnect existing net connections to
the specified probe ports. In this example the existing net connections to probe port 0 at index 0,
probe port 1 at index 1 and index 2 of the ILA are disconnected. Then each of these probes are
connected to the net specified net_0, net_a, and net_b respectively. The modified
connections are also routed automatically. Nets that become disconnected during the process
are left unconnected.

Incremental Compile with Debug Core (ILA)
Modifications

Incremental Compile is an advanced design flow for designs that are nearing completion, where
small changes are required. After resynthesizing these small changes, the flow:

• Speeds up place and route run time.

• Preserves QoR predictability by reusing prior placement and routing from a reference design.
The flow is most effective when synthesis changes result in at least 95 percent similarity to
the reference design.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=263

Incremental Debug changes are applied to a placed and routed design by re-implementing the
design using the Incremental Compile design flow. This flow is recommended in situations where:

• The debug cores are absent from the existing implemented design or,

• You need to modify existing debug cores by changing probe widths, data depth, etc. or,

• You need to delete debug cores from the design.

Incremental Compile Flow Designs
The Incremental Compile flow involves two different designs, the reference design and the current
design with debug core modifications.

Reference Design

The reference design is usually an earlier iteration or variation of the current design that has
been synthesized, placed, and routed. However, you can use a checkpoint that has any amount of
placement, routing, or both. The reference design checkpoint (DCP) might be the product of
many design iterations involving code changes, floorplanning, and revised constraints necessary
to close timing. After the current design is loaded, load the reference design checkpoint using the
read_checkpoint -incremental <dcp> command. Loading the reference design
checkpoint with the -incremental option enables the Incremental Compile design flow for
subsequent place and route operations.

Current Design

The current design incorporates small debug related design changes or variations from the
reference design. These changes or variations can include:

• Debug core RTL instantiation changes

• Debug core insertion changes

• Both debug core related RTL changes and insertion changes

To insert, delete, or modify debug cores to an existing design that has been implemented, open
the synthesized DCP or design, and use the debug insertion flow. Details on the debug insertion
flow can be found in Using the Netlist Insertion Debug Probing Flow.

You can also modify existing debug cores or instantiate new debug cores into your existing RTL
design. The Incremental Compile flow reuses placement and routing from the reference design
along with the new debug related modifications. Details on the debug instantiation flow can be
found in HDL Instantiation Debug Probing Flow Overview.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=264

Related Information
Using the Netlist Insertion Debug Probing Flow
HDL Instantiation Debug Probing Flow Overview

Using Incremental Compile
In both Project Mode and Non-Project Mode, incremental place and route mode is entered when
you load the reference design checkpoint using the read_checkpoint -incremental
<reference_dcp_file> command where <reference_dcp_file> specifies the path and
file name of the reference design checkpoint. Loading the reference design checkpoint with the -
incremental option enables the Incremental Compile design flow for subsequent place and
route operations. In Non-Project Mode, read_checkpoint -incremental should: (1) follow
opt_design and; (2) precede place_design. If using the debug insertion flow the debug core
related XDC commands should precede opt_design.

Using Incremental Compile in Non-Project Mode

To specify a design checkpoint file (DCP) to use as the reference design, and to run incremental
place in Non-Project Mode:

1. Load the current design.

2. Run debug core commands.

3. Run opt_design.

IMPORTANT! Make sure the opt_design  options and directives match those used in the original reference
run as closely as possible.

4. Run read_checkpoint -incremental <reference_dcp_file>.

5. Run place_design.

6. Run route_design.

to load the current design
link_design;
#Create the debug core
create_debug_core u_ila_0 ila
#set debug core properties
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]
#connect the probe ports in the debug core to the signals being probed
in the design
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk]]
set_property port_width 1 [get_debug_ports u_ila_0/probe0]

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=265

connect_debug_port u_ila_0/probe0 [get_nets [list A_or_B]]
create_debug_port u_ila_0 probe
opt_design
read_checkpoint -incremental <reference_dcp_file>
place_design
route_design

IMPORTANT! You must open the synthesized checkpoint to modify the debug cores in the design. Insertion of
debug cores by opening a post-routed checkpoint is not supported.

Using Incremental Compile in Project Mode

In Project Mode, you can set the incremental compile option in the Design Runs window.

To set the incremental compile option:

1. Select a run in the Design Runs window.

2. Click Set Incremental Compile from the context menu.

3. In the Set Incremental Compile window, select a reference design checkpoint. This enables
incremental compile mode for the run.

4. Open the Synthesized netlist and optionally modify/add the debug cores instantiated in the
RTL.

5. Use the Set Up Debug wizard to insert/delete/modify debug cores inserted into the design.

6. Implement Design.

IMPORTANT! You must open the synthesized design to modify the debug cores in the design. Insertion of
debug cores by opening a post-routed design is not supported.

For more information on the Incremental Compile feature, see this link in the Vivado Design Suite
User Guide: Implementation (UG904).

Examining the Similarity Between the Reference
Design and the Current Design
Run report_incremental_reuse to examine and report the similarity between a reference
design checkpoint file and the current design. The report_incremental_reuse command
compares the netlist from the reference design checkpoint with the current in-memory design,
and reports the percentage of matching of cells, nets, and ports.

A higher degree of design similarity results in more effective reuse of placement and routing from
the reference design. The greater the percentage of similarity between the reference design and
current design, the greater the opportunity for placement and routing reuse.

Chapter 13: Debugging Designs Post Implementation

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 266Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf;a=xIncrementalCompile
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=266

Chapter 14

Serial I/O Hardware Debugging
Flows

Related Information
Debugging the Serial I/O Design in Hardware

Serial I/O Hardware Debugging Flows
The Vivado® IDE provides a quick and easy way to generate a design that helps you debug and
verify your system that uses Xilinx high-speed gigabit transceiver (GT) technology. The in-system
serial I/O debugging flow has three distinct phases:

1. IBERT Core generation phase: Customizing and generating the IBERT core that best meets
your hardware high-speed serial I/O requirements.

2. IBERT Example Design Generation and Implementation phase: Generating the example
design for the IBERT core generated in the previous step.

3. Serial I/O Analysis phase: Interacting with the IBERT IP contained in the design to debug and
verify issues in your high-speed serial I/O links.

The rest of this chapter shows how to complete the first two phases. The third phase is covered
in Debugging the Serial I/O Design in Hardware.

Generating an IBERT Core using the Vivado IP
Catalog
The first phase of getting a suitable hardware design to help debug and validate your system's
high-speed serial I/O interfaces is to generate the IBERT core. The following steps outline how to
do this:

1. Open the Vivado IDE.

2. On the first panel, choose Manage IP → New IP Location, then click Next when the Open IP
Catalog wizard opens.

3. Select the desired part, target language, target simulator, and IP location. Click Finish.

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=267

4. In the IP Catalog under Debug and Verification → Debug, you will find one or more available
IBERT cores as shown in the following figure, depending on the device selected in the
previous step.

5. Double-click the desire IBERT architecture to open the Customize IP Wizard for that core.

Customize the IBERT core for your given hardware system requirements. For details on the
various IBERT cores available, see the following IP Documents:

• Integrated Bit Error Ratio Tester 7 Series GTX Transceivers LogiCORE IP Product Guide (PG132)

• Integrated Bit Error Ratio Tester 7 Series GTP Transceivers LogiCORE IP Product Guide (PG133)

• Integrated Bit Error Ratio Tester 7 Series GTH Transceivers LogiCORE IP Product Guide (PG152)

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 268Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtx;v=latest;d=pg132-ibert-7series-gtx.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtp;v=latest;d=pg133-ibert-7series-gtp.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gth;v=latest;d=pg152-ibert-7series-gth.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=268

Generating and Implementing the IBERT Example
Design
After generating the IBERT IP core, it appears in the Sources window as ibert_7series_gtx
or something similar. To generate the example design, right-click the IBERT IP in the Sources
window and select Open IP Example Design, then specify the desired location of the example
design project in the resulting dialog window. This command opens a new Vivado project
window for the example design and adds the proper top-level wrapper and constraints file to the
project, as shown in the following figure.

IMPORTANT! Modification of the IBERT IP example design is not reccomended and may result in functional
issues when interacting with the IBERT IP core in hardware.

Once the example design is generated, you can implement the IBERT example design through
bitstream creation core by clicking Generate Bitstream in the Program and Debug section of the
Vivado IDE flow navigator or by running the following Tcl commands:

launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for more details on
the various ways you can implement your design.

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 269Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=269

Figure 168: IBERT Example Design

In-System IBERT System Serial I/O Design Debugging
Flows
The In-System IBERT IP lets you perform 2-D eye scans of UltraScale and UltraScale+
transceivers in your design, using the Vivado Serial IO Analyzer tool. This IP uses data from the
design to plot the eye scan of the transceivers in real time while they interact with the rest of the
system. This IP can be integrated with user logic in the design or Xilinx transceiver based IPs (for
example GT Wizard or Aurora, etc).

The In System Serial I/O Debugging flow has three distinct phases:

1. In-System IBERT Core Generation phase: Customizing and generating the In-System IBERT
core that best meets your hardware high-speed serial I/O requirements.

2. Integration phase: Instantiating the IP and integrating it into your design.

3. Serial I/O Analysis phase: Interacting with the In-System IBERT IP contained in the design to
debug and verify issues in your high-speed serial I/O links.

IMPORTANT! The In-System IBERT core is only available for the UltraScale and UltraScale+ device families.

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=270

Details of the In-System IBERT Core Generation phase and the Integration phase are covered the
remainder of this section. For details of the Serial I/O Analysis phase, see Debugging the Serial
I/O Design in Hardware.

Related Information
Debugging the Serial I/O Design in Hardware

Generating an In-System IBERT Core Using the Vivado IP Catalog

The first phase of debugging your design's high-speed serial I/O interfaces is to generate the In-
System IBERT core.

To do this, follow these steps:

1. Open the Vivado IDE

2. On the first panel, choose Manage IP → New IP Location, then click Next when the Open IP
Catalog wizard opens.

3. Select the desired part, target language, target simulator, and IP location. Click Finish.

4. In the IP Catalog under Debug and Verification → Debug , you will find one or more available
In-System IBERT cores depending on the device selected in the previous step.

5. Double-click the desired In-System IBERT architecture to open the Customize IP Wizard for
that core

Customize the In-System IBERT core for your given hardware system requirements. For details
on the In-System IBERT cores, see the In-System IBERT LogiCORE IP Product Guide (PG246).

Instantiating the IP and integrating In-System IBERT IP in the User
Design

After generating the In-System IBERT IP core do the following:

1. Open your top level RTL file to edit and add the In-System IBERT core generated in the above
step.

2. Copy the instantiation template of the In-System IBERT core generated by the tool and
instantiate it in the RTL file.

3. Connect the ports of your transceiver to the In-System IBERT IP.

For a detailed example of how to integrate In-System IBERT into the user design, see Chapter 5
"Example Designs" of the following IP Document: In-System IBERT LogiCORE IP Product Guide
(PG246).

TIP: Ensure that you have read the FAQ section of the In-System IBERT LogiCORE IP Product Guide (PG246),
which lists some recommendations for issues you could encounter while integrating this IP into your design.

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 271Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=271

4. Synthesize and implement the design.

Chapter 14: Serial I/O Hardware Debugging Flows

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=272

Chapter 15

Debugging the Serial I/O Design in
Hardware

Once you have IBERT core implemented, you can use the run time serial I/O analyzer features to
debug the design in hardware. Only IBERT cores version v3.0 and later can be accessed using the
serial I/O analyzer feature.

Using Vivado Serial I/O Analyzer to Debug the
Design

The Vivado® serial I/O analyzer feature is used to interact with IBERT debug IP cores that are in
your design. To access the Vivado serial I/O analyzer feature, click the Open Hardware Manager
button in the Program and Debug section of the Flow Navigator.

The steps to debug your design in hardware are:

1. Connect to the hardware target and programming the FPGA with the bit file.

2. Create Links.

3. Modify link settings and examine status.

4. Run scans as needed.

Connecting to the Hardware Target and
Programming the Device
Programming an FPGA prior to debugging involves exactly the same steps described in
Programming the FPGA . After programming the device with the .bit file that contains the
IBERT core, the Hardware window now shows the components of the IBERT core with the RTL
instance name shown in parenthesis, that were detected when scanning the device (see the
following figure).

IMPORTANT! In designs using the In-System IBERT IP for UltraScale and UltraScale+ designs, you will see the
In-System IBERT core being detected in the Hardware window.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=273

Figure 169: Hardware Window Showing the IBERT Core

Related Information
Programming the Device

Creating Links and Link Groups
The IBERT core present in the design appears in the Hardware window under the target device. If
you do not see the core appear, right-click the device and select the Refresh Hardware
command. This re-scans the FPGA and refreshes the Hardware window.

Note: If you still do not see the IBERT core after programming and/or refreshing the FPGA device, check to
make sure the device was programmed with the appropriate .bit file. Also check to make sure the
implemented design contains an IBERT v3.0 core.

The Vivado serial I/O analyzer feature is built around the concept of links. A link is analogous to a
channel on a board, with a transmitter and a receiver. The transmitter and receiver may or may
not be the same GT, on the same device, or be the same architecture. Because a link must be
associated with both a transmitter and receiver, connecting an external pattern generator to a
single GT receiver is not supported. To create one or more links, go to the Links tab in Vivado,
and click either the Create Links button, or right-click and choose Create Links. This causes the
Create Links dialog window to appear, as shown in the following figure.

When an IBERT core is detected, the Hardware Manager notes that there are no links present,
and shows a green banner at the top. Click Create Links to open the dialog box, as shown in the
following figure.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=274

Figure 170: Create Links Dialog Box

Choose a TX and/or an RX from the list available. Or type in a string into the search field to
narrow down the list. Then click the Add "+" button to add the link to the list. Repeat for all links
desired.

IMPORTANT! A given TX or RX endpoint can only belong to one link.

Links can also be a part of a link group. By default, all new links are grouped together. You can
choose not to add the links to a group by deselecting Create link group. The name of the link
group is specified in the Link group description field.

Viewing and Changing Links Settings Using the Links
Window
Once links are created, they are added to the Links view (see the following figure) which is the
primary and best way to change link settings and view status.

Figure 171: Links Window

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=275

Each row in the Links window represents a link. Common and useful status and controls are
enabled by default, so the health of the links can be quickly seen. The various settings that can
be viewed in the Links window's table columns are shown in the following table.

Table 26: Links Window Settings

Link View Column Name Description
Name The name of the link

TX The GT location of the transmitter

RX The GT location of the receiver

Status If linked (meaning the incoming RX data as expected). Status displays the measured
line rate. Otherwise, it displays "No Link".

Bits The measured number of bits received.

Errors The measured number of bit errors by the receiver.

BER Bit Error Ratio = (1 + Errors) / (Bits).

BERT Reset Resets the received bits and error counters.

RX Pattern Selects which pattern the receiver is expecting.

TX Pattern Selects which pattern the transmitter is sending.

TX Pre-Cursor Selects the pre-cursor emphasis on the transmitter.

TX Post-Cursor Selects the post-cursor emphasis on the transmitter.

TX Diff Swing Selects the differential swing values for the transmitter.

DFE Enabled Selects whether the Decision Feedback Equalizer is enabled on the receiver (not
available for all architectures).

Inject Error Injects a single bit error into the transmit path.

TX Reset Resets the transmitter.

RX Reset Resets the receiver and BERT counters (see BERT Reset).

Loopback Mode Selects the loopback mode on the receiver GT.
Warning: Changing this value might effect the link status depending on the system
topology.

Termination Voltage Selects the termination voltage of the receiver.

RX Common Mode Selects the RX Common Mode setting of the receiver.

TXUSERCLK Freq Shows the measured TXUSERCLK frequency in MHz.

TXUSERCLK2 Freq Shows the measured TXUSERCLK2 frequency in MHz.

RXUSERCLK Freq Shows the measured RXUSERCLK frequency in MHz.

RXUSERCLK2 Freq Shows the measured RXUSERCLK2 frequency in MHz.

TX Polarity Invert Inverts the polarity of the transmitted data.

RX Polarity Invert Inverts the polarity of the received data.

It is possible to change the values of a given property for all links in a link group by changing the
setting in the link group row. For instance, changing the TX Pattern to "PRBS 7-bit" in the "Link
Group 0" row changes the TX Pattern of all the links to "PRBS 7-bit". If not all the links in the
group have the same setting, "Multiple" appears for that column in the link group row.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=276

When the In System IBERT IP is used in your design, only a subset of the link settings apply. The
table below lists the applicable link settings.

Table 27: In System IBERT Link Window Settings

Link view column name Description
TX The GT location of the transmitter

RX The GT location of the receiver

TX Pre-Curser Selects the pre-curser emphasis on the transmitter.

TX Post-Cursor Selects the post-cursor emphasis on the transmitter.

TX Diff Swing Selects the differential swing values for the transmitter.

DFE Enabled Selects whether the Decision Feedback Equalizer is enabled on the receiver (not
available for all architectures).

Creating and Running Link Scans
To analyze the margin of a given link, it is often helpful to run a scan of the link using the
specialized Eye Scan hardware of the Xilinx 7 series FPGA transceivers. The Vivado serial I/O
analyzer feature enables you to define, run, save, and recall link scans.

A scan runs on a link. To create a scan, select a link in the Link window, and either right-click and
choose Create Scan, or click the Create Scan button in the Link window toolbar. This brings up
the Create Scan dialog (see the following figure). The Create Scan dialog shows the settings for
performing a scan, as shown in the following table.

There are two types of scans that can be generated, the 2D Eyescan or the 1D Bathtub Plot.
Both these scans use the same settings specified in the Create Scan dialog shown below. The
Scan type field in the dialog below determines the type of scan generated.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=277

Figure 172: Create Scan Dialog

Table 28: Scan Settings

Scan Setting Description
Description A user-defined name for the scan.

Scan Type The type of scan to run. This can be a 2D Eyescan or a 1D Bathtub plot.

Horizontal Increment Allows you to choose to scan the eye at a reduced resolution, but at increased speed by
skipping horizontal codes.

Horizontal Range Reducing the horizontal range increases the scan speed. By default, the entire eye is scanned
(-1/2 of a unit interval to +1/2 in reference to the center of the eye).

Vertical Increment Allows you to choose to scan the eye at a reduced resolution, but increased speed by skipping
vertical codes.

Vertical Range Reducing the vertical range increases the scan speed. By default, the entire eye is scanned.

Dwell BER Each point in the chart is scanned for a certain amount of time. Dwell BER allows you to
choose the scan depth by selecting the desired Bit Error Ratio.

Dwell Time Dwell Time allows you to choose the scan depth by inputting the desired time in seconds.
The Dwell time setting is not supported on designs that use In System IBERT IP.

By default, the scan is run after it is created. If you do not want to run the scan, and only define
it, uncheck the Run Scan check box.

If a scan is created, but not run, it can be subsequently run or run by right-clicking on a scan in
the Scans window and choosing Run Scan (see the following figure). While a scan is running, it
can be prematurely stopped by right-clicking on a scan and choosing Stop Scan, or clicking the
Stop Scan button in the Scans window toolbar.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=278

Figure 173: Scans Window

Creating and Running Link Sweeps
To analyze the margin of a given link, it can be helpful to run multiple scans of the link with
different MGT settings. This helps determine which settings are the best. The Vivado serial I/O
analyzer feature enables you to define, run, save, and recall link sweeps, which are a collection of
link scans.

A sweep runs on a link. To create a sweep, select a link in the Link window, and either right-click
and choose Create Sweep, or click the Create Sweep button in the Link window toolbar. This will
bring up the Create Sweep dialog box, which looks similar to the Create Scan dialog box, except
that it has additional options for defining which properties to sweep, and how.

Figure 174: Create Sweep Dialog Box

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=279

Table 29: Sweep Settings

Sweep Setting Description
Description A user-defined name for the sweep.

Scan Type The type of scan to run. This can be a 2D Eyescan or a 1D Bathtub plot.

Horizontal Increment Allows you to scan the eye at a reduced resolution, but at increased speed by
skipping horizontal codes.

Horizontal Range Reducing the horizontal range increases the scan speed. By default, the entire eye is
scanned (-1/2 of a unit interval to +1/2 in reference to the center of the eye).

Vertical Increment Allows the user to choose to scan the eye at a reduced resolution, but increased
speed by skipping vertical codes.

Vertical Range Reducing the vertical range increases the scan speed. By default, the entire eye is
scanned.

Dwell BER Each point in the chart is scanned for a certain amount of time. Dwell BER allows you
to choose the scan depth by selecting the desired Bit Error Ratio (BER).

Dwell Time Dwell Time allows you to choose the scan depth by inputting the desired time in
seconds.

Sweep Mode The type of sweep to run. The choices are Semi Custom, Full Custom, and Exhaustive.

After these settings are chosen, the next step is to choose the Sweep Properties. Any writable
properties of the link can be swept. To add a property, click the "+" button on the left to add
another row to the table. Click the Property Name to choose a property to sweep.

To change the values, click the Values to Sweep Cell, and use the chooser to select which values
to sweep. If the property does not have enumerated values, type one hex value on each line of
the text area provided.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=280

Figure 175: Values to Sweep Cell

• In the Semi Custom case shown in the following figure, every combination of the properties
chosen is defined for a single scan, and that scan is performed according to the sweep
properties. The number of sweeps that are performed, and in what order can be previewed by
selecting the Preview & Scans tab.

• In the Full Custom case, the first choice for each of the properties listed is used for the first
scan, the second choice for each of the properties is used for the second scan, etc. If one of
the properties has fewer choices than other properties, the last choice will be used for all
subsequent scans. With the same properties choices but Full Custom as the sweep Mode,
only three scans would be performed.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=281

Figure 176: Sweep Properties Dialog Box

• In the Exhaustive case, the Values to Sweep is no longer editable, as all values are chosen for a
given property.

When all the properties are set, to run each of the scans sequentially, keep Run Sweep checked.
The list of scans is elaborated in the Scan window once you click OK.

During the sweep, the progress is tracked in the Scan window, and the latest Scan result is
displayed.

Displaying and Navigating the Scan Plots
After a scan is created, it automatically launches the Scan Plots window for that scan. For 2D
Eyescan, the plot is a heat map of the BER value.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=282

Figure 177: Scan Plot Window

As in other charts and displays within the Vivado IDE, the mouse gestures for zooming in the eye
scan plot window are as follows:

• Zoom Area: left-click drag from top-left to bottom-right

• Zoom Fit: left-click drag from bottom-right to top-left

• Zoom In: left-click drag from top-right to bottom-left

• Zoom Out: left-click drag from bottom-left to top-right

Also, when the mouse cursor is over the Plot, the current horizontal and vertical codes, along
with the scanned BER value is displayed in the tooltip. You can also change the plot type by
clicking the Plot Type button in the plot window, and choosing Show Contour (filled), Show
Contour (lines), Bathtub (Center Horizontal Line), and Heat Map.

A summary view is present at the bottom of the scan plot, stating the scan settings, along with
basic information like when the scan was performed. During the 2D Eyescan, the number of
pixels in the scan with zero errors is calculated (taking into account the horizontal and vertical
increments), and this result is displayed as Open Area. The Scan window contents are sorted by
Open Area by default, so the scans with the largest open area appear at the top. The following
figure is a Bathtub plot for the same scan as shown in the previous figure.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=283

Figure 178: Bathtub Plot

Writing the Scan Results to a File
When scan data exists due to a partial or full 2D Eyescan, these results can be written to a CSV
file by clicking the Write Scan button in the Scans window. This saves the scan results to comma-
delimited file, with the BER values in a block that replicated the scan plot.

Properties Window
Whenever a GT or a COMMON block in the hardware window, a Link in the Links window, or a
scan in the Scans window is selected, the properties of that object shows in the Properties
window. For GTs and COMMONs, these include all the attribute, port, and other settings of
those objects. These settings can be changed in the Properties window (see the following figure),
or by writing Tcl commands to change and commit the properties. Some properties are read-only
and cannot be changed.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=284

Figure 179: Properties Window

Description of Serial I/O Analyzer Tcl Objects and
Commands
You can use Tcl commands to interact with your hardware under test. The hardware is organized
in a set of hierarchical first class Tcl objects (see the following table).

Table 30: Serial I/O Analyzer Tcl Objects

Tcl Object Description
hw_sio_ibert Object referring to an IBERT core. Each IBERT object can have one or more hw_sio_gt, or

hw_sio_common objects associated with it.

hw_sio_gt Object referring to a single Xilinx Gigabit Transceiver (GT).

hw_sio_gtgroups Object referring to a logical grouping of GTs, could be a Quad or an Octal.

hw_sio_common Object referring to a COMMON block.

hw_sio_tx Object referring to the transmitter side of a hw_sio_gt. Only the TX related ports, attributes,
and logic properties flows to the hw_sio_tx.

hw_sio_rx Object referring to the receiver side of a hw_sio_gt. Only the RX related ports, attributes, and
logic properties flows to the hw_sio_rx.

hw_sio_pll Object referring to a PLL in either an hw_sio_gt or an hw_sio_common object. Only the related
ports, attributes, and logic properties flow to the hw_sio_pll.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=285

Table 30: Serial I/O Analyzer Tcl Objects (cont'd)

Tcl Object Description
hw_sio_link Object referring to a link, a TX-RX pair.

A link can also consist of a TX only or an RX only.

hw_sio_linkgroup Object referring to a group of links.

hw_sio_scan Object referring to a margin analysis scan.

For more information about the Hardware Manager commands, run the help -category
hardware Tcl command in the Tcl Console.

Description of Tcl Commands to Access Hardware

The following table contains descriptions of all Tcl commands used to interact with the IBERT
core.

IMPORTANT! Using the get_property or set_property command does not read or write information to/from the
IBERT core. You must use the refresh_hw_sio and commit_hw_sio commands to read and write information
from/to the hardware, respectively.

Table 31: Descriptions of hw_server Tcl Commands

Tcl Command Description
refresh_hw_sio Read the property values out of the provided object. Works for any hw_sio object that refers to

hardware.

commit_hw_sio Writes property changes to the hardware. Works for any hw_sio object that refers to
hardware.

Description of hw_sio_link Tcl Commands

The following table contains descriptions of all Tcl commands used to interact with links.

Table 32: Descriptions of hw_sio_link Tcl Commands

Tcl Command Description
create_hw_sio_link Create an hw_sio_link object with the given hw_sio_rx and/or hw_sio_tx objects.

remove_hw_sio_link Deletes the given link.

get_hw_sio_links Get list of hw_sio_links for the given object.

Description of hw_sio_linkgroup Tcl Commands

The following table contains descriptions of all Tcl commands used to interact with linkgroups.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=286

Table 33: Descriptions of hw_sio_linkgroup Tcl Commands

Tcl Command Description
create_hw_sio_linkgroup Create an hw_sio_linkgroup object with the hw_sio_link objects.

remove_hw_sio_linkgroup Deletes the given linkgroup.

get_hw_sio_linkgroups Get list of hw_sio_linkgroups for the given object.

Description of hw_sio_scan Tcl Commands

The following table contains descriptions of all Tcl commands used to interact with scans.

Table 34: Descriptions of hw_sio_scan Tcl Commands

Tcl Command Description
create_hw_sio_scan Creates a scan object.

remove_hw_sio_scan Deletes a scan object.

run_hw_sio_scan Runs a scan.

stop_hw_sio_scan Stops a scan.

wait_on_hw_sio_scan Blocks the Tcl console prompt until a given run_hw_sio_scan operation is complete.

display_hw_sio_scan Displays a partial or complete scan in the Scan Plot.

write_hw_sio_scan Writes the scan data to a file.

read_hw_sio_scan Reads scan data from a file into a scan object.

get_hw_sio_scans Get a list of hw_sio_scan objects.

Description of Tcl Commands to Get Objects

The following table contains descriptions of all Tcl commands used to get serial I/O objects.

Table 35: Descriptions of Tcl Commands to Get Objects

Tcl Command Description
get_hw_sio_iberts Get list of IBERT objects.

get_hw_sio_gts Get list of GTs.

get_hw_sio_commons Get list of COMMON blocks.

get_hw_sio_txs Get list of transmitters.

get_hw_sio_rxs Get list of receivers.

get_hw_sio_plls Get list of PLLs.

get_hw_sio_links Get list of links.

get_hw_sio_linkgroups Get list of linkgroups.

get_hw_sio_scans Get list of scans.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=287

Using Tcl Commands to Take an IBERT Measurement
Below is an example Tcl command script that interacts with the following example system

• One KC705 board's Digilent JTAG-SMT1 cable (serial number 12345) accessible via a
hw_server running on localhost:3121

• Single IBERT core in a design running in the XC7K325T device on the KC705 board

• IBERT core has Quad 117 and Quad 118 enabled

Example Tcl Command Script

Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */digilent_plugin/SN:12345]
open_hw_target
Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]
Set Up Link on first GT
set tx0 [lindex [get_hw_sio_txs] 0]
set rx0 [lindex [get_hw_sio_rxs] 0]
set link0 [create_hw_sio_link $tx0 $rx0]
set_property DESCRIPTION {Link 0} [get_hw_sio_links $link0]
Set link to use PCS Loopback, and write to hardware
set_property LOOPBACK "Near-End PCS" $link0
commit_hw_sio $link0
Create, run, display and save scan
set scan0 [create_hw_sio_scan 2d_full_eye [get_hw_sio_rxs -of $link0]]
run_hw_sio_scan $scan0
display_hw_sio_scan $scan0
write_hw_sio_scan "scan0.csv" $scan0

Viewing Slicer Eye, Histogram, and Signal-to-
Noise Ratio (GTM Transceivers Only)

Because the GTM receiver is ADC-based, the conventional eyescan as used in the previous
families of transceivers (such as GTH or GTY transceivers) is cannot be used. For this reason, the
IBERT dashboard for GTM shows three plots: Slicer-Eye, Histogram, and Signal to Noise Ratio
(SNR) instead of the traditional Scan Plot Window.

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=288

Figure 180: Slicer Eye, Histogram, and Signal-to-Noise Ratio Plots

Once a link is created, the Slicer-Eye, Histogram, and Signal to Noise Ratio (SNR) plots are
displayed for the link. If you created multiple links, the active link can be changed by selecting
the desired DUAL and Channel in the upper-right corner.

For more information on the Slicer-Eye and GTM Transceiver Architecture see the Virtex
UltraScale+ FPGAs GTM Transceivers User Guide (UG581).

For more info on IBERT GTM, see the IBERT for UltraScale GTM Transceivers LogiCORE IP Product
Guide (PG342).

Chapter 15: Debugging the Serial I/O Design in Hardware

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 289Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug581-ultrascale-gtm-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_ultrascale_gtm;v=latest;d=pg342-ibert-ultrascale-gtm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=289

Appendix A

Device Configuration Bitstream
Settings

7 Series Bitstream Settings
The device configuration settings for 7 Series devices available for use with the set_property
<Setting> <Value> [current_design] Vivado® tool Tcl command are shown in the
following table.

Note: Bitstream settings for BPI are not valid for Spartan®-7 devices.

Table 36: 7 Series Bitstream Settings

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
BPI_1ST_READ_CYCLE

1 1, 2, 3, 4 Helps synchronize BPI configuration with the timing of
page mode operations in flash devices. It allows you to
set the cycle number for a valid read of the first page.
The BPI_page_size must be set to 4 or 8 for this option to
be available.

BITSTREAM.CONFIG.
BPI_PAGE_SIZE

1 1, 4, 8 For BPI configuration, this option lets you specify the
page size which corresponds to the number of reads
required per page of flash memory.

BITSTREAM.CONFIG.
BPI_SYNC_MODE

Disable Disable,
Type1, Type2

Sets the BPI synchronous configuration mode for
different types of BPI flash devices.
Disable (the default) disables the synchronous
configuration mode.
Type1 enables the synchronous configuration mode and
settings to support the Micron G18(F) family.
Type2 enables the synchronous configuration mode and
settings to support the Micron (Numonyx) P30 and P33
families.

BITSTREAM.CONFIG. CCLKPIN Pullup Pullup,
Pullnone

Adds an internal pull-up to the Cclk pin. The Pullnone
setting disables the pullup.

BITSTREAM.CONFIG.
CONFIGFALLBACK

Disable Disable,
Enable

Enables or disables the loading of a default bitstream
when a configuration attempt fails.
If the MultiBoot solution setting
BITSTREAM.CONFIG.NEXT_CONFIG_ADDR is used then
the BITSTREAM.CONFIG.FALLBACK setting will be
enabled.
Fallback MultiBoot is not supported in Virtex-7 HT
devices.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=290

Table 36: 7 Series Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
CONFIGRATE

3 3, 6, 9, 12, 16,
22, 26, 33, 40,
50, 66

Uses an internal oscillator to generate the configuration
clock, Cclk, when configuring in a master mode. Use this
option to select the rate for Cclk.

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Continuous,
Quiet

Controls how often the Digitally Controlled Impedance
circuit attempts to update the impedance match for DCI
IOSTANDARDs.

BITSTREAM.CONFIG. DONEPIN1 Pullup Pullup,
Pullnone

Adds an internal pull-up to the DONE pin. The Pullnone
setting disables the pullup. Use DonePin only if you
intend to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if
you do not use DonePin.

BITSTREAM.CONFIG.
EXTMASTERCCLK_EN

Disable Disable,
Div-1, Div-2,
Div-4, Div-8

Allows an external clock to be used as the configuration
clock for all master modes. The external clock must be
connected to the dual-purpose EMCCLK pin.

BITSTREAM.CONFIG. INITPIN1 Pullup Pullup,
Pullnone

Specifies whether you want to add a Pullup resistor to the
INIT pin, or leave the INIT pin floating.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable,
Disable

When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM.CONFIG. M0PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M0
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M0 pin.

BITSTREAM.CONFIG. M1PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M1
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M1 pin.

BITSTREAM.CONFIG. M2PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M2
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M2 pin.

BITSTREAM.CONFIG.
NEXT_CONFIG_ADDR

None <string> Sets the starting address for the next configuration in a
MultiBoot set up, which is stored in the WBSTAR register.

BITSTREAM.CONFIG.
NEXT_CONFIG_REBOOT

Enable Enable,
Disable

When set to Disable the IPROG command is removed
from the .bit file. This allows the Golden image to load
upon power up rather than jumping to the multiboot
image in a multiboot setup.

BITSTREAM.CONFIG. PERSIST No No, Yes Maintains the configuration logic access to the multi-
function configuration pins after configuration. Primarily
used to maintain the SelectMAP port after configuration
for readback access, but can be used with any
configuration mode. Persist is not needed for JTAG
configuration since the JTAG port is dedicated and always
available. PERSIST and ICAP cannot be used at the same
time.
Refer to the user guide for a description. Persist is
needed for Readback and Partial Reconfiguration using
the SelectMAP configuration pins, and should be used
when either SelectMAP or Serial modes are used.

BITSTREAM.CONFIG.
REVISIONSELECT

00 00, 01, 10, 11 Specifies the internal value of the RS[1:0] settings in the
Warm Boot Start Address (WBSTAR) register for the next
warm boot.

BITSTREAM.CONFIG.
REVISIONSELECT_ TRISTATE

Disable Disable,
Enable

Specifies whether the RS[1:0] 3-state is enabled by setting
the option in the Warm Boot Start Address (WBSTAR).
0: Enable RS 3-state
1: Disable RS 3-state

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=291

Table 36: 7 Series Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
SELECTMAPABORT

Enable Enable,
Disable

Enables or disables the SelectMAP mode Abort sequence.
If disabled, an Abort sequence on the device pins is
ignored.

BITSTREAM.CONFIG.
SPI_32BIT_ADDR

No No, Yes Enables SPI 32-bit address style, which is required for SPI
devices with storage of 256 Mb and larger.

BITSTREAM.CONFIG.
SPI_BUSWIDTH

NONE NONE, 1, 2, 4 Sets the SPI bus to Dual (x2) or Quad (x4) mode for
Master SPI configuration from third party SPI flash
devices.

BITSTREAM.CONFIG.
SPI_FALL_EDGE

No No, Yes Sets the FPGA to use a falling edge clock for SPI data
capture. This improves timing margins and may allow
faster clock rates for configuration.

BITSTREAM.CONFIG. TCKPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TCK pin, the
JTAG test clock. The Pullnone setting shows that there is
no connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDIPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDI pin, the
serial data input to all JTAG instructions and JTAG
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDOPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDO pin,
the serial data output for all JTAG instruction and data
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
TIMER_CFG

None <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_USR.

BITSTREAM.CONFIG.
TIMER_USR

0x00000000 <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_CFG.

BITSTREAM.CONFIG. TMSPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, pull-down, or neither to the TMS pin, the
mode input signal to the TAP controller. The TAP
controller provides the control logic for JTAG. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pulldown,
Pullup,
Pullnone

Adds a pull-up, a pull-down, or neither to unused
SelectIO pins (IOBs). It has no effect on dedicated
configuration pins. The list of dedicated configuration
pins varies depending upon the architecture. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG. USERID 0xFFFFFFFF <8-digit hex
string>

Used to identify implementation revisions. You can enter
up to an 8-digit hexadecimal string in the User ID
register.

BITSTREAM.CONFIG.
USR_ACCESS

None None, <8-
digit hex
string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp into
the AXSS configuration register. The format of the
timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 = 00000),
hour, minute, seconds. The contents of this register may
be directly accessed by the FPGA fabric via the
USR_ACCESS primitive.

BITSTREAM.ENCRYPTION.
ENCRYPT

No No Yes Encrypts the bitstream.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=292

Table 36: 7 Series Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.ENCRYPTION.
ENCRYPTKEYSELECT

bbram bbram, efuse Determines the location of the AES encryption key to be
used, either from the battery-backed RAM (BBRAM) or
the eFUSE register.
This property is only available when the Encrypt option is
set to True.

BITSTREAM.ENCRYPTION. HKEY None <hex string> HKey sets the HMAC authentication key for bitstream
encryption. 7 series devices have an on-chip bitstream-
keyed Hash Message Authentication Code (HMAC)
algorithm implemented in hardware to provide
additional security beyond AES decryption alone. These
devices require both AES and HMAC keys to load, modify,
intercept, or clone the bitstream.
To use this option, you must first set Encrypt to Yes.

BITSTREAM.ENCRYPTION. KEY0 None <hex string> Key0 sets the AES encryption key for bitstream
encryption. To use this option, you must first set Encrypt
to Yes.

BITSTREAM.ENCRYPTION.
KEYFILE

None <string> Specifies the name of the input encryption file (with
a .nky file extension). To use this option, you must first
set Encrypt to Yes.

BITSTREAM.ENCRYPTION.
STARTCBC

None <32-bit hex
string>

Sets the starting cipher block chaining (CBC) value.

BITSTREAM.GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the Bitstream
(.bit) file. Using Compress does not guarantee that the
size of the bitstream shrinks.

BITSTREAM.GENERAL. CRC Enable Enable,
Disable

Controls the generation of a Cyclic Redundancy Check
(CRC) value in the bitstream. When enabled, a unique
CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in
the bitstream, the device will fail to configure. When CRC
is disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.
The CRC default value is Enable, except when
BITSTREAM.ENCRYPTION.ENCRYPT is Yes, the CRC is
disabled.

BITSTREAM.GENERAL.
DEBUGBITSTREAM

No No, Yes Lets you create a debug bitstream. A debug bitstream is
significantly larger than a standard bitstream.
DebugBitstream can be used only for master and slave
serial configurations. DebugBitstream is not valid for
Boundary Scan or Slave Parallel/SelectMAP. In addition to
a standard bitstream, a debug bitstream offers the
following features:
Writes 32 0s to the LOUT register after the
synchronization word.
Loads each frame individually.
Performs a Cyclic Redundancy Check (CRC) after each
frame.
Writes the frame address to the LOUT register after each
frame.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan (BSCAN)
block via JTAG after configuration.

BITSTREAM.GENERAL.
JTAG_XADC

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to the XADC.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=293

Table 36: 7 Series Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.GENERAL.
PERFRAMECRC

No No, Yes Inserts CRC values at regular intervals within bitstreams.
These values validate the integrity of the incoming
bitstream and can flag an error (shown on the INIT_B pin
and the PRERROR port of the ICAP) prior to loading the
configuration data into the device. While most
appropriate for partial bitstreams, when set to Yes, this
property inserts the CRC values into all bitstreams,
including full device bitstreams.

BITSTREAM.GENERAL.
XADCENHANCEDLINEARITY

Off Off, On Disables some built-in digital calibration features that
make INL look worse than the actual analog
performance.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
READBACK

False True, False Lets you perform the Readback function by creating the
necessary readback files.

BITSTREAM.READBACK.
SECURITY

None None, Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Specifying Security Level1 disables Readback. Specifying
Security Level2 disables Readback and Reconfiguration.

BITSTREAM.READBACK.
XADCPARTIALRECONFIG

Disable Disable,
Enable

When Disabled XADC can work continuously during
Partial Reconfiguration. When Enabled XADC works in
Safe mode during partial reconfiguration.

BITSTREAM.STARTUP.
DONEPIPE

Yes Yes, No Tells the FPGA device to wait on the CFG_DONE (DONE)
pin to go High and then wait for the first clock edge
before moving to the Done state.

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5, 6,
Keep

Selects the Startup phase that activates the FPGA Done
signal. Done is delayed when DonePipe=Yes.

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4, 6,
Done, Keep

Selects the Startup phase that releases the internal 3-
state control to the I/O buffers.

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4, 5,
Done, Keep

Selects the Startup phase that asserts the internal write
enable to flip-flops, LUT RAMs, and shift registers.
GWE_cycle also enables the BRAMS. Before the Startup
phase, both block RAMs writing and reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0, 1,
2, 3, 4, 5, 6

Selects the Startup phase to wait until DLLs/ DCMs/PLLs
lock. If you select NoWait, the Startup sequence does not
wait for DLLs/DCMs/PLLs to lock.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=294

Table 36: 7 Series Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto, NoWait,
0, 1, 2, 3, 4, 5,
6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are asserted.
DCI matching does not begin on the Match_cycle. The
Startup sequence waits in this cycle until DCI has
matched. Given that there are a number of variables in
determining how long it takes DCI to match, the number
of CCLK cycles required to complete the Startup
sequence may vary in any given system. Ideally, the
configuration solution should continue driving CCLK until
DONE goes high.
When the Auto setting is specified, write_bitstream
searches the design for any DCI I/O standards. If DCI
standards exist, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=2. Otherwise,
write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

BITSTREAM.STARTUP.
STARTUPCLK

Cclk Cclk, UserClk,
JtagClk

The StartupClk sequence following the configuration of a
device can be synchronized to either Cclk, a User Clock, or
the JTAG Clock. The default is Cclk.
Cclk lets you synchronize to an internal clock provided in
the FPGA device.
UserClk lets you synchronize to a user-defined signal
connected to the CLK pin of the STARTUP symbol.
JtagClk lets you synchronize to the clock provided by
JTAG. This clock sequences the TAP controller which
provides the control logic for JTAG.
The Spartan7 7s6 / 7s15 devices, do not support the
STARTUPE2.CLK (UserClk) user startup clock pin.

Notes:
1. For the dedicated configuration pins Xilinx recommends that you use the bitstream setting default.

Zynq-7000 Bitstream Settings
The device configuration settings for Zynq®-7000 devices available for use with the
set_property <Setting> <Value> [current_design] Vivado tool Tcl command are
shown in the following table.

Note: Bitstream settings for encryption are not valid for Zynq-7000 devices.

Table 37: Zynq-7000 Bitstream Settings

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
BPI_1ST_READ_CYCLE

1 1, 2, 3, 4 Helps synchronize BPI configuration with the timing of
page mode operations in flash devices. It allows you to
set the cycle number for a valid read of the first page.
The BPI_page_size must be set to 4 or 8 for this option to
be available.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=295

Table 37: Zynq-7000 Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
BPI_PAGE_SIZE

1 1, 4, 8 For BPI configuration, this option lets you specify the
page size which corresponds to the number of reads
required per page of flash memory.

BITSTREAM.CONFIG.
BPI_SYNC_MODE

Disable Disable,
Type1, Type2

Sets the BPI synchronous configuration mode for
different types of BPI flash devices.
Disable (the default) disables the synchronous
configuration mode.
Type1 enables the synchronous configuration mode and
settings to support the Micron G18(F) family.
Type2 enables the synchronous configuration mode and
settings to support the Micron (Numonyx) P30 and P33
families.

BITSTREAM.CONFIG. CCLKPIN1 Pullup Pullup,
Pullnone

Adds an internal pull-up to the Cclk pin. The Pullnone
setting disables the pullup.

BITSTREAM.CONFIG.
CONFIGFALLBACK

Enable Disable,
Enable

Enables or disables the loading of a default bitstream
when a configuration attempt fails.

BITSTREAM.CONFIG.
CONFIGRATE

3 3, 6, 9, 12, 16,
22, 26, 33, 40,
50, 66

Uses an internal oscillator to generate the configuration
clock, Cclk, when configuring in a master mode. Use this
option to select the rate for Cclk.

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Continuous,
Quiet

Controls how often the Digitally Controlled Impedance
circuit attempts to update the impedance match for DCI
IOSTANDARDs.

BITSTREAM.CONFIG. DONEPIN1 Pullup Pullup,
Pullnone

Adds an internal pull-up to the DONE pin. The Pullnone
setting disables the pullup. Use DonePin only if you
intend to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if
you do not use DonePin.

BITSTREAM.CONFIG. INITPIN1 Pullup Pullup,
Pullnone

Specifies whether you want to add a Pullup resistor to
the INIT pin, or leave the INIT pin floating.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable,
Disable

When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM.CONFIG. M0PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M0
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M0 pin.

BITSTREAM.CONFIG. M1PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M1
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M1 pin.

BITSTREAM.CONFIG. M2PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M2
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M2 pin.

BITSTREAM.CONFIG.
NEXT_CONFIG_ADDR

None <string> Sets the starting address for the next configuration in a
MultiBoot set up, which is stored in the WBSTAR register.

BITSTREAM.CONFIG.
NEXT_CONFIG_REBOOT

Enable Enable,
Disable

When set to Disable the IPROG command is removed
from the .bit file. This allows the Golden image to load
upon power up rather than jumping to the multiboot
image in a multiboot setup.

BITSTREAM.CONFIG.
OVERTEMPPOWERDOWN

Disable Disable,
Enable

Enables the device to shut down when the XADC detects
a temperature beyond the acceptable operational
maximum. An external circuitry set up for the XADC is
required to use this option.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=296

Table 37: Zynq-7000 Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG. PERSIST No No, Yes Maintains the configuration logic access to the multi-
function configuration pins after configuration. Primarily
used to maintain the SelectMAP port after configuration
for readback access, but can be used with any
configuration mode. Persist is not needed for JTAG
configuration since the JTAG port is dedicated and always
available. PERSIST and ICAP cannot be used at the same
time.
Refer to the user guide for a description. Persist is
needed for Readback and Partial Reconfiguration using
the SelectMAP configuration pins, and should be used
when either SelectMAP or Serial modes are used.

BITSTREAM.CONFIG.
REVISIONSELECT

00 00, 01, 10, 11 Specifies the internal value of the RS[1:0] settings in the
Warm Boot Start Address (WBSTAR) register for the next
warm boot.

BITSTREAM.CONFIG.
REVISIONSELECT_ TRISTATE

Disable Disable,
Enable

Specifies whether the RS[1:0] 3-state is enabled by
setting the option in the Warm Boot Start Address
(WBSTAR).
RS[1:0] pins 3-state enable
0: Enable RS 3-state
1: Disable RS 3-state

BITSTREAM.CONFIG.
SELECTMAPABORT

Enable Enable,
Disable

Enables or disables the SelectMAP mode Abort sequence.
If disabled, an Abort sequence on the device pins is
ignored.

BITSTREAM.CONFIG.
SPI_32BIT_ADDR

No No, Yes Enables SPI 32-bit address style, which is required for SPI
devices with storage of 256 Mb and larger.

BITSTREAM.CONFIG.
SPI_BUSWIDTH

NONE NONE, 1, 2, 4 Sets the SPI bus to Dual (x2) or Quad (x4) mode for
Master SPI configuration from third party SPI flash
devices.

BITSTREAM.CONFIG.
SPI_FALL_EDGE

No No, Yes Sets the FPGA to use a falling edge clock for SPI data
capture. This improves timing margins and may allow
faster clock rates for configuration.

BITSTREAM.CONFIG. TCKPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TCK pin, the
JTAG test clock. The Pullnone setting shows that there is
no connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDIPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDI pin, the
serial data input to all JTAG instructions and JTAG
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDOPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDO pin,
the serial data output for all JTAG instruction and data
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
TIMER_CFG

None <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_USR.

BITSTREAM.CONFIG.
TIMER_USR

0x00000000 <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_CFG.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=297

Table 37: Zynq-7000 Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG. TMSPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, pull-down, or neither to the TMS pin, the
mode input signal to the TAP controller. The TAP
controller provides the control logic for JTAG. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pulldown,
Pullup,
Pullnone

Adds a pull-up, a pull-down, or neither to unused
SelectIO pins (IOBs). It has no effect on dedicated
configuration pins. The list of dedicated configuration
pins varies depending upon the architecture. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG. USERID 0xFFFFFFFF <8-digit hex
string>

Used to identify implementation revisions. You can enter
up to an 8-digit hexadecimal string in the User ID
register.

BITSTREAM.CONFIG.
USR_ACCESS

None <8-digit hex
string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp into
the AXSS configuration register. The format of the
timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 = 00000),
hour, minute, seconds. The contents of this register may
be directly accessed by the FPGA fabric via the
USR_ACCESS primitive.

BITSTREAM.ENCRYPTION.
ENCRYPTKEYSELECT

bbram bbram, efuse Determines the location of the AES encryption key to be
used, either from the battery-backed RAM (BBRAM) or
the eFUSE register. (7 Series)
This property is only available when the Encrypt option is
set to True.

BITSTREAM.GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the Bitstream
(.bit) file. Using Compress does not guarantee that the
size of the bitstream shrinks.

BITSTREAM.GENERAL. CRC Enable Enable,
Disable

Controls the generation of a Cyclic Redundancy Check
(CRC) value in the bitstream. When enabled, a unique
CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in
the bitstream, the device will fail to configure. When CRC
is disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.
The CRC default value is Enable, except when
BITSTREAM.ENCRYPTION.ENCRYPT is Yes, the CRC is
disabled.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan (BSCAN)
block via JTAG after configuration.

BITSTREAM.GENERAL.
JTAG_XADC

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to the XADC.

BITSTREAM.GENERAL.
XADCENHANCEDLINEARITY

Off Off, On Disables some built-in digital calibration features that
make INL look worse than the actual analog
performance.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 298Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=298

Table 37: Zynq-7000 Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.GENERAL.
PERFRAMECRC

No No, Yes Inserts CRC values at regular intervals within bitstreams.
These values validate the integrity of the incoming
bitstream and can flag an error (shown on the INIT_B pin
and the PRERROR port of the ICAP) prior to loading the
configuration data into the device. While most
appropriate for partial bitstreams, when set to Yes, this
property inserts the CRC values into all bitstreams,
including full device bitstreams.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
READBACK

False True, False Lets you perform the Readback function by creating the
necessary readback files.

BITSTREAM.READBACK.
SECURITY

None None, Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Specifying Security Level1 disables Readback. Specifying
Security Level2 disables Readback and Reconfiguration.

BITSTREAM.READBACK.
XADCPARTIALRECONFIG

Disable Disable,
Enable

When Disabled XADC can work continuously during
Partial Reconfiguration. When Enabled XADC works in
Safe mode during partial reconfiguration.

BITSTREAM.STARTUP.
DONEPIPE

Yes Yes, No Tells the FPGA device to wait on the CFG_DONE (DONE)
pin to go High and then wait for the first clock edge
before moving to the Done state.

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5, 6,
Keep

Selects the Startup phase that activates the FPGA Done
signal. Done is delayed when DonePipe=Yes.

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4, 6,
Done, Keep

Selects the Startup phase that releases the internal 3-
state control to the I/O buffers.

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4, 5,
Done, Keep

Selects the Startup phase that asserts the internal write
enable to flip-flops, LUT RAMs, and shift registers.
GWE_cycle also enables the BRAMS. Before the Startup
phase, both block RAMs writing and reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0, 1,
2, 3, 4, 5, 6

Selects the Startup phase to wait until DLLs/ DCMs/PLLs
lock. If you select NoWait, the Startup sequence does not
wait for DLLs/DCMs/PLLs to lock.

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto, NoWait,
0, 1, 2, 3, 4, 5,
6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are asserted.
DCI matching does not begin on the Match_cycle. The
Startup sequence waits in this cycle until DCI has
matched. Given that there are a number of variables in
determining how long it takes DCI to match, the number
of CCLK cycles required to complete the Startup
sequence may vary in any given system. Ideally, the
configuration solution should continue driving CCLK until
DONE goes high.
When the Auto setting is specified, write_bitstream
searches the design for any DCI I/O standards. If DCI
standards exist, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=2. Otherwise,
write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=299

Table 37: Zynq-7000 Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.STARTUP.
STARTUPCLK

Cclk Cclk, UserClk,
JtagClk

The StartupClk sequence following the configuration of a
device can be synchronized to either Cclk, a User Clock,
or the JTAG Clock. The default is Cclk.
Cclk lets you synchronize to an internal clock provided in
the FPGA device.
UserClk lets you synchronize to a user-defined signal
connected to the CLK pin of the STARTUP symbol.
JtagClk lets you synchronize to the clock provided by
JTAG. This clock sequences the TAP controller which
provides the control logic for JTAG.

Notes:
1. For the dedicated configuration pins Xilinx recommends that you use the bitstream setting default.

UltraScale Bitstream Settings
The device configuration settings for UltraScale™ devices available for use with the
set_property <Setting> <Value> [current_design] Vivado tool Tcl command are
shown in the following table.

Table 38: UltraScale Bitstream Settings

Setting Default
Value

Possible
Values Description

BITSTREAM. AUTHENTICATION.
AUTHENTICATE

No Yes, No Indicates whether or not to use RSA authentication. If No
then AES_GCM is used.

BITSTREAM. AUTHENTICATION.
RSAPRIVATEKEYFILE

None <string> Specifies the OpenSSL .pem file that contains the key
pairs that should be used to sign the RSA-2048
authenticated bitstream.

BITSTREAM.CONFIG.
BPI_1ST_READ_CYCLE

1 1, 2, 3, 4 Helps synchronize BPI configuration with the timing of
page mode operations in flash devices. It allows you to
set the cycle number for a valid read of the first page. The
BPI_page_size must be set to 4 or 8 for this option to be
available.

BITSTREAM.CONFIG.
BPI_PAGE_SIZE

1 1, 4, 8 For BPI configuration, this option lets you specify the
page size which corresponds to the number of reads
required per page of flash memory.

BITSTREAM.CONFIG.
BPI_SYNC_MODE

Disable Disable, Type1,
Type2

Sets the BPI synchronous configuration mode for
different types of BPI flash devices.
Disable (the default) disables the synchronous
configuration mode.
Type1 enables the synchronous configuration mode and
settings to support the Micron G18(F) family.
Type2 enables the synchronous configuration mode and
settings to support the Micron (Numonyx) P30 and P33
families.

BITSTREAM.CONFIG. CCLKPIN1 Pullup Pullup,
Pullnone

Adds an internal pull-up to the Cclk pin. The Pullnone
setting disables the pullup.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=300

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
CONFIGFALLBACK

Enable Disable, Enable Enables or disables the loading of a default bitstream
when a configuration attempt fails.

BITSTREAM.CONFIG.
CONFIGRATE

3 3, 6, 9, 12, 22,
33, 40, 50, 57,
69, 82, 87, 90,
110, 115, 130,
148

Uses an internal oscillator to generate the configuration
clock, Cclk, when configuring in a master mode. Use this
option to select the rate for Cclk.

BITSTREAM.CONFIG.
D00_MOSI1

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D00_MOSI pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D00_MOSI pin.

BITSTREAM.CONFIG. D01_DIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D01_DIN pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D01_DIN pin.

BITSTREAM.CONFIG. D021 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the D02
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the D02 pin.

BITSTREAM.CONFIG. D031 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the D03
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the D03 pin.

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Continuous,
Quiet

Controls how often the Digitally Controlled Impedance
circuit attempts to update the impedance match for DCI
IOSTANDARDs.

BITSTREAM.CONFIG.
DONEPIN1

Pullup Pullup,
Pullnone

Adds an internal pull-up to the DONE pin. The Pullnone
setting disables the pullup. Use DonePin only if you
intend to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if
you do not use DonePin.

BITSTREAM.CONFIG.
EXTMASTERCCLK_EN

Disable Disable, Div-1,
Div-2, Div-3,
Div-4, Div-6,
Div-8, Div-12,
Div-16, Div-24,
Div-48

Allows an external clock to be used as the configuration
clock for all master modes. The external clock must be
connected to the dual-purpose EMCCLK pin.

BITSTREAM.CONFIG. INITPIN1 Pullup Pullup,
Pullnone

Specifies whether you want to add a Pullup resistor to the
INIT pin, or leave the INIT pin floating.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable, Disable When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM.CONFIG. M0PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M0
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M0 pin.

BITSTREAM.CONFIG. M1PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M1
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M1 pin.

BITSTREAM.CONFIG. M2PIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M2
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M2 pin.

BITSTREAM.CONFIG.
NEXT_CONFIG_ADDR

none <string> Sets the starting address for the next configuration in a
MultiBoot set up, which is stored in the WBSTAR register.

BITSTREAM.CONFIG.
NEXT_CONFIG_REBOOT

Enable Enable, Disable When set to Disable the IPROG command is removed
from the .bit file. This allows the Golden image to load
upon power up rather than jumping to the multiboot
image in a multiboot setup.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=301

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG.
OVERTEMPSHUTDOWN

Disable Disable, Enable Enables the device to shut down when the System
Monitor detects a temperature beyond the acceptable
operational maximum. An external circuitry set up for the
System Monitor is required to use this option.

BITSTREAM.CONFIG. PERSIST No No, Yes Maintains the configuration logic access to the multi-
function configuration pins after configuration. Primarily
used to maintain the SelectMAP port after configuration
for readback access, but can be used with any
configuration mode. Persist is not needed for JTAG
configuration since the JTAG port is dedicated and always
available. Persist and ICAP cannot be used at the same
time.
Refer to the user guide for a description. Persist is needed
for Readback and Partial Reconfiguration using the
SelectMAP configuration pins, and should be used when
either SelectMAP or Serial modes are used.

BITSTREAM.CONFIG. PROGPIN1 Pullup Pullup,
Pullnone

Adds an internal pull-up to the PROGRAM_B pin. The
Pullnone setting disables the pullup. The pullup affects
the pin after configuration.

BITSTREAM.CONFIG. PUDC_B1 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
PUDC_B pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the PUDC_B pin.

BITSTREAM.CONFIG.
RDWR_B_FCS_B1

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
RDWR_B_FCS_B pin. Select Pullnone to disable both the
pull-up resistor and the pull-down resistor on the
RDWR_B_FCS_B pin.

BITSTREAM.CONFIG.
REVISIONSELECT

00 00, 01, 10, 11 Specifies the internal value of the RS[1:0] settings in the
Warm Boot Start Address (WBSTAR) register for the next
warm boot.

BITSTREAM.CONFIG.
REVISIONSELECT_ TRISTATE

Disable Disable, Enable Specifies whether the RS[1:0] 3-state is enabled by setting
the option in the Warm Boot Start Address (WBSTAR).
RS[1:0] pins 3-state enable
0: Enable RS 3-state
1: Disable RS 3-state

BITSTREAM.CONFIG.
SELECTMAPABORT

Enable Enable, Disable Enables or disables the SelectMAP mode Abort sequence.
If disabled, an Abort sequence on the device pins is
ignored.

BITSTREAM.CONFIG.
SPI_32BIT_ADDR

No No, Yes Enables SPI 32-bit address style, which is required for SPI
devices with storage of 256 Mb and larger.

BITSTREAM.CONFIG.
SPI_BUSWIDTH

NONE NONE, 1, 2, 4, 8 Sets the SPI bus to Dual (x2) or Quad (x4) mode for
Master SPI configuration from third party SPI flash
devices.

BITSTREAM.CONFIG.
SPI_FALL_EDGE

No No, Yes Sets the FPGA to use a falling edge clock for SPI data
capture. This improves timing margins and may allow
faster clock rates for configuration.

BITSTREAM.CONFIG. TCKPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TCK pin, the
JTAG test clock. The Pullnone setting shows that there is
no connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDIPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDI pin, the
serial data input to all JTAG instructions and JTAG
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=302

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.CONFIG. TDOPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDO pin, the
serial data output for all JTAG instruction and data
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
TIMER_CFG

None <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_USR.

BITSTREAM.CONFIG.
TIMER_USR

0x00000000 <8-digit hex
string>

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_CFG.

BITSTREAM.CONFIG. TMSPIN1 Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, pull-down, or neither to the TMS pin, the
mode input signal to the TAP controller. The TAP
controller provides the control logic for JTAG. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pulldown,
Pullup,
Pullnone

Adds a pull-up, a pull-down, or neither to unused SelectIO
pins (IOBs). It has no effect on dedicated configuration
pins. The list of dedicated configuration pins varies
depending upon the architecture. The Pullnone setting
shows that there is no connection to either the pull-up or
the pull-down.

BITSTREAM.CONFIG. USERID 0xFFFFFFFF <8-digit hex
string>

Used to identify implementation revisions. You can enter
up to an 8-digit hexadecimal string in the User ID register.

BITSTREAM.CONFIG.
USR_ACCESS

None <8-digit hex
string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp into
the AXSS configuration register. The format of the
timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 = 00000),
hour, minute, seconds. The contents of this register may
be directly accessed by the FPGA fabric via the
USR_ACCESS primitive.

BITSTREAM.ENCRYPTION.
ENCRYPT

No No Yes Encrypts the bitstream.

BITSTREAM.ENCRYPTION.
ENCRYPTKEYSELECT

bbram bbram, efuse Determines the location of the AES encryption key to be
used, either from the battery-backed RAM (BBRAM) or the
eFUSE register.
This property is only available when the Encrypt option is
set to True.

BITSTREAM.ENCRYPTION.
FAMILY_KEY_FILEPATH

None Path to
familyKey.cfg

Specifies the install location of the Family Key. No specific
directory is required.
Xilinx does not provide the family key as part of the Xilinx
Tool Suite. Customers must send a request for the family
key to secure.solutions@xilinx.com. The family key is then
distributed to qualified customers through the Product
Licensing site on https://www.xilinx.com.

BITSTREAM.ENCRYPTION. KEY0 None <hex string> Key0 sets the AES encryption key for bitstream
encryption. To use this option, you must first set Encrypt
to Yes.

BITSTREAM.ENCRYPTION.
KEYFILE

None <string> Specifies the name of the input encryption file (with
a .nky file extension). To use this option, you must first
set Encrypt to Yes.

BITSTREAM.ENCRYPTION.
KEYLIFE

32 4 up to
2147483647

The number of 128-bit encryption blocks over which a
single key should be used for AES-GCM authenticated
bitstreams.
Setting this to 0 will disable these options

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 303Send Feedback

mailto:secure.solutions@xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=303

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.ENCRYPTION.
RSAKEYLIFEFRAMES

8 8 up to
2147483647

Specifies how many configuration frames should be used
for any given AES-256 key when RSA Public Key
Authentication is specified. A value of 8 configuration
frames is equivalent to using the key for 246 encryption
blocks.
Setting this to 0 will disable these options.

BITSTREAM.ENCRYPTION.
OBFUSCATEKEY

Disable Enable, Disable Creates a bitstream whereby the key used to encrypt the
bitstream is obfuscated before it is written to eFUSE or
battery-backed RAM (BBR). This allows the user to provide
the device programmer with an obfuscated key rather
than the original customer key. The device programmer
can then write the obfuscated key to the eFUSE or BBR
and mark it as obfuscated using the obfuscated-key flag
in the selected storage location.

BITSTREAM.ENCRYPTION.
STARTIVO

The initialization vector used to specify the initial GCM
count value in the first AES-GCM message. 32-bit hex
value.

BITSTREAM.ENCRYPTION.
STARTIVOBFUSCATE

Starting obfuscate initial vector (Obfuscate IV0) value.

BITSTREAM.GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the Bitstream
(.bit) file. Using Compress does not guarantee that the
size of the bitstream shrinks.

BITSTREAM.GENERAL. CRC Enable Enable, Disable Controls the generation of a Cyclic Redundancy Check
(CRC) value in the bitstream. When enabled, a unique CRC
value is calculated based on bitstream contents. If the
calculated CRC value does not match the CRC value in the
bitstream, the device will fail to configure. When CRC is
disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.
The CRC default value is Enable, except when
BITSTREAM.ENCRYPTION.ENCRYPT is Yes, the CRC is
disabled.

BITSTREAM.GENERAL.
DEBUGBITSTREAM

No No, Yes Lets you create a debug bitstream. A debug bitstream is
significantly larger than a standard bitstream.
DebugBitstream can be used only for master and slave
serial configurations. DebugBitstream is not valid for
Boundary Scan or Slave Parallel/SelectMAP. In addition to
a standard bitstream, a debug bitstream offers the
following features:
Writes 32 0s to the LOUT register after the
synchronization word.
Loads each frame individually.
Performs a Cyclic Redundancy Check (CRC) after each
frame.
Writes the frame address to the LOUT register after each
frame.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan (BSCAN)
block via JTAG after configuration.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=304

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.GENERAL.
PERFRAMECRC

No No, Yes Inserts CRC values at regular intervals within bitstreams.
These values validate the integrity of the incoming
bitstream and can flag an error (shown on the INIT_B pin
and the PRERROR port of the ICAP) prior to loading the
configuration data into the device. While most
appropriate for partial bitstreams, when set to Yes, this
property inserts the CRC values into all bitstreams,
including full device bitstreams.

BITSTREAM.GENERAL.
JTAG_SYSMON

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to SYSMON.

BITSTREAM.GENERAL.
SYSMONPOWERDOWN

Disable Disable, Enable Enables the device to power down SYSMON to save
power. Only recommended for permanently powering
down SYSMON.

BITSTREAM.MMCM.BANDWIDT
H

DEFAULT POSTCRC Changes all MMCM(s) with a BANDWIDTH setting of
OPTIMIZED to POSTCRC.

BITSTREAM.PLL.BANDWIDTH DEFAULT POSTCRC Changes all PLL(s) with a BANDWIDTH setting of
OPTIMIZED to POSTCRC.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
READBACK

False True, False Lets you perform the Readback function by creating the
necessary readback files.

BITSTREAM.READBACK.
SECURITY

None None, Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Specifying Security Level1 disables Readback. Specifying
Security Level2 disables Readback and Reconfiguration.

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5, 6,
Keep

Selects the Startup phase that activates the FPGA Done
signal. Done is delayed when DonePipe=Yes.

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4, 6,
Done, Keep

Selects the Startup phase that releases the internal 3-
state control to the I/O buffers.

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4, 5,
Done, Keep

Selects the Startup phase that asserts the internal write
enable to flip-flops, LUT RAMs, and shift registers.
GWE_cycle also enables the BRAMS. Before the Startup
phase, both block RAMs writing and reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0, 1, 2,
3, 4, 5, 6

Selects the Startup phase to wait until DLLs/DCMs/PLLs
lock. If you select NoWait, the Startup sequence does not
wait for DLLs/DCMs/PLLs to lock.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=305

Table 38: UltraScale Bitstream Settings (cont'd)

Setting Default
Value

Possible
Values Description

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto, NoWait,
0, 1, 2, 3, 4, 5, 6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are asserted.
DCI matching does not begin on the Match_cycle. The
Startup sequence waits in this cycle until DCI has
matched. Given that there are a number of variables in
determining how long it takes DCI to match, the number
of CCLK cycles required to complete the Startup sequence
may vary in any given system. Ideally, the configuration
solution should continue driving CCLK until DONE goes
high.
When the Auto setting is specified, write_bitstream
searches the design for any DCI I/O standards. If DCI
standards exist, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=2. Otherwise,
write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

Notes:
1. For the dedicated configuration pins Xilinx recommends that you use the default bitstream setting.

Virtex and Kintex UltraScale+ Bitstream
Settings

The device configuration settings for Virtex and Kintex® UltraScale+ devices available for use
with the set_property <Setting> <Value> [current_design] Vivado tool Tcl
command are shown in the following table.

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings

Setting Default
Values

Possible
Values Description

BITSTREAM. AUTHENTICATION.
AUTHENTICATE

No No, Yes Indicates whether or not to use RSA authentication. If No
then AES_GCM is used.

BITSTREAM. AUTHENTICATION.
RSAPRIVATEKEYFILE

Specifies the OpenSSL .pem file that contains the key
pairs that should be used to sign the RSA-2048
authenticated bitstream.

BITSTREAM.CONFIG.
BPI_1ST_READ_CYCLE

1 1, 2, 3, 4 Helps synchronize BPI configuration with the timing of
page mode operations in flash devices. It allows you to
set the cycle number for a valid read of the first page.
The BPI_page_size must be set to 4 or 8 for this option to
be available.

BITSTREAM.CONFIG.
BPI_PAGE_SIZE

1 1, 4, 8 For BPI configuration, this sub-option lets you specify the
page size which corresponds to the number of reads
required per page of flash memory.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=306

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings (cont'd)

Setting Default
Values

Possible
Values Description

BITSTREAM.CONFIG.
BPI_SYNC_MODE

Disable Disable, Type1,
Type2

Sets the BPI synchronous configuration mode for
different types of BPI flash devices.
Disable (the default) disables the synchronous
configuration mode.
Type1 enables the synchronous configuration mode and
settings to support the Micron G18(F) family.
Type2 enables the synchronous configuration mode and
settings to support the Micron (Numonyx) P30 and P33
families.

BITSTREAM.CONFIG. CCLKPIN Pullup Pullup,
Pullnone

Adds an internal pull-up to the Cclk pin. The Pullnone
setting disables the pullup.

BITSTREAM.CONFIG. PERSIST No No, Yes Prohibit usage of the configuration pins as user I/O and
persist after configuration.

BITSTREAM.CONFIG.
CONFIGRATE

2.7 2.7, 5.3, 8.0,
10.6, 21.3, 31.9,
36.4, 51.0, 56.7,
63.8, 72.9, 85.0,
102.0, 127.5,
170.0

Bitstream generation uses an internal oscillator to
generate the configuration clock, Cclk, when configuring
is in a master mode. Use this sub-option to select the
rate for Cclk.

BITSTREAM.CONFIG. D00_MOSI Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D00_MOSI pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D00_MOSI pin.

BITSTREAM.CONFIG. D01_DIN Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D01_DIN pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D01_DIN pin.

BITSTREAM.CONFIG. D02 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the D02
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the D02 pin.

BITSTREAM.CONFIG. D03 Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the D03
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the D03 pin.

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Quiet, Safe

Controls how often the Digitally Controlled Impedance
circuit attempts to update the impedance match for DCI
IOSTANDARDs.

BITSTREAM.CONFIG. DONEPIN Pullup Pullup,
Pullnone

Adds an internal pull-up to the DONE pin. The Pullnone
setting disables the pullup. Use DonePin only if you
intend to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if
you do not use DonePin.

BITSTREAM.CONFIG.
EXTMASTERCCLK_EN

Disable Disable, Div-1,
Div-2, Div-3.
Div-4, Div-6,
Div-8, Div-12,
Div-16, Div-24,
Div-48

Allows an external clock to be used as the configuration
clock for all master modes. The external clock must be
connected to the dual-purpose EMCCLK pin.

BITSTREAM.ENCRYPTION.
FAMILY_KEY_FILEPATH

None Path to
familyKey.cfg

Specifies the install location of the Family Key. No specific
directory is required.
Xilinx does not provide the family key as part of the Xilinx
Tool Suite. Customers must send a request for the family
key to secure.solutions@xilinx.com. The family key is
then distributed to qualified customers through the
Product Licensing site on https://www.xilinx.com.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 307Send Feedback

mailto:secure.solutions@xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=307

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings (cont'd)

Setting Default
Values

Possible
Values Description

BITSTREAM.CONFIG. INITPIN Pullup Pullup,
Pullnone

Specifies whether you want to add a Pullup resistor to
the INIT pin, or leave the INIT pin floating.

BITSTREAM.CONFIG. M0PIN Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M0
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M0 pin.

BITSTREAM. CONFIG.M1PIN Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M1
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M1 pin.

BITSTREAM.CONFIG. M2PIN Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the M2
pin. Select Pullnone to disable both the pull-up resistor
and the pull-down resistor on the M2 pin.

BITSTREAM.CONFIG.
NEXT_CONFIG_ADDR

None <string> Sets the starting address for the next configuration in a
MultiBoot set up, which is stored in the WBSTAR register.

BITSTREAM.CONFIG.
NEXT_CONFIG_REBOOT

Enable Enable, Disable When set to Disable the IPROG command is removed
from the .bit file.

BITSTREAM.CONFIG.
SELECTMAPABORT

Enable Enable, Disable Enables or disables the SelectMAP mode Abort sequence.
If disabled, an Abort sequence on the device pins is
ignored.

BITSTREAM.CONFIG.
CONFIGFALLBACK

Enable Enable, Disable Enables or disables the loading of a default bitstream
when a configuration attempt fails.

BITSTREAM.CONFIG. PROGPIN Pullup Pullup,
Pullnone

Adds an internal pull-up to the PROGRAM_B pin. The
Pullnone setting disables the pullup. The pullup affects
the pin after configuration.

BITSTREAM.CONFIG. PUDC_B Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
PUDC_B pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the PUDC_B pin.

BITSTREAM.CONFIG.
RDWR_B_FCS_B

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
RDWR_B_FCS_B pin. Select Pullnone to disable both the
pull-up resistor and the pull-down resistor on the
RDWR_B_FCS_B pin.

BITSTREAM.CONFIG.
REVISIONSELECT

00 00, 01, 10, 11 Specifies the internal value of the RS[1:0] settings in the
Warm Boot Start Address (WBSTAR) register for the next
warm boot.

BITSTREAM.CONFIG.
REVISIONSELECT_ TRISTATE

Disable Disable, Enable Specifies whether the RS[1:0] 3-state is enabled by
setting the option in the Warm Boot Start
Address(WBSTAR).
RS[1:0] pins 3-state enable
0: Enable RS 3-state
1: Disable RS 3-state

BITSTREAM.CONFIG.
OVERTEMPSHUTDOWN

Disable Disable, Enable Enables the device to shut down when the System
Monitor detects a temperature beyond the acceptable
operational maximum. An external circuitry set up for the
System Monitor is required to use this option.

BITSTREAM.CONFIG.
SPI_32BIT_ADDR

No No, Yes Enables SPI 32-bit address style, which is required for SPI
devices with storage of 256 Mb and larger.

BITSTREAM.CONFIG.
SPI_BUSWIDTH

NONE NONE, 1, 2, 4, 8 Sets the SPI bus to Dual (x2) or Quad (x4) mode for
Master SPI configuration from third party SPI flash
devices.

BITSTREAM.CONFIG.
SPI_FALL_EDGE

No No, Yes Sets the FPGA to use a falling edge clock for SPI data
capture. This improves timing margins and may allow
faster clock rates for configuration.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=308

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings (cont'd)

Setting Default
Values

Possible
Values Description

BITSTREAM.CONFIG. TCKPIN Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TCK pin, the
JTAG test clock. The Pullnone setting shows that there is
no connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDIPIN Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDI pin, the
serial data input to all JTAG instructions and JTAG
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG. TDOPIN Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDO pin,
the serial data output for all JTAG instruction and data
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
TIMER_CFG

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_USR.

BITSTREAM.CONFIG.
TIMER_USR

Enables the Watchdog Timer in Configuration mode and
sets the value. This option cannot be used at the same
time as TIMER_CFG.

BITSTREAM.CONFIG. TMSPIN Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, pull-down, or neither to the TMS pin, the
mode input signal to the TAP controller. The TAP
controller provides the control logic for JTAG. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to unused
SelectIO pins (IOBs). It has no effect on dedicated
configuration pins. The list of dedicated configuration
pins varies depending upon the architecture. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG. USERID 0xFFFFFFFF 0xFFFFFFFF Used to identify implementation revisions. You can enter
up to an 8-digit hexadecimal string in the User ID
register.

BITSTREAM.CONFIG.
USR_ACCESS

None None, <8-digit
hex string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp into
the AXSS configuration register. The format of the
timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 = 00000),
hour, minute, seconds. The contents of this register may
be directly accessed by the FPGA fabric via the
USR_ACCESS primitive.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable, Disable When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM. ENCRYPTION.
ENCRYPT

No No, Yes Encrypts the bitstream.

BITSTREAM. ENCRYPTION.
ENCRYPTKEYSELECT

bbram bbram, efuse Determines the location of the AES encryption key to be
used, either from the battery-backed RAM (BBRAM) or
the eFUSE register. This property is only available when
the Encrypt option is set to True.

BITSTREAM. ENCRYPTION.
OBFUSCATEKEY

Disable Disable, Enable When the AES key is not read-secured, a read of the key
returns the CRC hash of the key instead of the actual key
value.

BITSTREAM. ENCRYPTION. KEY0 Key0 sets the 64-bit AES encryption key for bitstream
encryption. To get the pick setting, leave this blank
generator to select a random number for the value. To
use this option, you must first set Encrypt to Yes.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=309

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings (cont'd)

Setting Default
Values

Possible
Values Description

BITSTREAM. ENCRYPTION.
STARTIV0

Sets the 128-bit starting AES initial vector value. To use
this option, you must first set Encrypt to Yes.

BITSTREAM. ENCRYPTION.
STARTIVOBFUSCATE

Sets the 32-bit starting obfuscate initial vector value. To
use this option, you must first set Encrypt to Yes.

BITSTREAM. ENCRYPTION.
KEYFILE

Specifies the name of the input encryption file (with
a .nky file extension). To use this option, you must first
set Encrypt to Yes.

BITSTREAM. ENCRYPTION.
KEYLIFE

32 4 up to
2147483647

The number of 128-bit encryption blocks over which a
single key should be used for AES-GCM authenticated
bitstreams.

BITSTREAM. ENCRYPTION.
RSAKEYLIFEFRAMES

8 8 up to
2147483647

Specifies how many configuration frames should be used
for any given AES-256 key when RSA Public Key
Authentication is specified. A value of 8 configuration
frames is equivalent to using the key for 246 encryption
blocks.

BITSTREAM. GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the bit file.
Using compress does not guarantee that the size of the
bitstream will shrink.

BITSTREAM.GENERAL.CRC Enable Enable, Disable Controls the generation of a Cyclic Redundancy Check
(CRC) value in the bitstream. When enabled, a unique
CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in
the bitstream, the device will fail to configure. When CRC
is disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.
The CRC default value is Enable, except when
BITSTREAM.ENCRYPTION.ENCRYPT is Yes, the CRC is
disabled.

BITSTREAM.GENERAL.
DEBUGBITSTREAM

No No, Yes Lets you create a debug bitstream. A debug bitstream is
significantly larger than a standard bitstream.
DebugBitstream can be used only for master and slave
serial configurations. DebugBitstream is not valid for
Boundary Scan or Slave Parallel/SelectMAP. In addition to
a standard bitstream, a debug bitstream offers the
following features: Writes 32 0s to the LOUT register after
the synchronization word. Loads each frame individually.
Performs a Cyclic Redundancy Check (CRC) after each
frame. Writes the frame address to the LOUT register
after each frame.

BITSTREAM.GENERAL.
PERFRAMECRC

No No, Yes Inserts CRC values at regular intervals within bitstreams.
These values validate the integrity of the incoming
bitstream and can flag an error (shown on the INIT_B pin
and the PRERROR port of the ICAP) prior to loading the
configuration data into the device. While most
appropriate for partial bitstreams, when set to Yes, this
property inserts the CRC values into all bitstreams,
including full device bitstreams.

BITSTREAM.GENERAL.
SYSMONPOWERDOWN

Disable Disable, Enable Enables the device to power down SYSMON to save
power. Only recommended for permanently powering
down SYSMON.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan (BSCAN)
block via JTAG after configuration.

BITSTREAM.GENERAL.
JTAG_SYSMON

Enable Enable, Disable,
StatusOnly

Enables or disables the JTAG connection to SYSMON.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 310Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=310

Table 39: Virtex and Kintex UltraScale+ Bitstream Settings (cont'd)

Setting Default
Values

Possible
Values Description

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM. READBACK.
SECURITY

None None, Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Specifying Security Level1 disables Readback.

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5, 6 Selects the Startup phase that activates the FPGA Done
signal. Done is delayed when DonePipe=Yes.

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4, 6,
Done, Keep

Selects the Startup phase that releases the internal 3-
state control to the I/O buffers.

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4, 5,
Done, Keep

Selects the Startup phase that asserts the internal write
enable to flip-flops, LUT RAMs, and shift registers.
GWE_cycle also enables the BRAMS. Before the Startup
phase, both block RAMs writing and reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0, 1, 2,
3, 4, 5, 6

Selects the Startup phase to wait until MMCM/PLLs lock.
If you select NoWait, the Startup sequence does not wait
for MMCM/PLLs to lock.

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto, NoWait,
0, 1, 2, 3, 4, 5, 6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are asserted.
DCI matching does not begin on the Match_cycle. The
Startup sequence waits in this cycle until DCI has
matched. Given that there are a number of variables in
determining how long it takes DCI to match, the number
of CCLK cycles required to complete the Startup
sequence may vary in any given system. Ideally, the
configuration solution should continue driving CCLK until
DONE goes high.
When the Auto setting is specified, write_bitstream
searches the design for any DCI I/O standards. If DCI
standards exist, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=2. Otherwise,
write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

Zynq UltraScale+ MPSoC Bitstream Settings
The device configuration settings for Zynq® UltraScale+ MPSoC devices available for use with
the set_property <Setting> <Value> [current_design] Vivado tool Tcl command
are shown in the following table.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=311

Table 40: Zynq UltraScale+ MPSoC Bitstream Settings

Setting Default
Values

Possible
Value Description

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Quiet, Safe

Controls how often the Digitally Controlled Impedance
circuit attempts to update the impedance match for DCI
IOSTANDARDs.

BITSTREAM.CONFIG. PUDC_B Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
PUDC_B pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the PUDC_B pin.

BITSTREAM.CONFIG.
OVERTEMPSHUTDOWN

Disable Disable,
Enable

Enables the device to shut down when the System
Monitor detects a temperature beyond the acceptable
operational maximum. An external circuitry set up for the
System Monitor is required to use this option.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to unused
SelectIO pins (IOBs). It has no effect on dedicated
configuration pins. The list of dedicated configuration
pins varies depending upon the architecture. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG. USERID 0xFFFFFFFF 0xFFFFFFFF Used to identify implementation revisions. You can enter
up to an 8-digit hexadecimal string in the User ID
register.

BITSTREAM.CONFIG.
USR_ACCESS

None None, <8-
digit hex
string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp into
the AXSS configuration register. The format of the
timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 = 00000),
hour, minute, seconds. The contents of this register may
be directly accessed by the FPGA fabric via the
USR_ACCESS primitive.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable,
Disable

When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM.GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the bit file.
Using compress does not guarantee that the size of the
bitstream will shrink.

BITSTREAM.GENERAL. CRC Enable Enable,
Disable

Controls the generation of a Cyclic Redundancy Check
(CRC) value in the bitstream. When enabled, a unique
CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in
the bitstream, the device will fail to configure. When CRC
is disabled a constant value is inserted in the bitstream in
place of the CRC, and the device does not calculate a CRC.

BITSTREAM.GENERAL.
PERFRAMECRC

No No, Yes Inserts CRC values at regular intervals within bitstreams.
These values validate the integrity of the incoming
bitstream and can flag an error (shown on the INIT_B pin
and the PRERROR port of the ICAP) prior to loading the
configuration data into the device. While most
appropriate for partial bitstreams, when set to Yes, this
property inserts the CRC values into all bitstreams,
including full device bitstreams.

BITSTREAM.GENERAL.
SYSMONPOWERDOWN

Disable Disable,
Enable

Enables the device to power down SYSMON to save
power. Only recommended for permanently powering
down SYSMON.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan (BSCAN)
block via JTAG after configuration.

BITSTREAM.GENERAL.
JTAG_SYSMON

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to SYSMON.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=312

Table 40: Zynq UltraScale+ MPSoC Bitstream Settings (cont'd)

Setting Default
Values

Possible
Value Description

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM.READBACK.
SECURITY

None None, Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Specifying Security Level1 disables Readback.Specifying
Security

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5, 6,
Keep

Selects the Startup phase that activates the FPGA Done
signal. Done is delayed when DonePipe=Yes

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4, 6,
Done, Keep

Selects the Startup phase that releases the internal 3-
state control to the I/O buffers

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4, 5,
Done, Keep

Selects the Startup phase that asserts the internal write
enable to flip-flops, LUT RAMs, and shift registers.
GWE_cycle also enables the BRAMS. Before the Startup
phase, both block RAMs writing and reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0, 1,
2, 3, 4, 5, 6

Selects the Startup phase to wait until MMCM/PLLs lock.
If you select NoWait, the Startup sequence does not wait
for MMCM/PLLs to lock.

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto, NoWait,
0, 1, 2, 3, 4, 5,
6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are asserted.
DCI matching does not begin on the Match_cycle. The
Startup sequence waits in this cycle until DCI has
matched. Given that there are a number of variables in
determining how long it takes DCI to match, the number
of CCLK cycles required to complete the Startup
sequence may vary in any given system. Ideally, the
configuration solution should continue driving CCLK until
DONE goes high.
When the Auto setting is specified, write_bitstream
searches the design for any DCI I/O standards. If DCI
standards exist, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=2. Otherwise,
write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

Appendix A: Device Configuration Bitstream Settings

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=313

Appendix B

Trigger State Machine Language
Description

The trigger state machine language is used to describe complex trigger conditions that map to
the advanced trigger logic of the ILA debug core. The trigger state machine has the following
features:

• Up to 16 states.

• One-, two-, and three-way conditional branching used for complex state transitions.

• Four built-in 16-bit counters used to count events, implement timers, etc.

• Four built-in flags used for monitoring trigger state machine execution status.

• Trigger action.

States
Each state machine program can have up to 16 states declared. Each state is composed of a state
declaration and a body:

 state <state_name>:
 <state_body>

Goto Action
The goto action is used to transition between states. Here is an example of using the goto
action to transition from one state to another before triggering:

 state my_state_0:
 goto my_state_1;
 state my_state_1:
 trigger;

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=314

Conditional Branching
The trigger state machine language supports one-, two-, and three-way conditional branching per
state.

• One-way branching involves using goto actions without any if/elseif/else/endif
constructs:

 state my_state_0:
 goto my_state_1;

• Two-way conditional branching uses goto actions with if/else/endif constructs:

state my_state_0:
 if (<condition1>) then
 goto my_state_1;
 else
 goto my_state_0;
 endif

• Three-way conditional branching uses goto actions with if/else/elseif/endif
constructs:

 state my_state_0:
 if (<condition1>) then
 goto my_state_1;
 elseif (<condition2>) then
 goto my_state_2;
 else
 goto my_state_0;
 endif

For more information on how to construct conditional statements represented above with
<condition1> and <condition2>, refer to the section Conditional Statements.

Related Information
Conditional Statements

Counters
The four built-in 16-bit counters have fixed names and are called $counter0, $counter1,
$counter2, $counter3. The counters can be reset, incremented, and used in conditional
statements.

• To reset a counter, use the reset_counter action:

state my_state_0:
 reset_counter $counter0;
 goto my_state_1;

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=315

• To increment a counter, use the increment_counter action:

state my_state_0:
 increment_counter $counter3;
 goto my_state_1;

For more information on how to use counters in conditional statements, refer to Conditional
Statements.

Related Information
Conditional Statements

Flags
Flags can be used to monitor progress of the trigger state machine program as it executes. The
four built-in flags have fixed names and are called $flag0, $flag1, $flag2, and $flag3. The
flags can be set and cleared.

• To set a flag, use the set_flag action:

state my_state_0:
 set_flag $flag0;
 goto my_state_1;

• To clear a flag, use the clear_flag action:

state my_state_0:
 clear_flag $flag2;
 goto my_state_1;

Conditional Statements
Debug Probe Conditions
Debug probe conditions can be used in two-way and three-way branching conditional
statements. Each debug probe condition consumes one trigger comparator on the PROBE port of
the ILA to which the debug probe is attached.

IMPORTANT! Each PROBE port can have from 1 to 16 trigger comparators as configured at compile time. This
means that you can only use a particular debug probe in a debug probe condition up from 1 to 16 times in the
entire trigger state machine program, depending on the number of comparators configured on the PROBE port.

The debug probe conditions consist of a comparison operator and a value. The valid debug probe
condition comparison operators are:

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=316

• == (equals)

• != (not equals)

• > (greater than)

• < (less than)

• >= (greater than or equal to)

• <= (less than or equal to)

Valid values are of the form:

<bit_width>'<radix><value>

Where:

• <bit width> is the width of the probe (in bits)

• <radix> is one of

○ b (binary)

○ h (hexadecimal)

○ u (unsigned decimal)

• <value> is one of

○ 0 (Logical zero)

○ 1 (Logical one)

○ X (dont care)

○ R (0-to-1 transition) - Valid only for 1 bit probes

○ F (1-to-0 transition) - Valid only for 1 bit probes

○ B (both transitions) - Valid only for 1 bit probes

○ N (No transitions) - Valid only for 1 bit probes

Examples of valid debug probe condition values are:

• 1-bit binary value of 0

1'b0

• 12-bit hex value of 7A

12'h07A

• 9-bit integer value of 123

9'u123

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=317

Examples of debug probe condition statements are:

• A single-bit debug probe called abc equals 0

if (abc == 1'b0) then

• A 23-bit debug probe xyz equals 456

if (xyz >= 23'u456) then

• A 23-bit debug probe klm does not equal hex A5

if (klm != 23'h0000A5) then

Examples of multiple debug probe condition statements are:

• Two debug probe comparisons combined with an "OR" function:

if ((xyz >= 23'u456) || (abc == 1'b0)) then

• Two debug probe comparisons combined with an "AND" function:

if ((xyz >= 23'u456) && (abc == 1'b0)) then

• Three debug probe comparisons combined with an "OR" function:

if ((xyz >= 23'u456) || (abc == 1'b0) || (klm != 23'h0000A5)) then

• Three debug probe comparisons combined with an "AND" function:

if ((xyz >= 23'u456) && (abc == 1'b0) && (klm != 23'h0000A5)) then

Counter Conditions
Counter conditions can be used in two-way and three-way branching conditional statements.
Each counter condition consumes one counter comparator.

IMPORTANT! Each counter has only one counter comparator. This means that you can only use a particular
counter in a counter condition once in the entire trigger state machine program.

The probe port conditions consist of a comparison operator and a value. The valid probe
condition comparison operators are:

• == (equals)

• != (not equals)

IMPORTANT! Each counter is always 16 bits wide.

Examples of valid counter condition values are:

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=318

• 16-bit binary value of 0

16'b0000_0000_0000_0000
16'b0000000000000000

• 16-bit hex value of 7A

16'h007A

• 16-bit integer value of 123

16'u123

Examples of counter condition statements:

• Counter $counter0 equals binary 0

($counter0 == 16'b0000000000000000)

• Counter $counter2 does not equal decimal 23

($counter2 != 16'u23)

Combined Debug Probe and Counter Conditions

Debug probe conditions and counter conditions can be combined together to form a single
condition using the following rules:

• All debug probe comparisons must be combined together using the same "||" (OR) or "&&"
(AND) operators.

• The combined debug probe condition can be combined with the counter condition using
either the "||" (OR) or "&&" (AND) operators, regardless of the operator used to combine the
debug probe comparisons together.

Examples of multiple debug probe and counter condition statements are:

• Two debug probe comparisons combined with an "OR" function, then combined with counter
conditional using "AND" function:

if (((xyz >= 23'u456) || (abc == 1'b0)) && ($counter0 == 16'u0023)) then

• Two debug probe comparisons combined with an "AND" function, then combined with
counter conditional using "OR" function:

if (((xyz >= 23'u456) && (abc == 1'b0)) || ($counter0 == 16'u0023)) then

• Three debug probe comparisons combined with an "OR" function, then combined with
counter conditional using "AND" function:

if (((xyz >= 23'u456) || (abc == 1'b0) || (klm != 23'h0000A5)) &&
($counter0 ==
16'u0023)) then

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=319

• Three debug probe comparisons combined with an "AND" function, then combined with
counter conditional using "OR" function:

if (((xyz >= 23'u456) && (abc == 1'b0) && (klm != 23'h0000A5)) ||
($counter0 ==
16'u0023)) then

Trigger State Machine Language Grammar

NOTES:

• The language is case insensitive

• Comment character is hash '#' character. Anything including and after a # character is ignored.

• 'THING' = THING is a terminal

• {<thing>} = 0 or more thing

• [<thing>] = 0 or 1 thing

<program> ::= <state_list>
<state_list> ::= <state_list> <state> | <state>
<state> ::= 'STATE' <state_label> ':' <if_condition> | <action_block>

<action_block> ::= <action_list> 'GOTO' <state_label> ';'
| <action_list> 'TRIGGER' ';'
| 'GOTO' <state_label> ';'
| 'TRIGGER' ';'
<action_list> ::= <action_statement> | <action_list> <action_statement>
<action_statement> ::= 'SET_FLAG' <flag_name> ';'
| 'CLEAR_FLAG' <flag_name> ';'
| 'INCREMENT_COUNTER' <counter_name> ';'
| 'RESET_COUNTER' <counter_name> ';'
<if_condition> ::= 'IF' '(' <condition> ')' 'THEN' <actionblock>
 ['ELSEIF' '(' <condition> ')' 'THEN' <actionblock>]
 'ELSE' <actionblock>
 'ENDIF'
<condition> ::= <probe_match_list>
| <counter_match>
| <probe_counter_match>
<probe_counter_match> ::= '(' <probe_counter_match> ')'
| <probe_match_list> <boolean_logic_op> <counter_match>
| <counter_match> <boolean_logic_op> <probe_match_list>
<probe_match_list> ::= '(' <probe_match> ')'
| <probe_match>
<probe_match> ::= <probe_match_list> <boolean_logic_op> <probe_match_list>
| <probe_name> <compare_op> <constant>
| <constant> <compare_op> <probe_name>
<counter_match> ::= '(' <counter_match> ')'
| <counter_name> <compare_op> <constant>
| <constant> <compare_op> <counter_name>
<constant> ::= <integer_constant>
| <hex_constant>
| <binary_constant>
<compare_op> ::= '==' | '!=' | '>' | '>=' | '<' | '<='
<boolean_logic_op> ::= '&&' | '||'
--- The following are in regular expression format to simplify expressions:
--- [A-Z0-9] means match any single character in AB...Z,0..9
--- [AB]+ means match [AB] one or more times like A, AB, ABAB, AAA, etc

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=320

--- [AB]* means match [AB] zero or more times
<probe_name> ::= [A-Z_\[\]<>/][A-Z_0-9\[\]<>/]+
<state_label> ::= [A-Z_][A-Z_0-9]+
<flag_name> ::= \$FLAG[0-3]
<counter_name> ::= \$COUNTER[0-3]
<hex_constant> ::= <integer>*'h<hex_digit>+
<binary_constant> ::= <integer>*'b<binary_digit>+
<integer_constant> ::= <integer>*'u<integer_digit>+
<integer> ::= <digit>+
<hex_digit> ::= [0-9ABCDEFBN_]
<binary_digit> ::= [01XRFBN_]
<digit> ::= [0-9]

Appendix B: Trigger State Machine Language Description

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=321

Appendix C

Low Level SVF JTAG Commands
Low level JTAG commands allow you to scan multiple FPGA JTAG chains. The SVF commands
generated for chain operations use these low-level commands to access the FPGAs in the chain.

This appendix is an overview of these commands. A detailed explanation can be found in the
Serial Vector Format Specification document that can be found at: http://www.jtagtest.com/pdf/
svf_specification.pdf.

Header Data Register (HDR), Header
Instruction Register (HIR)

Syntax
HDR length [TDI (tdi)] [TDO (tdo)] [MASK (mask)] [SMASK (smask)];
HIR length [TDI (tdi)] [TDO (tdo)] [MASK (mask)] [SMASK (smask)];

Purpose
Specifies a default header pattern that is shifted in before every scan operation. The header
pattern specifies how to pad the scan statements with a set of leading bits that accommodate the
devices located on the scan path beyond the component of interest.

General Information
The Header Data Register (HDR) specifies a default header pattern that is pre-pended to the
beginning of all subsequent SDR commands. The Header Instruction Register (HIR) specifies a
default header pattern that is pre-pended to the beginning of all subsequent SIR commands. The
header commands have a set of counterpart trailer commands (TIR, TDR) that are described in a
following section. A header can be removed by setting its length to 0.

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 322Send Feedback

http://www.jtagtest.com/pdf/svf_specification.pdf
http://www.jtagtest.com/pdf/svf_specification.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=322

TDR, TIR (Trailer Data Register, Trailer
Instruction Register)

Syntax
TDR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)];
TIR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)];

Purpose
Specifies a default trailer pattern that is shifted in after all subsequent scan operations. The trailer
pattern specifies how to pad the scan statements with a set of trailing bits that accommodate the
devices located on the scan path after the component of interest.

General Information
The Trailer Data Register (TDR) specifies a trailer pattern that will be appended to the end of all
subsequent SDR commands. Trailer Instruction Register (TIR) specifies a default trailer pattern
that is appended to the end of all subsequent SIR commands. A trailer can be removed by setting
its length to 0.

Example
In this example a SVF file is developed for an ASIC. The ASIC is then placed in a board as u3,
shown below:

Figure 181: TDR Example

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=323

The set of SVF statements originally developed for the ASIC can be reused with minimal
modification if the appropriate header and trailer statements are defined to accommodate the
devices in front of and behind u3. In this example, a header pattern would be defined for devices
u4 and u5, and a trailer pattern would be defined for u2 and u1. The optional parameters can be
specified in any order. Each optional parameter can only be specified once. Hex strings specified
for TDI, TDO, MASK, or SMASK cannot be a value larger than the maximum implied by the
length parameter. Leading zeros are assumed for a hex string if not explicitly specified.

scan_ir_hw
Perform shift IR on hw_jtag.

Syntax
scan_ir_hw_jtag [-tdi <arg>] [-tdo <arg>] [-mask <arg>] [-smask <arg>] [-
quiet]
[-verbose] <length>

General Information
The scan_ir_hw_jtag command specifies a scan pattern to be scanned into the JTAG
interface target instruction register. The command targets a hw_jtag object which is created
when the hw_target is opened in JTAG mode through the use of the open_hw_target -
jtag_mode command. When targeting the hw_jtag object prior to shifting the scan pattern
specified in the scan_ir_hw_jtag command, the last defined header property (HIR) is pre-pended
to the beginning of the specified data pattern. The last defined trailer property (TIR) is appended
to the end of the data pattern.

The number of bits represented by the hex strings specified for -tdi, -tdo, -mask, or -smask
cannot be greater than the maximum specified by <length>.

The scan_ir_hw_jtag command returns a hex array containing captured TDO data from the
hw_jtag, or returns an error if it fails.

Example
The following example scans the JTAG instruction register for a 24 bit value:

scan_ir_hw_jtag 24

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=324

The following example sends a 24 bit value 0x00_0010 (LSB first) to TDI, then captures the TDO
output, applies a mask with 0xF3_FFFF, and compares the returned TDO value against the
specified value -tdo 0x81_8181.

scan_ir_hw_jtag 24 -tdi 000010 -tdo 818181 -mask F3FFFF -smask 0

scan_dr_hw
Perform shift DR on 'hw_jtag'.

Syntax
scan_dr_hw_jtag [-tdi <arg>] [-tdo <arg>] [-mask <arg>] [-smask <arg>] [-
quiet]
[-verbose] <length>

General Information
The scan_dr_hw_jtag command specifies a scan pattern to be scanned into the JTAG
interface target data register. The command targets a hw_jtag object which is created when the
hw_target is opened in JTAG mode through the use of the open_hw_target -jtag_mode
command. When targeting the hw_jtag object prior to shifting the scan pattern specified in the
scan_dr_hw_jtag command, the last defined header property (HDR) is pre-pended to the
beginning of the specified data pattern. The last defined trailer property (TDR) is appended to the
end of the data pattern.

The scan_dr_hw_jtag command returns a hex array containing captured TDO data from the
hw_jtag, or returns an error if it fails.

Example
The following example scans the JTAG data register for a 24 bit value:

 scan_dr_hw_jtag 24

The following example sends a 24 bit value 0x00_0010 (LSB first) to TDI, then captures the data
output, TDO, applies a mask with 0xF3_FFFF, and compares the returned TDO value against the
specified value -tdo 0x81_8181.

 scan_dr_hw_jtag 24 -tdi 000010 -tdo 818181 -mask F3FFFF -smask 0

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=325

Multi Chain SVF Operation
The following examples show how to handle operations on a SVF chain.

Two devices, xcku11 and xcku9, are connected in a chain. A configuration memory is attached to
the second device in the chain (xcku9). To access this configuration memory, SVF generates
commands using the HIR, HDR, TIR, and TDR commands. The commands generated for flashing
this configuration memory take into account the chain length, and incorporate this information in
the low level JTAG operations.

Figure 182: Multi Chain SVF Operation Example

The generated .svf file contains the following operations:

HIR 0 ;
TIR 6 TDI (3f) SMASK (3f) ;
HDR 0 ;
TDR 1 TDI (00) SMASK (01) ;
// config/idcode
SIR 6 TDI (09) ;
SDR 32 TDI (00000000) TDO (0484a093) MASK (0fffffff) ;
// config/jprog
STATE RESET;
STATE IDLE;
SIR 6 TDI (0b) ;
SIR 6 TDI (14) ;
// Modify the below delay for config_init operation (0.100000 sec typical,
0.100000
sec maximum)
RUNTEST 0.100000 SEC;
// config/jprog/poll
RUNTEST 10000 TCK;
SIR 6 TDI (14) TDO (11) MASK (31) ;
// config/slr
SIR 6 TDI (05) ;

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=326

Multi Chain SVF Operation with Configuration
Memory Attached to First Device
In this example, to access the ku9 device, a SMASK value of 0000 0011 1111 (0x3f) is used with
the TIR and TDR instructions. To access the second device in the chain, the mask value is pushed
in followed by SIR and SDR instructions. SIR and SDR instructions combine HIR, HDR, TIR, and
TDR information.

If the configuration memory attached to the first device (xcku11) needs to be programmed, the
SVF generated commands are different:

Figure 183: Multi Chain SVF Operation Example with Configuration Memory Attached
to First Device

HIR 6 TDI (3f) SMASK (3f) ;
TIR 0 ;
HDR 1 TDI (00) SMASK (01) ;
TDR 0 ;
// config/idcode
SIR 6 TDI (09) ;
SDR 32 TDI (00000000) TDO (04a4e093) MASK (0fffffff) ;
// config/jprog
STATE RESET;
STATE IDLE;
SIR 6 TDI (0b) ;
SIR 6 TDI (14) ;
// Modify the below delay for config_init operation (0.100000 sec typical,
0.100000
sec maximum)
RUNTEST 0.100000 SEC;
// config/jprog/poll
RUNTEST 10000 TCK;
SIR 6 TDI (14) TDO (11) MASK (31) ;
// config/slr
SIR 6 TDI (05) ;

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=327

Multi Chain SVF Operation with Configuration
Memory Attached to Second Device in Chain
In this example, to access the ku11 device, a SMASK value of 0011 1111 (0x3f) is used with the
HIR and HDR instructions. To access the first device in the chain, the mask value is pushed first
followed by a SIR and SDR instructions. SIR and SDR instructions combine HIR, HDR, TIR, and
TDR information.

Now let's consider four devices, xcku11, xcku9, xcku11 and xcku9, are connected in a chain. A
configuration memory is attached to the second device in the chain (xcku9) and we want to
access it, both the HIR and TIR instructions are used in this case:

Figure 184: Multi-Chain-SVF- Operation- Example-Second Device in Chain

HIR 12 TDI (0fff) SMASK (0fff) ;
TIR 6 TDI (3f) SMASK (3f) ;
HDR 2 TDI (00) SMASK (03) ;
TDR 1 TDI (00) SMASK (01) ;
// config/idcode
SIR 6 TDI (09) ;
SDR 32 TDI (00000000) TDO (0484a093) MASK (0fffffff) ;
// config/jprog
STATE RESET;
STATE IDLE;
SIR 6 TDI (0b) ;
SIR 6 TDI (14) ;
// Modify the below delay for config_init operation (0.100000 sec typical,
0.100000
sec maximum)
RUNTEST 0.100000 SEC;
// config/jprog/poll
RUNTEST 10000 TCK;
SIR 6 TDI (14) TDO (11) MASK (31) ;
// config/slr
SIR 6 TDI (05) ;

Multi Chain SVF Operation with Configuration
Memory Attached to Third Device in Chain
If a configuration memory is attached to the third device in the chain (xcku9).

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=328

Figure 185: Multi-Chain-SVF- Operation- Example-Third Device in Chain

HIR 6 TDI (3f) SMASK (3f) ;
TIR 12 TDI (0fff) SMASK (0fff) ;
HDR 1 TDI (00) SMASK (01) ;
TDR 2 TDI (00) SMASK (03) ;
// config/idcode
SIR 6 TDI (09) ;
SDR 32 TDI (00000000) TDO (04a4e093) MASK (0fffffff) ;
// config/jprog
STATE RESET;
STATE IDLE;
SIR 6 TDI (0b) ;
SIR 6 TDI (14) ;
// Modify the below delay for config_init operation (0.100000 sec typical,
0.100000
sec maximum)
RUNTEST 0.100000 SEC;
// config/jprog/poll
RUNTEST 10000 TCK;
SIR 6 TDI (14) TDO (11) MASK (31) ;
// config/slr
SIR 6 TDI (05) ;

Appendix C: Low Level SVF JTAG Commands

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=329

Appendix D

JTAG Cables and Devices Supported
by hw_server

The list of compatible JTAG download cables and devices that are supported by hw_server are:

• Xilinx® SmartLynq Data Cable (HW-SMARTLYNQ-G/DLC20)

• Xilinx® Platform Cable USB II (DLC10)

• Xilinx® Platform Cable USB (DLC9G, DLC9LP, DLC9)

• Digilent JTAG-HS1

• Digilent JTAG-HS2

• Digilent JTAG-HS3

• Digilent JTAG-SMT1

• Digilent JTAG-SMT2

Appendix D: JTAG Cables and Devices Supported by hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=330

Appendix E

Configuration Memory Support
This section covers the various non-volatile device memories that are supported by Vivado®

software. Use this section as a guide to select the appropriate configuration memory device for
your application by Xilinx® family, interface, manufacturer, density, and data width.

Artix-7 Configuration Memory Devices
The Flash devices supported for configuration of Artix®-7 devices that can be erased, blank
checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 41: Supported Flash Memory Devices for Artix-7 Memory Devices

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=331

Table 41: Supported Flash Memory Devices for Artix-7 Memory Devices (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w640gh 64 x16, x8

BPI Micron m29w m29w640gl 64 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Micron p33 28f640p33b 64 x16

BPI Micron p33 28f640p33t 64 x16

BPI Micron p33 28f128p33b 128 x16

BPI Micron p33 28f128p33t 128 x16

BPI Micron p33 28f256p33b 256 x16

BPI Micron p33 28f256p33t 256 x16

BPI Micron p33 28f512p33b 512 x16

BPI Micron p33 28f512p33e 512 x16

BPI Micron p33 28f512p33t 512 x16

BPI Micron p33 28f00ap33b 1,024 x16

BPI Micron p33 28f00ap33e 1,024 x16

BPI Micron p33 28f00ap33t 1,024 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=332

Table 41: Supported Flash Memory Devices for Artix-7 Memory Devices (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxp s70gl02gp 2,048 x16

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp080d 8 x1, x2, x4

SPI ISSI is25lp is25lp016d 16 x1, x2, x4

SPI ISSI is25lp is25lp032d 32 x1, x2, x4

SPI ISSI is25lp is25lp064a 64 x1, x2, x4

SPI ISSI is25lp is25lp128f 128 x1, x2, x4

SPI ISSI is25lp is25lp256d 256 x1, x2, x4

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4

SPI ISSI is25wp is25wp016d 16 x1, x2, x4

SPI ISSI is25wp is25wp032d 32 x1, x2, x4

SPI ISSI is25wp is25wp064a 64 x1, x2, x4

SPI ISSI is25wp is25wp128f 128 x1, x2, x4

SPI ISSI is25wp is25wp256d 256 x1, x2, x4

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql128 [n25q128-3.3v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25ql mt25ql256 [n25q256-3.3v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25ql mt25ql512 512 x1, x2, x4

SPI Micron mt25ql mt25ql01g 1,024 x1, x2, x4

SPI Micron mt25ql mt25ql02g 2,048 x1, x2, x4

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25qu mt25qu512 512 x1, x2, x4

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=333

Table 41: Supported Flash Memory Devices for Artix-7 Memory Devices (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Micron n25q n25q32-3.3v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Micron n25q n25q64-3.3v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4] 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4

SPI Macronix mx25l mx25v8035f 8 x1, x2, x4

SPI Macronix mx25l mx25v1635f 16 x1, x2, x4

SPI Macronix mx25l mx25l3233f 32 x1, x2, x4

SPI Macronix mx25l mx25l6433f 64 x1, x2, x4

SPI Macronix mx25l mx25l12845g [mx25l12835f-spi-x1_x2_x4] 128 x1, x2, x4

SPI Macronix mx25l mx25l25645g [mx25l25635f-spi-x1_x2_x4] 256 x1, x2, x4

SPI Macronix mx25l mx25l51245g [mx66l51235f-spi-x1_x2_x4] 512 x1, x2, x4

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4]

256 x1, x2, x4

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4]

512 x1, x2, x4

SPI Macronix mx66l mx66l1g45g 1,024 x1, x2, x4

SPI Macronix mx66l mx66l2g45g 2,048 x1, x2, x4

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=334

Kintex-7 Configuration Memory Devices
The Flash devices supported for configuration of Kintex®-7 devices that can be erased, blank
checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 42: Supported Flash Memory Devices for Kintex-7 Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w640gh 64 x16, x8

BPI Micron m29w m29w640gl 64 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=335

Table 42: Supported Flash Memory Devices for Kintex-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Micron p33 28f640p33b 64 x16

BPI Micron p33 28f640p33t 64 x16

BPI Micron p33 28f128p33b 128 x16

BPI Micron p33 28f128p33t 128 x16

BPI Micron p33 28f256p33b 256 x16

BPI Micron p33 28f256p33t 256 x16

BPI Micron p33 28f512p33b 512 x16

BPI Micron p33 28f512p33e 512 x16

BPI Micron p33 28f512p33t 512 x16

BPI Micron p33 28f00ap33b 1,024 x16

BPI Micron p33 28f00ap33e 1,024 x16

BPI Micron p33 28f00ap33t 1,024 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxp s70gl02gp 2,048 x16

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=336

Table 42: Supported Flash Memory Devices for Kintex-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp080d 8 x1, x2, x4

SPI ISSI is25lp is25lp016d 16 x1, x2, x4

SPI ISSI is25lp is25lp032d 32 x1, x2, x4

SPI ISSI is25lp is25lp064a 64 x1, x2, x4

SPI ISSI is25lp is25lp128f 128 x1, x2, x4

SPI ISSI is25lp is25lp256d 256 x1, x2, x4

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4

SPI ISSI is25wp is25wp016d 16 x1, x2, x4

SPI ISSI is25wp is25wp032d 32 x1, x2, x4

SPI ISSI is25wp is25wp064a 64 x1, x2, x4

SPI ISSI is25wp is25wp128f 128 x1, x2, x4

SPI ISSI is25wp is25wp256d 256 x1, x2, x4

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql128 [n25q128-3.3v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25ql mt25ql256 [n25q256-3.3v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25ql mt25ql512 512 x1, x2, x4

SPI Micron mt25ql mt25ql01g 1,024 x1, x2, x4

SPI Micron mt25ql mt25ql02g 2,048 x1, x2, x4

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25qu mt25qu512 512 x1, x2, x4

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q32-3.3v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Micron n25q n25q64-3.3v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4] 128 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=337

Table 42: Supported Flash Memory Devices for Kintex-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4

SPI Macronix mx25l mx25v8035f 8 x1, x2, x4

SPI Macronix mx25l mx25v1635f 16 x1, x2, x4

SPI Macronix mx25l mx25l3233f 32 x1, x2, x4

SPI Macronix mx25l mx25l6433f 64 x1, x2, x4

SPI Macronix mx25l mx25l12845g [mx25l12835f-spi-x1_x2_x4] 128 x1, x2, x4

SPI Macronix mx25l mx25l25645g [mx25l25635f-spi-x1_x2_x4] 256 x1, x2, x4

SPI Macronix mx25l mx25l51245g [mx66l51235f-spi-x1_x2_x4] 512 x1, x2, x4

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4]

256 x1, x2, x4

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4]

512 x1, x2, x4

SPI Macronix mx66l mx66l1g45g 1,024 x1, x2, x4

SPI Macronix mx66l mx66l2g45g 2,048 x1, x2, x4

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4

Spartan-7 Configuration Memory Devices
The Flash devices supported for configuration of Spartan®-7 devices that can be erased, blank
checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=338

Note: Serial peripheral interface (SPI) flash is the supported configuration memory storage for Spartan-7
devices. Byte-wide Peripheral Interface (BPI) flash is not supported for Spartan-7 devices.

Table 43: Supported Flash Memory Devices for Spartan-7 Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI ISSI is25lp is25lp080d 8 x1, x2, x4

SPI ISSI is25lp is25lp016d 16 x1, x2, x4

SPI ISSI is25lp is25lp032d 32 x1, x2, x4

SPI ISSI is25lp is25lp064a 64 x1, x2, x4

SPI ISSI is25lp is25lp128f 128 x1, x2, x4

SPI ISSI is25lp is25lp256d 256 x1, x2, x4

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4

SPI ISSI is25wp is25wp016d 16 x1, x2, x4

SPI ISSI is25wp is25wp032d 32 x1, x2, x4

SPI ISSI is25wp is25wp064a 64 x1, x2, x4

SPI ISSI is25wp is25wp128f 128 x1, x2, x4

SPI ISSI is25wp is25wp256d 256 x1, x2, x4

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql128 [n25q128-3.3v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25ql mt25ql256 [n25q256-3.3v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25ql mt25ql512 512 x1, x2, x4

SPI Micron mt25ql mt25ql01g 1,024 x1, x2, x4

SPI Micron mt25ql mt25ql02g 2,048 x1, x2, x4

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25qu mt25qu512 512 x1, x2, x4

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q32-3.3v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Micron n25q n25q64-3.3v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=339

Table 43: Supported Flash Memory Devices for Spartan-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4] 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4

SPI Macronix mx25l mx25v8035f 8 x1, x2, x4

SPI Macronix mx25l mx25v1635f 16 x1, x2, x4

SPI Macronix mx25l mx25l3233f 32 x1, x2, x4

SPI Macronix mx25l mx25l6433f 64 x1, x2, x4

SPI Macronix mx25l mx25l12845g [mx25l12835f-spi-x1_x2_x4] 128 x1, x2, x4

SPI Macronix mx25l mx25l25645g [mx25l25635f-spi-x1_x2_x4] 256 x1, x2, x4

SPI Macronix mx25l mx25l51245g [mx66l51235f-spi-x1_x2_x4] 512 x1, x2, x4

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4]

256 x1, x2, x4

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4]

512 x1, x2, x4

SPI Macronix mx66l mx66l1g45g 1,024 x1, x2, x4

SPI Macronix mx66l mx66l2g45g 2,048 x1, x2, x4

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4

Virtex-7 Configuration Memory Devices
The Flash devices supported for configuration of Virtex®-7 devices that can be erased, blank
checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=340

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 44: Supported Flash Memory Devices for Virtex-7 Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=341

Table 44: Supported Flash Memory Devices for Virtex-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron p30 28f00bp30e 2,048 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp080d 8 x1, x2, x4

SPI ISSI is25lp is25lp016d 16 x1, x2, x4

SPI ISSI is25lp is25lp032d 32 x1, x2, x4

SPI ISSI is25lp is25lp064a 64 x1, x2, x4

SPI ISSI is25lp is25lp128f 128 x1, x2, x4

SPI ISSI is25lp is25lp256d 256 x1, x2, x4

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4

SPI ISSI is25wp is25wp016d 16 x1, x2, x4

SPI ISSI is25wp is25wp032d 32 x1, x2, x4

SPI ISSI is25wp is25wp064a 64 x1, x2, x4

SPI ISSI is25wp is25wp128f 128 x1, x2, x4

SPI ISSI is25wp is25wp256d 256 x1, x2, x4

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25qu mt25qu512 512 x1, x2, x4

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4] 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=342

Table 44: Supported Flash Memory Devices for Virtex-7 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4]

256 x1, x2, x4

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4]

512 x1, x2, x4

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4

Kintex UltraScale Configuration Memory
Devices

The Flash devices supported for configuration of Kintex UltraScale devices that can be erased,
blank checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 45: Supported Flash Memory Devices for Kintex UltraScale Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=343

Table 45: Supported Flash Memory Devices for Kintex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w640gh 64 x16, x8

BPI Micron m29w m29w640gl 64 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Micron p33 28f640p33b 64 x16

BPI Micron p33 28f640p33t 64 x16

BPI Micron p33 28f128p33b 128 x16

BPI Micron p33 28f128p33t 128 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=344

Table 45: Supported Flash Memory Devices for Kintex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron p33 28f256p33b 256 x16

BPI Micron p33 28f256p33t 256 x16

BPI Micron p33 28f512p33b 512 x16

BPI Micron p33 28f512p33e 512 x16

BPI Micron p33 28f512p33t 512 x16

BPI Micron p33 28f00ap33b 1,024 x16

BPI Micron p33 28f00ap33e 1,024 x16

BPI Micron p33 28f00ap33t 1,024 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxp s70gl02gp 2,048 x16

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp080d 8 x1, x2, x4, x8

SPI ISSI is25lp is25lp016d 16 x1, x2, x4, x8

SPI ISSI is25lp is25lp032d 32 x1, x2, x4, x8

SPI ISSI is25lp is25lp064a 64 x1, x2, x4, x8

SPI ISSI is25lp is25lp128f 128 x1, x2, x4, x8

SPI ISSI is25lp is25lp256d 256 x1, x2, x4, x8

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4, x8

SPI ISSI is25wp is25wp016d 16 x1, x2, x4, x8

SPI ISSI is25wp is25wp032d 32 x1, x2, x4, x8

SPI ISSI is25wp is25wp064a 64 x1, x2, x4, x8

SPI ISSI is25wp is25wp128f 128 x1, x2, x4, x8

SPI ISSI is25wp is25wp256d 256 x1, x2, x4, x8

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql128 [n25q128-3.3v-spi-x1_x2_x4,
n25q128-3.3v-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=345

Table 45: Supported Flash Memory Devices for Kintex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Micron mt25ql mt25ql256 [n25q256-3.3v-spi-x1_x2_x4,

n25q256-3.3v-spi-x1_x2_x4_x8]
256 x1, x2, x4, x8

SPI Micron mt25ql mt25ql512 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql01g 1,024 x1, x2, x4, x8

SPI Micron mt25ql mt25ql02g 2,048 x1, x2, x4, x8

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4,
n25q128-1.8v-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4,
n25q256-1.8v-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Micron mt25qu mt25qu512 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4, x8

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4, x8

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q32-3.3v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Micron n25q n25q64-3.3v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4, x8

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4, x8

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4,
s25fl127s-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4, x8

SPI Macronix mx25l mx25v8035f 8 x1, x2, x4, x8

SPI Macronix mx25l mx25v1635f 16 x1, x2, x4, x8

SPI Macronix mx25l mx25l3233f 32 x1, x2, x4, x8

SPI Macronix mx25l mx25l6433f 64 x1, x2, x4, x8

SPI Macronix mx25l mx25l12845g [mx25l12835f-spi-x1_x2_x4,
mx25l12835f-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Macronix mx25l mx25l25645g [mx25l25635f-spi-x1_x2_x4,
mx25u25635f-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Macronix mx25l mx25l51245g [mx66l51235f-spi-x1_x2_x4,
mx66l51235f-spi-x1_x2_x4_x8]

512 x1, x2, x4, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=346

Table 45: Supported Flash Memory Devices for Kintex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Macronix mx25u mx25u8033e 8 x1, x2, x4, x8

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4, x8

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4, x8

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4, x8

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4, x8

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4, mx25u25635f-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4, mx66u51235f-spi-x1_x2_x4_x8]

512 x1, x2, x4, x8

SPI Macronix mx66l mx66l1g45g 1,024 x1, x2, x4, x8

SPI Macronix mx66l mx66l2g45g 2,048 x1, x2, x4, x8

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4, x8

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4, x8

Kintex UltraScale+ Configuration Memory
Devices

The Flash devices supported for configuration of Kintex UltraScale+ devices that can be erased,
blank checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 46: Supported Flash Memory Devices for Kintex UltraScale+ Device
Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=347

Table 46: Supported Flash Memory Devices for Kintex UltraScale+ Device
Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=348

Table 46: Supported Flash Memory Devices for Kintex UltraScale+ Device
Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4, x8

SPI ISSI is25wp is25wp016d 16 x1, x2, x4, x8

SPI ISSI is25wp is25wp032d 32 x1, x2, x4, x8

SPI ISSI is25wp is25wp064a 64 x1, x2, x4, x8

SPI ISSI is25wp is25wp128f 128 x1, x2, x4, x8

SPI ISSI is25wp is25wp256d 256 x1, x2, x4, x8

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4,
n25q128-1.8v-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4,
n25q256-1.8v-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Micron mt25qu mt25qu512 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4, x8

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4, x8

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4, x8

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4, x8

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4,
s25fl127s-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=349

Table 46: Supported Flash Memory Devices for Kintex UltraScale+ Device
Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4, x8

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4, x8

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4, x8

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4, x8

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4, x8

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4, x8

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4, mx25u25635f-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4, mx66u51235f-spi-x1_x2_x4_x8]

512 x1, x2, x4, x8

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4, x8

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4, x8

Virtex UltraScale Configuration Memory
Devices

The Flash devices supported for configuration of Virtex® UltraScale™ devices that can be erased,
blank checked, programmed, and verified by Vivado® software are shown in the following table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 47: Supported Flash Memory Devices for Virtex UltraScale Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=350

Table 47: Supported Flash Memory Devices for Virtex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=351

Table 47: Supported Flash Memory Devices for Virtex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp080d 8 x1, x2, x4, x8

SPI ISSI is25lp is25lp016d 16 x1, x2, x4, x8

SPI ISSI is25lp is25lp032d 32 x1, x2, x4, x8

SPI ISSI is25lp is25lp064a 64 x1, x2, x4, x8

SPI ISSI is25lp is25lp128f 128 x1, x2, x4, x8

SPI ISSI is25lp is25lp256d 256 x1, x2, x4, x8

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4, x8

SPI ISSI is25wp is25wp016d 16 x1, x2, x4, x8

SPI ISSI is25wp is25wp032d 32 x1, x2, x4, x8

SPI ISSI is25wp is25wp064a 64 x1, x2, x4, x8

SPI ISSI is25wp is25wp128f 128 x1, x2, x4, x8

SPI ISSI is25wp is25wp256d 256 x1, x2, x4, x8

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25ql mt25ql128 [n25q128-3.3v-spi-x1_x2_x4] 128 x1, x2, x4

SPI Micron mt25ql mt25ql256 [n25q256-3.3v-spi-x1_x2_x4] 256 x1, x2, x4

SPI Micron mt25ql mt25ql512 512 x1, x2, x4

SPI Micron mt25ql mt25ql01g 1,024 x1, x2, x4

SPI Micron mt25ql mt25ql02g 2,048 x1, x2, x4

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4,
n25q128-1.8v-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4,
n25q256-1.8v-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Micron mt25qu mt25qu512 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4, x8

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4, x8

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q32-3.3v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Micron n25q n25q64-3.3v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=352

Table 47: Supported Flash Memory Devices for Virtex UltraScale Device Configuration
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4, x8

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4, x8

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4,
s25fl127s-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4, x8

SPI Macronix mx25l mx25v8035f 8 x1, x2, x4

SPI Macronix mx25l mx25v1635f 16 x1, x2, x4

SPI Macronix mx25l mx25l3233f 32 x1, x2, x4

SPI Macronix mx25l mx25l6433f 64 x1, x2, x4

SPI Macronix mx25l mx25l12845g [mx25l12835f-spi-x1_x2_x4] 128 x1, x2, x4

SPI Macronix mx25l mx25l25645g [mx25l25635f-spi-x1_x2_x4] 256 x1, x2, x4

SPI Macronix mx25l mx25l51245g [mx66l51235f-spi-x1_x2_x4] 512 x1, x2, x4

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4, x8

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4, x8

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4, x8

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4, x8

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4, x8

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4, mx25u25635f-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4, mx66u51235f-spi-x1_x2_x4_x8]

512 x1, x2, x4, x8

SPI Macronix mx66l mx66l1g45g 1,024 x1, x2, x4

SPI Macronix mx66l mx66l2g45g 2,048 x1, x2, x4

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4, x8

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=353

Virtex UltraScale+ Configuration Memory
Devices

The Flash devices supported for configuration of Virtex® UltraScale+™ devices that can be
erased, blank checked, programmed, and verified by Vivado® software are shown in the following
table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 48: Supported Flash Memory Devices for Virtex UltraScale+ Device
Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron g18 28f128g18f 128 x16

BPI Micron g18 mt28gu256aax1e [28f256g18f-bpi-x16] 256 x16

BPI Micron g18 mt28gu512aax1e [28f512g18f-bpi-x16] 512 x16

BPI Micron g18 mt28gu01gaax1e [28f00ag18f-bpi-x16] 1,024 x16

BPI Micron m29ew 28f064m29ewb 64 x16, x8

BPI Micron m29ew 28f064m29ewh 64 x16, x8

BPI Micron m29ew 28f064m29ewl 64 x16, x8

BPI Micron m29ew 28f064m29ewt 64 x16, x8

BPI Micron m29ew 28f128m29ew 128 x16, x8

BPI Micron m29ew 28f256m29ew 256 x16, x8

BPI Micron m29ew 28f512m29ew 512 x16, x8

BPI Micron m29ew 28f00am29ew 1,024 x16, x8

BPI Micron m29ew 28f00bm29ew 2,048 x16, x8

BPI Micron m29w m29w128gh 128 x16, x8

BPI Micron m29w m29w128gl 128 x16, x8

BPI Micron m29w m29w256gh 256 x16, x8

BPI Micron m29w m29w256gl 256 x16, x8

BPI Micron mt28ew mt28ew128a 128 x16, x8

BPI Micron mt28ew mt28ew256a 256 x16, x8

BPI Micron mt28ew mt28ew512a 512 x16, x8

BPI Micron mt28ew mt28ew01ga 1,024 x16, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=354

Table 48: Supported Flash Memory Devices for Virtex UltraScale+ Device
Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
BPI Micron mt28fw mt28fw02gb 2,048 x16

BPI Micron p30 28f640p30b 64 x16

BPI Micron p30 28f640p30t 64 x16

BPI Micron p30 28f128p30b 128 x16

BPI Micron p30 28f128p30t 128 x16

BPI Micron p30 28f256p30b 256 x16

BPI Micron p30 28f256p30t 256 x16

BPI Micron p30 28f512p30b 512 x16

BPI Micron p30 28f512p30e 512 x16

BPI Micron p30 28f512p30t 512 x16

BPI Micron p30 28f00ap30b 1,024 x16

BPI Micron p30 28f00ap30e 1,024 x16

BPI Micron p30 28f00ap30t 1,024 x16

BPI Micron p30 28f00bp30e 2,048 x16

BPI Spansion s29glxxxp s29gl128p 128 x16, x8

BPI Spansion s29glxxxp s29gl256p 256 x16, x8

BPI Spansion s29glxxxp s29gl512p 512 x16, x8

BPI Spansion s29glxxxp s29gl01gp 1,024 x16, x8

BPI Spansion s29glxxxs s29gl128s 128 x16

BPI Spansion s29glxxxs s29gl256s 256 x16

BPI Spansion s29glxxxs s29gl512s 512 x16

BPI Spansion s29glxxxs s29gl01gs 1,024 x16

BPI Spansion s29glxxxs s70gl02gs 2,048 x16

BPI Spansion s29glxxxt s29gl512t 512 x16, x8

BPI Spansion s29glxxxt s29gl01gt 1,024 x16, x8

BPI Spansion s29glxxxt s70gl02gt 2,048 x16, x8

BPI Macronix mx29gl mx29gl128f 128 x16, x8

SPI ISSI is25lp is25lp512m 512 x1, x2, x4, x8

SPI ISSI is25wp is25wp080d 8 x1, x2, x4, x8

SPI ISSI is25wp is25wp016d 16 x1, x2, x4, x8

SPI ISSI is25wp is25wp032d 32 x1, x2, x4, x8

SPI ISSI is25wp is25wp064a 64 x1, x2, x4, x8

SPI ISSI is25wp is25wp128f 128 x1, x2, x4, x8

SPI ISSI is25wp is25wp256d 256 x1, x2, x4, x8

SPI ISSI is25wp is25wp512m 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu128 [n25q128-1.8v-spi-x1_x2_x4,
n25q128-1.8v-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=355

Table 48: Supported Flash Memory Devices for Virtex UltraScale+ Device
Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
SPI Micron mt25qu mt25qu256 [n25q256-1.8v-spi-x1_x2_x4,

n25q256-1.8v-spi-x1_x2_x4_x8]
256 x1, x2, x4, x8

SPI Micron mt25qu mt25qu512 512 x1, x2, x4, x8

SPI Micron mt25qu mt25qu01g 1,024 x1, x2, x4, x8

SPI Micron mt25qu mt25qu02g 2,048 x1, x2, x4, x8

SPI Micron n25q n25q32-1.8v 32 x1, x2, x4

SPI Micron n25q n25q64-1.8v 64 x1, x2, x4

SPI Spansion s25fl1 s25fl116k 16 x1, x2, x4

SPI Spansion s25fl1 s25fl132k 32 x1, x2, x4

SPI Spansion s25fl1 s25fl164k 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl064l 64 x1, x2, x4

SPI Spansion s25flxxxl s25fl128l 128 x1, x2, x4, x8

SPI Spansion s25flxxxl s25fl256l 256 x1, x2, x4, x8

SPI Spansion s25flxxxp s25fl032p 32 x1, x2, x4

SPI Spansion s25flxxxp s25fl064p 64 x1, x2, x4

SPI Spansion s25flxxxs s25fl128sxxxxxx0 [s25fl127s-spi-x1_x2_x4,
s25fl127s-spi-x1_x2_x4_x8]

128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl128sxxxxxx1 128 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx0 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl256sxxxxxx1 256 x1, x2, x4, x8

SPI Spansion s25flxxxs s25fl512s 512 x1, x2, x4, x8

SPI Macronix mx25u mx25u8033e 8 x1, x2, x4, x8

SPI Macronix mx25u mx25u1635f 16 x1, x2, x4, x8

SPI Macronix mx25u mx25u3235f 32 x1, x2, x4, x8

SPI Macronix mx25u mx25u6435f 64 x1, x2, x4, x8

SPI Macronix mx25u mx25u12835f 128 x1, x2, x4, x8

SPI Macronix mx25u mx25u25645g [mx25u25635f-spi-
x1_x2_x4, mx25u25635f-spi-x1_x2_x4_x8]

256 x1, x2, x4, x8

SPI Macronix mx25u mx25u51245g [mx66u51235f-spi-
x1_x2_x4, mx66u51235f-spi-x1_x2_x4_x8]

512 x1, x2, x4, x8

SPI Macronix mx66u mx66u1g45g 1,024 x1, x2, x4, x8

SPI Macronix mx66u mx66u2g45g 2,048 x1, x2, x4, x8

Zynq-7000 Configuration Memory Devices
The Flash devices supported for configuration of Zynq-7000 devices that can be erased, blank
checked, programmed, and verified by Vivado® software are shown in following table.

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=356

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Note: The U-Boot tags used to build the Configuration Memory Device Programmer are as follows:

Interface UBoot Tags
qspi xilinx-v2015.2.01

nor xilinx-14.3-build1

nand xilinx-v2015.2.01

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
NAND Micron mt29f mt29f2g08ab 2,048 x8

NAND Micron mt29f mt29f2g16ab 2,048 x16

NAND Spansion s34ml s34ml01g1 1,024 x16, x8

NAND Spansion s34ml s34ml02g1 2,048 x16, x8

NOR Micron m29ew 28f032m29ewt 32 x8

NOR Micron m29ew 28f064m29ewt 64 x8

NOR Micron m29ew 28f128m29ewh 128 x8

NOR Micron m29ew 28f256m29ewh 256 x8

NOR Micron m29ew 28f512m29ewh 512 x8

QSPI ISSI is25lp is25lp080d 8 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25lp is25lp016d 16 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=357

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25lp is25lp032d 32 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25lp is25lp064a 64 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25lp is25lp128f 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25lp is25lp256d 256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25lp is25lp512m 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=358

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25wp is25wp080d 8 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25wp is25wp016d 16 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25wp is25wp032d 32 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25wp is25wp064a 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp128f 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=359

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25wp is25wp256d 256 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI ISSI is25wp is25wp512m 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Winbond w25q w25q128fv
[w25q128jv-qspi-x1-dual_stacked,
w25q128jv-qspi-x1-single,
w25q128jv-qspi-x2-dual_stacked,
w25q128jv-qspi-x2-single,
w25q128jv-qspi-x4-dual_stacked,
w25q128jv-qspi-x4-single,
w25q128jv-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Winbond w25q w25q128fw 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25ql mt25ql128
[n25q128-3.3v-qspi-x1-dual_stacked,
n25q128-3.3v-qspi-x1-single,
n25q128-3.3v-qspi-x2-dual_stacked,
n25q128-3.3v-qspi-x2-single,
n25q128-3.3v-qspi-x4-dual_stacked,
n25q128-3.3v-qspi-x4-single,
n25q128-3.3v-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=360

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25ql mt25ql256

[n25q256-3.3v-qspi-x1-dual_stacked,
n25q256-3.3v-qspi-x1-single,
n25q256-3.3v-qspi-x2-dual_stacked,
n25q256-3.3v-qspi-x2-single,
n25q256-3.3v-qspi-x4-dual_stacked,
n25q256-3.3v-qspi-x4-single,
n25q256-3.3v-qspi-x8-dual_parallel]

256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25ql mt25ql512
[n25q512-3.3v-qspi-x1-dual_stacked,
n25q512-3.3v-qspi-x1-single,
n25q512-3.3v-qspi-x2-dual_stacked,
n25q512-3.3v-qspi-x2-single,
n25q512-3.3v-qspi-x4-dual_stacked,
n25q512-3.3v-qspi-x4-single,
n25q512-3.3v-qspi-x8-dual_parallel]

512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25ql mt25ql01g
[n25q00a-3.3v-qspi-x1-dual_stacked,
n25q00a-3.3v-qspi-x1-single,
n25q00a-3.3v-qspi-x2-dual_stacked,
n25q00a-3.3v-qspi-x2-single,
n25q00a-3.3v-qspi-x4-dual_stacked,
n25q00a-3.3v-qspi-x4-single,
n25q00a-3.3v-qspi-x8-dual_parallel]

1,024 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25ql mt25ql02g 2,048 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25qu mt25qu128
[n25q128-1.8v-qspi-x1-dual_stacked,
n25q128-1.8v-qspi-x1-single,
n25q128-1.8v-qspi-x2-dual_stacked,
n25q128-1.8v-qspi-x2-single,
n25q128-1.8v-qspi-x4-dual_stacked,
n25q128-1.8v-qspi-x4-single,
n25q128-1.8v-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=361

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25qu mt25qu256

[n25q256-1.8v-qspi-x1-dual_stacked,
n25q256-1.8v-qspi-x1-single,
n25q256-1.8v-qspi-x2-dual_stacked,
n25q256-1.8v-qspi-x2-single,
n25q256-1.8v-qspi-x4-dual_stacked,
n25q256-1.8v-qspi-x4-single,
n25q256-1.8v-qspi-x8-dual_parallel]

256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25qu mt25qu512
[n25q512-1.8v-qspi-x1-dual_stacked,
n25q512-1.8v-qspi-x1-single,
n25q512-1.8v-qspi-x2-dual_stacked,
n25q512-1.8v-qspi-x2-single,
n25q512-1.8v-qspi-x4-dual_stacked,
n25q512-1.8v-qspi-x4-single,
n25q512-1.8v-qspi-x8-dual_parallel]

512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25qu mt25qu01g
[n25q00a-1.8v-qspi-x1-dual_stacked,
n25q00a-1.8v-qspi-x1-single,
n25q00a-1.8v-qspi-x2-dual_stacked,
n25q00a-1.8v-qspi-x2-single,
n25q00a-1.8v-qspi-x4-dual_stacked,
n25q00a-1.8v-qspi-x4-single,
n25q00a-1.8v-qspi-x8-dual_parallel]

1,024 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron mt25qu mt25qu02g 2,048 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Micron n25q n25q64-1.8v 64 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=362

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron n25q n25q64-3.3v 64 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxl s25fl064l 64 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxp s25fl129p 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxs s25fl128s-1.8v
[s25fl127s-1.8v-qspi-x4-dual_stacked,
s25fl127s-1.8v-qspi-x4-single,
s25fl127s-1.8v-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxs s25fl128s-3.3v
[s25fl127s-3.3v-qspi-x4-dual_stacked,
s25fl127s-3.3v-qspi-x4-single,
s25fl127s-3.3v-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=363

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Spansion s25flxxxs s25fl256s-1.8v 256 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxs s25fl256s-3.3v 256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxs s25fl512s-1.8v 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s25flxxxs s25fl512s-3.3v 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Spansion s70flxxxp s70fl01gs_00 1,024 x4-
dual_stacked

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=364

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx25l mx25l12835f

[mx25l12833f-qspi-x1-dual_stacked,
mx25l12833f-qspi-x1-single,
mx25l12833f-qspi-x2-dual_stacked,
mx25l12833f-qspi-x2-single,
mx25l12833f-qspi-x4-dual_stacked,
mx25l12833f-qspi-x4-single,
mx25l12833f-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx25l mx25l12845g 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx25l mx25l25635f
[mx25l25645g-qspi-x1-dual_stacked,
mx25l25645g-qspi-x1-single,
mx25l25645g-qspi-x2-dual_stacked,
mx25l25645g-qspi-x2-single,
mx25l25645g-qspi-x4-dual_stacked,
mx25l25645g-qspi-x4-single,
mx25l25645g-qspi-x8-dual_parallel]

256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx25l mx25l51245g 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx25u mx25u12835f 128 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=365

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx25u mx25u25635f

[mx25u25645g-qspi-x1-dual_stacked,
mx25u25645g-qspi-x1-single,
mx25u25645g-qspi-x2-dual_stacked,
mx25u25645g-qspi-x2-single,
mx25u25645g-qspi-x4-dual_stacked,
mx25u25645g-qspi-x4-single,
mx25u25645g-qspi-x8-dual_parallel]

256 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx25u mx25u51245g 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx66l mx66l51235f 512 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx66l mx66l1g45g 1,024 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

QSPI Macronix mx66l mx66l2g45g 2,048 x1-
dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=366

Table 49: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx66u mx66u2g45g 2,048 x1-

dual_stacked,
x1-single,
x2-
dual_stacked,
x2-single,
x4-
dual_stacked,
x4-single,
x8-dual_parallel

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
NAND Micron mt29f mt29f2g08ab 2,048 x8

NAND Micron mt29f mt29f2g16ab 2,048 x16

NAND Spansion s34ml s34ml01g1 1,024 x16, x8

NAND Spansion s34ml s34ml02g1 2,048 x16, x8

NOR nor 0 NA

NOR Micron m29ew 28f032m29ewt 32 x8

NOR Micron m29ew 28f064m29ewt 64 x8

NOR Micron m29ew 28f128m29ewh 128 x8

NOR Micron m29ew 28f256m29ewh 256 x8

NOR Micron m29ew 28f512m29ewh 512 x8

QSPI ISSI is25lp is25lp080d 8 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp016d 16 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp032d 32 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=367

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25lp is25lp064a 64 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp128f 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp256d 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp512m 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp080d 8 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp016d 16 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp032d 32 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=368

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25wp is25wp064a 64 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp128f 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp256d 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp512m 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Winbond w25q w25q128fv [w25q128jv-qspi-x1-
dual_stacked, w25q128jv-qspi-x1-single,
w25q128jv-qspi-x2-dual_stacked,
w25q128jv-qspi-x2-single, w25q128jv-
qspi-x4-dual_stacked, w25q128jv-qspi-x4-
single, w25q128jv-qspi-x8-dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Winbond w25q w25q128fw 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql128 [n25q128-3.3v-qspi-x1-
dual_stacked, n25q128-3.3v-qspi-x1-
single, n25q128-3.3v-qspi-x2-
dual_stacked, n25q128-3.3v-qspi-x2-
single, n25q128-3.3v-qspi-x4-
dual_stacked, n25q128-3.3v-qspi-x4-
single, n25q128-3.3v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=369

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25ql mt25ql256 [n25q256-3.3v-qspi-x1-

dual_stacked, n25q256-3.3v-qspi-x1-
single, n25q256-3.3v-qspi-x2-
dual_stacked, n25q256-3.3v-qspi-x2-
single, n25q256-3.3v-qspi-x4-
dual_stacked, n25q256-3.3v-qspi-x4-
single, n25q256-3.3v-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql512 [n25q512-3.3v-qspi-x1-
dual_stacked, n25q512-3.3v-qspi-x1-
single, n25q512-3.3v-qspi-x2-
dual_stacked, n25q512-3.3v-qspi-x2-
single, n25q512-3.3v-qspi-x4-
dual_stacked, n25q512-3.3v-qspi-x4-
single, n25q512-3.3v-qspi-x8-
dual_parallel]

512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql01g [n25q00a-3.3v-qspi-x1-
dual_stacked, n25q00a-3.3v-qspi-x1-
single, n25q00a-3.3v-qspi-x2-
dual_stacked, n25q00a-3.3v-qspi-x2-
single, n25q00a-3.3v-qspi-x4-
dual_stacked, n25q00a-3.3v-qspi-x4-
single, n25q00a-3.3v-qspi-x8-
dual_parallel]

1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql02g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu128 [n25q128-1.8v-qspi-x1-
dual_stacked, n25q128-1.8v-qspi-x1-
single, n25q128-1.8v-qspi-x2-
dual_stacked, n25q128-1.8v-qspi-x2-
single, n25q128-1.8v-qspi-x4-
dual_stacked, n25q128-1.8v-qspi-x4-
single, n25q128-1.8v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu256 [n25q256-1.8v-qspi-x1-
dual_stacked, n25q256-1.8v-qspi-x1-
single, n25q256-1.8v-qspi-x2-
dual_stacked, n25q256-1.8v-qspi-x2-
single, n25q256-1.8v-qspi-x4-
dual_stacked, n25q256-1.8v-qspi-x4-
single, n25q256-1.8v-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu512 [n25q512-1.8v-qspi-x1-
dual_stacked, n25q512-1.8v-qspi-x1-
single, n25q512-1.8v-qspi-x2-
dual_stacked, n25q512-1.8v-qspi-x2-
single, n25q512-1.8v-qspi-x4-
dual_stacked, n25q512-1.8v-qspi-x4-
single, n25q512-1.8v-qspi-x8-
dual_parallel]

512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=370

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25qu mt25qu01g [n25q00a-1.8v-qspi-x1-

dual_stacked, n25q00a-1.8v-qspi-x1-
single, n25q00a-1.8v-qspi-x2-
dual_stacked, n25q00a-1.8v-qspi-x2-
single, n25q00a-1.8v-qspi-x4-
dual_stacked, n25q00a-1.8v-qspi-x4-
single, n25q00a-1.8v-qspi-x8-
dual_parallel]

1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu02g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron n25q n25q64-1.8v 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron n25q n25q64-3.3v 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxl s25fl064l 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxp s25fl129p 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl128s-1.8v [s25fl127s-1.8v-qspi-x4-
dual_stacked, s25fl127s-1.8v-qspi-x4-
single, s25fl127s-1.8v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=371

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Spansion s25flxxxs s25fl128s-3.3v [s25fl127s-3.3v-qspi-x4-

dual_stacked, s25fl127s-3.3v-qspi-x4-
single, s25fl127s-3.3v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl256s-1.8v 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl256s-3.3v 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl512s-1.8v 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl512s-3.3v 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s70flxxxp s70fl01gs_00 1,024 x4-
dual_stacked

QSPI Macronix mx25l mx25l12835f [mx25l12833f-qspi-x1-
dual_stacked, mx25l12833f-qspi-x1-single,
mx25l12833f-qspi-x2-dual_stacked,
mx25l12833f-qspi-x2-single, mx25l12833f-
qspi-x4-dual_stacked, mx25l12833f-qspi-
x4-single, mx25l12833f-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25l mx25l12845g 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=372

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx25l mx25l25635f [mx25l25645g-qspi-x1-

dual_stacked, mx25l25645g-qspi-x1-
single, mx25l25645g-qspi-x2-
dual_stacked, mx25l25645g-qspi-x2-
single, mx25l25645g-qspi-x4-
dual_stacked, mx25l25645g-qspi-x4-
single, mx25l25645g-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25l mx25l51245g 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u12835f [mx25u12832f-qspi-x1-
dual_stacked, mx25u12832f-qspi-x1-
single, mx25u12832f-qspi-x2-
dual_stacked, mx25u12832f-qspi-x2-
single, mx25u12832f-qspi-x4-
dual_stacked, mx25u12832f-qspi-x4-
single, mx25u12832f-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u25635f [mx25u25645g-qspi-x1-
dual_stacked, mx25u25645g-qspi-x1-
single, mx25u25645g-qspi-x2-
dual_stacked, mx25u25645g-qspi-x2-
single, mx25u25645g-qspi-x4-
dual_stacked, mx25u25645g-qspi-x4-
single, mx25u25645g-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u51245g 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66l mx66l51235f 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66l mx66l1g45g 1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=373

Table 50: Supported Flash Memory Devices for Zynq-7000 Device Configuration (cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx66l mx66l2g45g 2,048 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66u mx66u1g45g 1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66u mx66u2g45g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Zynq UltraScale+ MPSoC Configuration
Memory Devices

The Flash devices supported for configuration of Zynq UltraScale+ MPSoC devices that can be
erased, blank checked, programmed, and verified by Vivado® software are shown in the following
table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=374

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
EMMC jedec4.51-4gb 32,768

EMMC jedec4.51-8gb 65,536

EMMC jedec4.51-16gb 131,072

EMMC jedec4.51-32gb 262,144

EMMC jedec4.51 524,288

EMMC jedec4.51-64gb 524,288

EMMC mtfc mtfc8gakajcn-4m 65,536

NAND mt29f mt29f2g08ab 2,048 x8-dual, x8-single

NAND mt29f mt29f8g08ab 8,192 x8-dual, x8-single

NAND mt29f mt29f16g08ab 16,384 x8-dual, x8-single

NAND mt29f mt29f32g08ae 32,768 x8-dual, x8-single

NAND mt29f mt29f64g08ae 65,536 x8-dual, x8-single

NAND s34ml s34ml01g1 1,024 x8-dual, x8-single

NAND s34ml s34ml02g1 2,048 x8-dual, x8-single

QSPI is25lp is25lp080d 8 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25lp is25lp016d 16 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25lp is25lp032d 32 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25lp is25lp128f 128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25lp is25lp256d 256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=375

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration (cont'd)

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI is25lp is25lp512m 512 x1-dual_stacked,

x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp080d 8 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp016d 16 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp032d 32 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp064a 64 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp128f 128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp256d 256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI is25wp is25wp512m 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=376

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration (cont'd)

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI mt25ql mt25ql128 [n25q128-3.3v-qspi-x1-dual_stacked,

n25q128-3.3v-qspi-x1-single, n25q128-3.3v-qspi-
x2-dual_stacked, n25q128-3.3v-qspi-x2-single,
n25q128-3.3v-qspi-x4-dual_stacked, n25q128-3.3v-
qspi-x4-single, n25q128-3.3v-qspi-x8-
dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25ql mt25ql256 [n25q256-3.3v-qspi-x1-dual_stacked,
n25q256-3.3v-qspi-x1-single, n25q256-3.3v-qspi-
x2-dual_stacked, n25q256-3.3v-qspi-x2-single,
n25q256-3.3v-qspi-x4-dual_stacked, n25q256-3.3v-
qspi-x4-single, n25q256-3.3v-qspi-x8-
dual_parallel]

256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25ql mt25ql512 [n25q512-3.3v-qspi-x1-dual_stacked,
n25q512-3.3v-qspi-x1-single, n25q512-3.3v-qspi-
x2-dual_stacked, n25q512-3.3v-qspi-x2-single,
n25q512-3.3v-qspi-x4-dual_stacked, n25q512-3.3v-
qspi-x4-single, n25q512-3.3v-qspi-x8-
dual_parallel]

512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25ql mt25ql01g [n25q00a-3.3v-qspi-x1-dual_stacked,
n25q00a-3.3v-qspi-x1-single, n25q00a-3.3v-qspi-
x2-dual_stacked, n25q00a-3.3v-qspi-x2-single,
n25q00a-3.3v-qspi-x4-dual_stacked, n25q00a-3.3v-
qspi-x4-single, n25q00a-3.3v-qspi-x8-
dual_parallel]

1,024 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25ql mt25ql02g 2,048 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25qu mt25qu128 [n25q128-1.8v-qspi-x1-dual_stacked,
n25q128-1.8v-qspi-x1-single, n25q128-1.8v-qspi-
x2-dual_stacked, n25q128-1.8v-qspi-x2-single,
n25q128-1.8v-qspi-x4-dual_stacked, n25q128-1.8v-
qspi-x4-single, n25q128-1.8v-qspi-x8-
dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25qu mt25qu256 [n25q256-1.8v-qspi-x1-dual_stacked,
n25q256-1.8v-qspi-x1-single, n25q256-1.8v-qspi-
x2-dual_stacked, n25q256-1.8v-qspi-x2-single,
n25q256-1.8v-qspi-x4-dual_stacked, n25q256-1.8v-
qspi-x4-single, n25q256-1.8v-qspi-x8-
dual_parallel]

256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25qu mt25qu512 [n25q512-1.8v-qspi-x1-dual_stacked,
n25q512-1.8v-qspi-x1-single, n25q512-1.8v-qspi-
x2-dual_stacked, n25q512-1.8v-qspi-x2-single,
n25q512-1.8v-qspi-x4-dual_stacked, n25q512-1.8v-
qspi-x4-single, n25q512-1.8v-qspi-x8-
dual_parallel]

512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=377

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration (cont'd)

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI mt25qu mt25qu01g [n25q00a-1.8v-qspi-x1-dual_stacked,

n25q00a-1.8v-qspi-x1-single, n25q00a-1.8v-qspi-
x2-dual_stacked, n25q00a-1.8v-qspi-x2-single,
n25q00a-1.8v-qspi-x4-dual_stacked, n25q00a-1.8v-
qspi-x4-single, n25q00a-1.8v-qspi-x8-
dual_parallel]

1,024 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mt25qu mt25qu02g 2,048 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI n25q n25q64-1.8v 64 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI n25q n25q64-3.3v 64 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxl s25fl256l 256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxp s25fl129p 128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxs s25fl128s-1.8v [s25fl127s-1.8v-qspi-x4-
dual_stacked, s25fl127s-1.8v-qspi-x4-single,
s25fl127s-1.8v-qspi-x8-dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxs s25fl128s-3.3v [s25fl127s-3.3v-qspi-x4-
dual_stacked, s25fl127s-3.3v-qspi-x4-single,
s25fl127s-3.3v-qspi-x8-dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=378

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration (cont'd)

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI s25flxxxs s25fl256s-1.8v 256 x1-dual_stacked,

x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxs s25fl256s-3.3v 256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxs s25fl512s-1.8v 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s25flxxxs s25fl512s-3.3v 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI s70flxxxp s70fl01gs_00 1,024 x4-dual_stacked

QSPI mx25l mx25l12835f [mx25l12833f-qspi-x1-dual_stacked,
mx25l12833f-qspi-x1-single, mx25l12833f-qspi-x2-
dual_stacked, mx25l12833f-qspi-x2-single,
mx25l12833f-qspi-x4-dual_stacked, mx25l12833f-
qspi-x4-single, mx25l12833f-qspi-x8-dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx25l mx25l25635f [mx25l25645g-qspi-x1-dual_stacked,
mx25l25645g-qspi-x1-single, mx25l25645g-qspi-
x2-dual_stacked, mx25l25645g-qspi-x2-single,
mx25l25645g-qspi-x4-dual_stacked, mx25l25645g-
qspi-x4-single, mx25l25645g-qspi-x8-
dual_parallel]

256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx25l mx25l51245g 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=379

Table 51: Supported Flash Memory Devices for Zynq UltraScale+ MPSoC Device
Configuration (cont'd)

Interface Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI mx25u mx25u12835f [mx25u12832f-qspi-x1-

dual_stacked, mx25u12832f-qspi-x1-single,
mx25u12832f-qspi-x2-dual_stacked,
mx25u12832f-qspi-x2-single, mx25u12832f-qspi-
x4-dual_stacked, mx25u12832f-qspi-x4-single,
mx25u12832f-qspi-x8-dual_parallel]

128 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx25u mx25u25635f [mx25u25645g-qspi-x1-
dual_stacked, mx25u25645g-qspi-x1-single,
mx25u25645g-qspi-x2-dual_stacked,
mx25u25645g-qspi-x2-single, mx25u25645g-qspi-
x4-dual_stacked, mx25u25645g-qspi-x4-single,
mx25u25645g-qspi-x8-dual_parallel]

256 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx25u mx25u51245g 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx66l mx66l1g45g 1,024 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx66l mx66l2g45g 2,048 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx66u mx66u51235f 512 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx66u mx66u1g45g 1,024 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

QSPI mx66u mx66u2g45g 2,048 x1-dual_stacked,
x1-single, x2-
dual_stacked, x2-
single, x4-
dual_stacked, x4-
single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=380

Zynq UltraScale+ RFSoC Configuration
Memory Devices

The Flash devices supported for configuration of Zynq UltraScale+ RFSoC devices that can be
erased, blank checked, programmed, and verified by Vivado® software are shown in the following
table.

The tables in this Appendix are running lists per Xilinx® family of non-volatile memories which
Vivado software is capable of erasing, blank checking, programming, and verifying. Xilinx strives
to retain components on this list even after they are no longer appropriate for new designs, to
support long-term maintenance of end products which may contain them.

IMPORTANT! Given the evolving nature of the commodity non-volatile memory market, Xilinx recommends
contacting your non-volatile memory supplier to confirm device availability and life cycle. References to specific
devices in the tables are not an assurance of their current or future availability.

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
EMMC jedec4.51-4gb 32,768

EMMC jedec4.51-8gb 65,536

EMMC jedec4.51-16gb 131,072

EMMC jedec4.51-32gb 262,144

EMMC jedec4.51 524,288

EMMC jedec4.51-64gb 524,288

EMMC Micron mtfc mtfc8gakajcn-4m 65,536

NAND Micron mt29f mt29f2g08ab 2,048 x8-dual, x8-
single

NAND Micron mt29f mt29f8g08ab 8,192 x8-dual, x8-
single

NAND Micron mt29f mt29f16g08ab 16,384 x8-dual, x8-
single

NAND Micron mt29f mt29f32g08ae 32,768 x8-dual, x8-
single

NAND Micron mt29f mt29f64g08ae 65,536 x8-dual, x8-
single

NAND Spansion s34ml s34ml01g1 1,024 x8-dual, x8-
single

NAND Spansion s34ml s34ml02g1 2,048 x8-dual, x8-
single

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=381

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI qspi 0 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp080d 8 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp016d 16 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp032d 32 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp128f 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp256d 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25lp is25lp512m 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=382

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI ISSI is25wp is25wp080d 8 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp016d 16 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp032d 32 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp064a 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp128f 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp256d 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI ISSI is25wp is25wp512m 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=383

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25ql mt25ql128 [n25q128-3.3v-qspi-x1-

dual_stacked, n25q128-3.3v-qspi-x1-
single, n25q128-3.3v-qspi-x2-
dual_stacked, n25q128-3.3v-qspi-x2-
single, n25q128-3.3v-qspi-x4-
dual_stacked, n25q128-3.3v-qspi-x4-
single, n25q128-3.3v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql256 [n25q256-3.3v-qspi-x1-
dual_stacked, n25q256-3.3v-qspi-x1-
single, n25q256-3.3v-qspi-x2-
dual_stacked, n25q256-3.3v-qspi-x2-
single, n25q256-3.3v-qspi-x4-
dual_stacked, n25q256-3.3v-qspi-x4-
single, n25q256-3.3v-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql512 [n25q512-3.3v-qspi-x1-
dual_stacked, n25q512-3.3v-qspi-x1-
single, n25q512-3.3v-qspi-x2-
dual_stacked, n25q512-3.3v-qspi-x2-
single, n25q512-3.3v-qspi-x4-
dual_stacked, n25q512-3.3v-qspi-x4-
single, n25q512-3.3v-qspi-x8-
dual_parallel]

512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql01g [n25q00a-3.3v-qspi-x1-
dual_stacked, n25q00a-3.3v-qspi-x1-
single, n25q00a-3.3v-qspi-x2-
dual_stacked, n25q00a-3.3v-qspi-x2-
single, n25q00a-3.3v-qspi-x4-
dual_stacked, n25q00a-3.3v-qspi-x4-
single, n25q00a-3.3v-qspi-x8-
dual_parallel]

1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25ql mt25ql02g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu128 [n25q128-1.8v-qspi-x1-
dual_stacked, n25q128-1.8v-qspi-x1-
single, n25q128-1.8v-qspi-x2-
dual_stacked, n25q128-1.8v-qspi-x2-
single, n25q128-1.8v-qspi-x4-
dual_stacked, n25q128-1.8v-qspi-x4-
single, n25q128-1.8v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu256 [n25q256-1.8v-qspi-x1-
dual_stacked, n25q256-1.8v-qspi-x1-
single, n25q256-1.8v-qspi-x2-
dual_stacked, n25q256-1.8v-qspi-x2-
single, n25q256-1.8v-qspi-x4-
dual_stacked, n25q256-1.8v-qspi-x4-
single, n25q256-1.8v-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=384

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Micron mt25qu mt25qu512 [n25q512-1.8v-qspi-x1-

dual_stacked, n25q512-1.8v-qspi-x1-
single, n25q512-1.8v-qspi-x2-
dual_stacked, n25q512-1.8v-qspi-x2-
single, n25q512-1.8v-qspi-x4-
dual_stacked, n25q512-1.8v-qspi-x4-
single, n25q512-1.8v-qspi-x8-
dual_parallel]

512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu01g [n25q00a-1.8v-qspi-x1-
dual_stacked, n25q00a-1.8v-qspi-x1-
single, n25q00a-1.8v-qspi-x2-
dual_stacked, n25q00a-1.8v-qspi-x2-
single, n25q00a-1.8v-qspi-x4-
dual_stacked, n25q00a-1.8v-qspi-x4-
single, n25q00a-1.8v-qspi-x8-
dual_parallel]

1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron mt25qu mt25qu02g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron n25q n25q64-1.8v 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Micron n25q n25q64-3.3v 64 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxl s25fl256l 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxp s25fl129p 128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=385

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Spansion s25flxxxs s25fl128s-1.8v [s25fl127s-1.8v-qspi-x4-

dual_stacked, s25fl127s-1.8v-qspi-x4-
single, s25fl127s-1.8v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl128s-3.3v [s25fl127s-3.3v-qspi-x4-
dual_stacked, s25fl127s-3.3v-qspi-x4-
single, s25fl127s-3.3v-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl256s-1.8v 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl256s-3.3v 256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl512s-1.8v 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s25flxxxs s25fl512s-3.3v 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Spansion s70flxxxp s70fl01gs_00 1,024 x4-
dual_stacked

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=386

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx25l mx25l12835f [mx25l12833f-qspi-x1-

dual_stacked, mx25l12833f-qspi-x1-single,
mx25l12833f-qspi-x2-dual_stacked,
mx25l12833f-qspi-x2-single, mx25l12833f-
qspi-x4-dual_stacked, mx25l12833f-qspi-
x4-single, mx25l12833f-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25l mx25l25635f [mx25l25645g-qspi-x1-
dual_stacked, mx25l25645g-qspi-x1-
single, mx25l25645g-qspi-x2-
dual_stacked, mx25l25645g-qspi-x2-
single, mx25l25645g-qspi-x4-
dual_stacked, mx25l25645g-qspi-x4-
single, mx25l25645g-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25l mx25l51245g 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u12835f [mx25u12832f-qspi-x1-
dual_stacked, mx25u12832f-qspi-x1-
single, mx25u12832f-qspi-x2-
dual_stacked, mx25u12832f-qspi-x2-
single, mx25u12832f-qspi-x4-
dual_stacked, mx25u12832f-qspi-x4-
single, mx25u12832f-qspi-x8-
dual_parallel]

128 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u25635f [mx25u25645g-qspi-x1-
dual_stacked, mx25u25645g-qspi-x1-
single, mx25u25645g-qspi-x2-
dual_stacked, mx25u25645g-qspi-x2-
single, mx25u25645g-qspi-x4-
dual_stacked, mx25u25645g-qspi-x4-
single, mx25u25645g-qspi-x8-
dual_parallel]

256 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx25u mx25u51245g 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66l mx66l1g45g 1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=387

Table 52: Supported Flash Memory Devices for Zynq UltraScale+ RFSoC Device Config
(cont'd)

Interface Manufacturer Manufacturer
Family Device Alias Density

Mbits
Data Width

Bits
QSPI Macronix mx66l mx66l2g45g 2,048 x1-

dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66u mx66u51235f 512 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66u mx66u1g45g 1,024 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

QSPI Macronix mx66u mx66u2g45g 2,048 x1-
dual_stacked,
x1-single, x2-
dual_stacked,
x2-single, x4-
dual_stacked,
x4-single, x8-
dual_parallel

Appendix E: Configuration Memory Support

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=388

Appendix F

Command Line Options for
hw_server

The following is a list of hw_server command line options.

IMPORTANT! When remotely connecting to a hw_server running on a PC, ensure that the firewall policy is
properly configured. Make sure that hw_server.exe has permission to listen for new socket connections on
port 3121.

Standard hw_server Options
Table 53: Standard hw_server Options

Option Purpose Example
-d Run hw_server in daemon mode

(output is sent to system logger).
hw_server -d

--help Basic command line help.
-I Exit if there are no target connections

established for the specified time. Time
here is specified in seconds.

hw_server -I 20

-L Enable logging of JTAG commands
from clients to the hw_server.

hw_server -L-

The above option will log output to stdout
hw_server -Lmy_file.log

The above option will log output to file my_file.log

-s Sets up an agent listening port and
protocol.

hw_server -stcp::3122

The above option is used to connect when using the local host with
port 3122 at hw_server start up.

-q Do not display version information on
start up.

-p Assign a range of ports to be used by
Xilinx® GDB server, or disable the
feature.

hw_server -p<port>

<port> is the base port number for Xilinx® GDB server. Default is
3000
The server opens one port per target architecture:
3000: Arm;
3001: Arm64;
3002: MicroBlaze;
3003: MicroBlaze64
hw_server -p0 disables the port

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=389

Table 53: Standard hw_server Options (cont'd)

Option Purpose Example
--init This option is used to specify an

initialization script file to hw_server
hw_server --init my_init.txt

The file my_init.txt contains options that will be applied to the
hw_server at startup

Environment variable
HW_SERVER_INIT_FILE

Use to specify default --init file

export HW_SERVER_INIT_FILE=~/my_init.txt

 hw_server

In this case, the hw_server is initialized with the settings coming
from the file pointed to by the environment variable
HW_SERVER_INIT_FILE.

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=390

Advanced Options
Table 54: Advanced Option

Option Purpose
detect-ir-length Disable detecting the IR detect length during scan chain discovery.

This option is used to start up the hw_server with additional devices added to its device
table. By default the hw_serverstarts with a preset list of devices that are compiled in
from the XICOM SQL jtag master table. These settings can be overridden or extended using
the this set device-info-file option. The file that is specified is a .csv file that
ignores lines that start with a "#".
This is how you specify a .csv file at hw_server start-up:

hw_server -e "set device-info-file my_file.csv"

The .cvs file is formatted as shown below (hw_server_device_info_file.csv):

##
File: hw_server_device_info_file.csv
Description:
This is a sample jtag ID table. This file can be used to define
additional devices to be detected by the hw_server application.
#
In this file empty lines, lines with spaces, and lines that begin
with the '#' character will be ignored.
#
The format of this file is as follows:
#
ROW 1: fields
The standard JTAG id fields are "idcode,mask,irlen,name"
ROW 2: field types
For each field specified in ROW 1, the type is used to
interpret the field data read per device. The types
accepted are "i" for integer and "s" for string. If
you use the standard fields on ROW 1 then you should
use "i,i,i,s" in ROW 2 to set the fields idcode,mask
irlength to integer and name as string
#
To use this table you start hw_server with the following
command line arguments:
#
hw_server -e "set device-info-file <file>"
#
Where <file> is replaced with this filename.
##
idcode,mask,irlen,name
i,i,i,s
167784595,268435455,10,chipscope_soft_tap

device-info-file Sets a default device file .csv to be used

max-jtag-devices Increases the max number of devices that can be detected in a scan chain. Default is 32.
This option is used to start up the hw_serverwith the ability to detect more than the
default number of devices in a scan chain. The default value for this setting is 32. A user can
increase this value for longer jtag chains. Note that increasing this number slows down the
device discovery process, which in turn can slow down cable access. Therefore, it is only for
systems with large device counts should a user increase this value.
This is how to specify the option at hw_server start-up:

hw_server -e "set max-jtag-devices 64"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=391

Table 54: Advanced Option (cont'd)

Option Purpose
xdb-user-bscan Sets which bscan will be used to scan for xsdb cores.

This option is used to start the hw_server scanning a for xsdb master cores on alternate
bscans. By default, hw_server will scan user 1 and 3 bscans. With this option you can
launch hw_serverand have it look for bscans on different bscan user slots.
This is how to specify the option at hw_server start-up:

hw_server -e "set xsdb-user-bscan 1,2,3,4"

The arguments to this parameter specify the list of parameters. The list will be a comma
separated list ranging from 1-4. The minimum number specified is 1 element in the list and
the maximum is 4.

mdm-detect-bscan-mask Sets which bscan will be used to scan for mdm cores.
This option is used to start the hw_server scanning a for MicroBlaze master cores on
alternate bscans. By default hw_server will scan user 2 bscan. With this option the user can
launch hw_server and have it look for MicroBlaze on different bscan user slots.
This is how to specify the option at hw_server start-up:

hw_server -e "set mdm-detect-bscan-mask 2"

The bitmask is for any FPGA discovered by hw_server. Here are some examples of
common bitmask settings:
 Mask Value BSCAN Scanned
 0 none
 1 User1
 3 User1, User2
 7 User1, User2, User3
 f User1, User2, User3, User4

always-open-jtag Forces hw_server to open up all targets at start up.
When hw_server starts by default no cables are initialized. When the first connection is
initiated the cables will be discovered and opened. This discovery period takes a couple of
seconds to several minutes depending on the system. Once fully initialized the cables are
read and devices discovered.
In some cases, it is necessary to have the cables discovered and ready to be used. For
instance when setting up a linux system as a board server, it may be desirable to have the
cables always initialized and ready to serve connections. For these cases you can use the
always-open-jtag option to force the cables to open.
By default this is the setting at start up (no argument needs to be passed in):

hw_server -e "set always-open-jtag 0"

To force opening the cable, pass in this argument as shown below:

hw_server -e "set always-open-jtag 1"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=392

Table 54: Advanced Option (cont'd)

Option Purpose
auto-open-servers Opens a cable server with specific parameters., used for XVC cable opening.

This option is a debug option used to automatically open an XVC cable connection, and to
control which types of USB cables hw_server should detect. The argument to the auto-
open-servers parameter is a comma separated list of fields. Each field is a colon separated
list of sub-fields where the first sub-field is the type and the remaining sub-fields are type
specific. For the xilinx-xvc type the sub-fields are host and port. The default value for
auto-open-servers is "*" which indicates that hw_server should detect all types of
cables that it can. Cables types that require parameters, like XVC, are not covered by "*".
This is how to specify the option at hw_server start-up:

hw_server -e "set auto-open-servers xilinx-xvc:localhost:10200"

To open up two servers you would use:

hw_server -e "set auto-open-servers xilinx-
xvc:localhost:10200,xilinx-xvc:localhost:10210"

To open up two XVC servers in addition to the all USB based cables you would use:

hw_server -e "set auto-open-servers *:xilinx-
xvc:localhost:10200,xilinx-xvc:localhost:10210"

auto-open-ports Controls automatic open of ports (cables or scan chains).
This option is used to control the automatic open of JTAG scan chains. The argument to the
auto-open-ports parameter is a boolean value, 1 indicating that all known JTAG scan
chains should automatically be opened and 0 indicating that clients will open select JTAG
scan chains. The default value is 1. Setting this to 0 is useful for example, when multiple
JTAG scan chains are connected to a single host and different instances of hw_server are
used to access each scan chain.
This is how to specify the option at hw_server start-up:

hw_server -e "set auto-open-ports 0"

xvc-timeout Changes the XVC timeout value to help debug XVC servers.
This option is a debug option used to increase the timeout period needed for an XVC
transaction to terminate. The argument to the xvc-timeout parameter is a time in
seconds. A value of 0 will disable timeout and thus wait indefinitely.
This is how you specify the option at hw_server start-up:

hw_server -e "set xvc-timeout 100"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=393

Table 54: Advanced Option (cont'd)

Option Purpose
xvc-servers Start XVC servers for cables.

This option is used make hw_server start XVC servers for specified JTAG cables. The
argument to the xvc-servers parameter is a comma (,) separated list of XVC server
descriptions. Each XVC server description is a colon (:) separated list containing the cable
identification, XVC server host name or number and port number. The cable identification is
the manufacturer name and a unique identifier separated by slash (/) characters. The cable
identification may be a subset of the full cable identification and the host name may be
empty. If it is empty, it indicates that the server should listen for incoming connections on
all network interfaces.
See processor-debug-claim for how to avoid interference when both XVC client and XVC
server are debuggers of the same device types and XVC locking mode is used.
This is how to specify the option at hw_server start-up:

hw_server -e "set xvc-servers 210203356596A:localhost:3000"

Note that you will still have to connect to this hw_server instance first to initialize the cable
interface. If you do not connect to the cable you will see a message like the following:

TCF 19:11:02.417: XVC open port failed: Cannot find
JTAG cable matching 210203A0314DA

To have the XVC cable automatically opened and locked to XVC add the always-open-jtag
option as shown below:

hw_server -e 'set xvc-servers 210203A0314DA:xcoatslab-9:3122' -e
'set always-open-jtag 1'

xvc-packet-len Change max package length of XVC servers.
This option controls the XVC package length returned by XVC servers started using the xvc-
servers option. Current default package length is 16000, however this may change in
newer versions.
This is how to specify the option at hw_server start-up:

hw_server -e "set xvc-servers 210203356596A:localhost:3000" -e
"set xvc-packet-len 1000"

xvc-version Change XVC protocol version of XVC servers.
This is a debug option that can be used together with xvc-servers to control which XVC
protocol version is exposed to XVC clients. The current default protocol version is 1.1,
however this may change if new versions of the XVC protocol are defined.
This is how to specify the option at hw_server start-up:

hw_server -e "set xvc-servers 210203356596A:localhost:3000" -e
"set xvc-version 1.0"

xvc-capabilities Change XVC capabilities of XVC servers.
This is a debug option that can be used together with xvc-servers to control which
capabilities are exposed to XVC clients. Current default capabilities are locking, status,
and state-aware, however additional capabilities may be added in future versions. This
option has no effect if xvc-version is set to 1.0.
This is how to specify the option at hw_server start-up:

hw_server -e "set xvc-servers 210203356596A:localhost:3000"
-e "set xvc-capabilities status,state-aware"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=394

Table 54: Advanced Option (cont'd)

Option Purpose
processor-debug-claim Automatically claim select device types to prevent debugger from using them.

This option is used to prevent hw_server debugger from using selected device types for
debugging. The argument gives to this option is a bit mask. By default, hw_server uses all
known device types for debugging. Bit number meaning
 Bit Device Type
 0 Arm DAP
 1 MPSoC
 2 FPGA
This option is useful for example when starting XVC server using xvc-servers with an XVC
client that is a debugger of one or more of the above devices, or when hw_server connects
to an XVC server that is a debugger of one or more of the above devices. In both cases this
is only relevant when using the locking capability since that allows time sharing between
the debuggers.
This is how to specify the option at hw_server start-up:

hw_server -e "set processor-debug-claim 2"

jtag-poll-delay Delay in uS. Default 50000.
This option is a polling option used to reduce the JTAG polling frequency. The JTAG polling
frequency is the smallest period taken between JTAG poll operations. The default and
smallest value is 50,000 uS. The argument to the jtag-poll-delay parameter is a number
in uS.

help Displays hw_server "e" options
This option is used to display all the available "e" options for hw_server.
This is how to specify the option at hw_server start-up:

hw_server -e help

show-all Shows all options passed set in hw_serv.
This option is used to display all the "e" option settings for hw_server.
This is how you specify the option at hw_server start-up:

hw_server -e show-all

jtag-default-frequency Sets default frequency for all cables.
This option sets the default JTAG TCK frequency. The jtag-default-frequency
parameter is a number in Hz.
This is how to specify the option at hw_server start-up:

hw_server -e "set jtag-default-frequency 5000000"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=395

Table 54: Advanced Option (cont'd)

Option Purpose
jtag-port-filter Set JTAG port filter.

This option is used to control JTAG port filtering. When it is set, hw_server ignores JTAG
ports that do not match the filter. The argument to this parameter is a comma separated
list of complete or partial port identifiers. A port identifier is a string of the form
<manufacturer>/<productid>/<serial><port>. The filter matches when any of the
port filter's strings can be found anywhere in the port identifier string.
This parameter is useful when running multiple instances of hw_server on the same host
to specify which cable should be handled by which hw_server.
This is how to specify the option at hw_server start-up:

hw_server -e "set jtag-port-filter Xilinx/DLC10/0000128f515601"

Another example filtering any Xilinx DLC9 or DLC10 cable while having the hw_server start
on port 3122:

hw_server -stcp::3122 -e "set jtag-port-filter DLC9,DLC10"

bscan-switch-user-mask Enables bscan switch.
This option is used to control the bscan switch detection.
This is how to specify the option at hw_server start-up:

hw_server -e "set bscan-switch-user-mask <user-bit-mask>"

jtag-port-devices Sets JTAG port device list.
This option is used to specify a static list of devices for a JTAG scan chain. When this is
specified hw_server does not read the IDCODE registers to detect devices on the scan
chain. This is useful when a scan chain contains devices that do not conform to the IEEE
1149.1 specification. The value given to this parameter is a comma separated list of IDCODE
values in the same order as the devices on the scan chain.
This is how to specify the option at hw_server start-up:

hw_server -e "set jtag-port-devices 0xe970203f,0x03632093"

max-ir-length Enables devices in JTAG chain whose ir length is greater than 64 bits.
This option is used to start up the hw_server with the ability to enable ir lengths greater
than 64 bits. The default value for this setting is 64. A user can increase this value for
devices in the JTAG chains whose ir length is wide (for example, 93). Note that increasing
this number will slow down the device discovery process which in turn can slow down cable
access. Therefore, only for systems with long ir lengths device counts should a user
increase this value.
This is how to specify the option at hw_server start-up:

hw_server -e "set max-ir-length 93"

Appendix F: Command Line Options for hw_server

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=396

Appendix G

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Appendix G: Additional Resources and Legal Notices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 397Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=397

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Vivado® Design Suite Documentation

1. Vivado Design Suite User Guide: Logic Simulation (UG900)

2. Vivado Design Suite User Guide: Synthesis (UG901)

3. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

4. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

5. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

6. Vivado Design Suite User Guide: Implementation (UG904)

7. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

8. Vivado Design Suite User Guide: Design Flows Overview (UG892)

9. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

10. Vivado Design Suite Tutorial: Programming and Debugging (UG936)

11. Vivado Design Suite Tcl Command Reference Guide (UG835)

12. SmartLynq Data Cable User Guide (UG1258)

13. 7 Series FPGAs Configuration User Guide (UG470)

14. 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User
Guide (UG480)

15. UltraScale Architecture Configuration User Guide (UG570)

16. UltraScale Architecture System Monitor User Guide (UG580)

17. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

18. Virtex UltraScale+ FPGAs GTM Transceivers User Guide (UG581)

19. Debug Bridge LogiCORE IP Product Guide (PG245)

20. Xilinx Virtual Cable Running on Zynq-7000 Using the PetaLinux Tools (XAPP1251)

21. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

22. Xilinx In-System Programming Using an Embedded Microcontroller (ISE Tools) (XAPP058)

23. Using Encryption to Secure a 7 Series FPGA Bitstream (XAPP1239)

Appendix G: Additional Resources and Legal Notices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 398Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug936-vivado-tutorial-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=smartlynq;d=ug1258-smartlynq-cable.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug480_7Series_XADC.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug581-ultrascale-gtm-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1251-xvc-zynq-petalinux.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp058.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=398

24. Using Encryption and Authentication to Secure an UltraScale/UltraScale+ FPGA Bitstream
(XAPP1267)

25. Virtual Input/Output LogiCORE IP Product Guide (PG159)

26. Integrated Bit Error Ratio Tester 7 Series GTX Transceivers LogiCORE IP Product Guide (PG132)

27. Integrated Bit Error Ratio Tester 7 Series GTP Transceivers LogiCORE IP Product Guide (PG133)

28. Integrated Bit Error Ratio Tester 7 Series GTH Transceivers LogiCORE IP Product Guide (PG152)

29. Integrated Logic Analyzer LogiCORE IP Product Guide (PG172)

30. JTAG to AXI Master LogiCORE IP Product Guide (PG174)

31. System Integrated Logic Analyzer LogiCORE IP Product Guide (PG261)

32. UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

33. Debug Bridge LogiCORE IP Product Guide (PG245)

34. In-System IBERT LogiCORE IP Product Guide (PG246)

35. UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP Product Guide (PG150)

36. AXI High Bandwidth Controller LogiCORE IP Product Guide (PG276)

37. IBERT for UltraScale GTM Transceivers LogiCORE IP Product Guide (PG342)

Training Courses
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training:

1. Designing FPGAs Using the Vivado Design Suite 1

2. Designing FPGAs Using the Vivado Design Suite 2

3. Designing FPGAs Using the Vivado Design Suite 3

4. Designing FPGAs Using the Vivado Design Suite 4

5. Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP Integrator

6. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado Design Suite

7. Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control

8. Vivado Design Suite QuickTake Video Tutorials

Appendix G: Additional Resources and Legal Notices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 399Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=vio;v=latest;d=pg159-vio.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtx;v=latest;d=pg132-ibert-7series-gtx.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gtp;v=latest;d=pg133-ibert-7series-gtp.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_7series_gth;v=latest;d=pg152-ibert-7series-gth.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ila;v=latest;d=pg172-ila.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=system_ila;v=latest;d=pg261-system-ila.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=debug_bridge;v=latest;d=pg245-debug-bridge.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=hbm;v=latest;d=pg276-axi-hbm.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ibert_ultrascale_gtm;v=latest;d=pg342-ibert-ultrascale-gtm.pdf
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/debugging-techniques-using-vivado-logic-analyzer.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=399

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix G: Additional Resources and Legal Notices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 400Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=400

Copyright

© Copyright 2012-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.

Appendix G: Additional Resources and Legal Notices

UG908 (v2020.1) June 3, 2020 www.xilinx.com
Vivado Programming and Debugging 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=401

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Getting Started
	Debug Terminology
	ILA
	VIO
	IBERT
	JTAG-to-AXI Master
	Debug Hub
	System ILA
	Debug Bridge
	In-System IBERT
	IBERT GTR

	Ch. 2: Vivado Lab Edition
	Installation
	Launching Vivado Lab Edition on Windows
	Launching the Vivado Lab Edition from the Command Line on Windows or Linux

	Using the Vivado Lab Edition
	Starting with a Project
	Opening the Hardware Manager
	Reviewing Documentation and Videos

	Vivado Lab Edition Project
	Create a New Project
	Creating Projects Using Tcl Commands

	Opening the Project
	Opening Projects Using Tcl Commands

	Using existing .lpr project from Vivado Design Suite Edition

	Programming Features
	Debug Features

	Ch. 3: Generating the Bitstream or Device Image
	Changing the Bitstream File Format Settings
	Changing Device Configuration Bitstream Settings

	Ch. 4: Programming the Device
	Opening the Hardware Manager
	Opening Hardware Target Connections
	Connecting to a Hardware Target Using hw_server
	Opening a New Hardware Target
	Troubleshooting a Hardware Target
	Opening a Recent Hardware Target
	Opening a Hardware Target Using Tcl Commands

	Associating a Programming File with the Hardware Device
	Programming the Hardware Device
	Incorrect Bitstream Assignment Message
	Attempting to Program a Device with an Image Generated for a Different Silicon Revision
	Attempting to Program Configuration Memory Attached to an FPGA Device

	Closing the Hardware Target
	Closing a Connection to the Hardware Server
	Reconnecting to a Target Device with a Lower JTAG Clock Frequency
	Connecting to a Server with More Than 32 Devices in a JTAG Chain
	Usage
	Init Option

	Ch. 5: Remote Debugging in Vivado
	Using Vivado Hardware Server to Debug Over Ethernet
	Xilinx Virtual Cable (XVC)
	Vivado Debug Bridge IP and Xilinx Virtual Cable (XVC) Flow
	Debug Bridge in XVC Modes
	Using Debug Bridge IP in Partial Reconfiguration (PR) Designs
	JTAG Fallback Support
	Microblaze Debug Module (MDM) Support
	Multiple Debug Trees

	From AXI to BSCAN
	From PCIe to BSCAN
	From JTAG to BSCAN
	From PCIe to JTAG
	From AXI to JTAG
	XVC Server Implementation
	XVC Protocol
	User XVC 1.0 Commands
	Initializing Vivado IDE hw_server

	Ch. 6: Programming Configuration Memory Devices
	Generate Bitstreams for use with Configuration Memory Devices
	Creating a Configuration Memory File
	Creating a Configuration Memory File for SPI Dual Quad (x8) Devices
	Example write_cfgmem Usage

	Connect to the Hardware Target in Vivado
	Adding a Configuration Memory Device
	Programming a Configuration Memory Device
	Booting the Device
	Configuration Failures in Master Mode

	Ch. 7: Advanced Programming Features
	Readback and Verify
	Bitstream Verify and Readback
	Configuration Memory Verify and Readback

	Generating Encrypted and Authenticated Files for 7 Series Devices
	Generating Encrypted and Authenticated Files for UltraScale and UltraScale+
	Programming the AES Key for 7 Series Devices
	Clearing the AES Key for 7 Series Devices

	Programming the AES Key for UltraScale and UltraScale+ Devices
	Clearing the AES Key for UltraScale, and UltraScale+ Devices

	eFUSE Register Access and Programming
	Cable Support for eFUSE Programming
	eFUSE Register Access and Programming for 7 Series Devices
	FUSE_DNA: Unique Device DNA
	Programming the eFUSE Registers
	Forcing eFUSE Programming

	eFUSE Register Access and Programming for UltraScale and UltraScale+ Devices
	FUSE_DNA: Unique Device DNA
	Programming the eFUSE Registers
	Disabling Control Registers Setup

	Disabling the JTAG interface
	Forcing eFUSE Programming

	eFUSE NKZ File
	eFUSE Export NKZ File

	System Monitor

	Ch. 8: Serial Vector Format (SVF) File Programming
	Creating an SVF Target
	Using Vivado IDE
	Using the Command Line

	Adding Devices to an SVF Target
	Using Vivado IDE
	Using the Command Line

	Adding Configuration Memory Parts to Xilinx Devices
	Using Vivado IDE
	Using Command Line

	Operations on the SVF Chain
	Writing SVF Files
	Using the Vivado IDE
	Using the Command Line

	Executing SVF Files

	Ch. 9: Debugging the Design
	RTL-Level Design Simulation
	Post-Implemented Design Simulation
	In-System Logic Design Debugging
	In-System Serial I/O Design Debugging

	Ch. 10: In-System Logic Design Debugging Flows
	Probing the Design for In-System Debugging
	Using the Netlist Insertion Debug Probing Flow
	Marking HDL Signals for Debug
	Icons and ILA Core

	Vivado Synthesis mark_debug Syntax Examples
	Synplify mark_debug Syntax Examples
	Precision mark_debug Syntax Examples
	Synthesizing the Design
	Marking Nets for Debug in the Synthesized Design
	Using the Set Up Debug Wizard to Insert Debug Cores
	Using the Debug Window to Add and Customize Debug Cores
	Creating and Removing Debug Cores
	Adding, Removing, and Customizing Debug Core Ports
	Connecting and Disconnecting Nets to Debug Cores

	Modifying Properties on the Debug Cores
	Probe as Data or Trigger or both
	Configuring the Number of Comparators Used
	Using XDC Commands to Insert Debug Cores
	Saving Constraints After Running Debug XDC Commands
	Implementing the Design
	Debug Core Insertion in Non-Project Mode

	HDL Instantiation Debug Probing Flow Overview
	Using the HDL Instantiation Debug Probing Flow
	Customizing and Generating the Debug Cores
	Configuring the Number of Comparators Used
	Probe as Data or Trigger
	ILA Cross Trigger
	Instantiating the Debug Cores
	Synthesizing the Design Containing the Debug Cores
	Viewing the Debug Cores in the Synthesized Design
	Changing the BSCAN User Scan Chain of the Debug Core Hub

	Debug Flow in IP Integrator
	Debugging Nets and Interfaces in the IP Integrator Block Design
	Viewing System ILA Debug Cores in the Synthesized Design

	Implementing the Design Containing the Debug Cores
	Implementing the Design

	ILA Core and Timing Considerations
	Debug Cores Clocking Guidelines
	Debug Core Clocks
	Vivado Hardware Manager Clocking Related Error Messages

	Adding Vivado Debug Cores to a Partial Reconfiguration Design

	Ch. 11: Debugging Logic Designs in Hardware
	Using Vivado Logic Analyzer to Debug the Design
	Connecting to the Hardware Target and Programming the Device
	Vivado Hardware Manager Dashboards
	Default Dashboards
	Default Dashboard Windows
	Window Controls within a Dashboard
	Moving Windows
	Resizing Windows
	Closing Windows
	Window Tabs

	Customizing Dashboards
	Dashboard Options
	Creating New Dashboards
	ILA Waveform window in dashboards
	System Monitor Dashboards
	Resetting to Default Dashboards
	Closing Dashboards
	Saving User Dashboard Preferences and Settings

	Setting up the ILA Core to Take a Measurement
	Adding Probes
	Writing Debug Probes Information
	Reading Debug Probes Information
	Renaming Debug Probes

	Using Multiple Comparators
	Using the ILA Default Dashboard
	User-Defined Debug Probes
	Creating a User-Defined Debug Probe
	GUI Flow
	Tcl Flow

	Deleting a User-Defined Debug Probe
	GUI Flow
	Tcl Flow

	Persistence of User-Defined Debug Probes
	Interacting with a User-Defined Probe
	Using Basic Trigger Mode
	Adding Probes to Basic Trigger Setup Window
	Setting Basic Trigger Compare Values
	ILA Probe Compare Value Settings
	Setting Basic Trigger Condition

	Using Advanced Trigger Mode
	Specifying the Trigger State Machine Program File
	Editing the Trigger State Machine Program
	Compiling the Trigger State Machine

	Enabling Trigger In and Out Ports
	Configuring Capture Mode Settings
	Using BASIC Capture Mode
	Configuring the Basic Capture Setup Window
	Setting the Number of Capture Windows
	Setting the Trigger Position in the Capture Window
	Setting the Data Depth of the Capture Window

	Running the Trigger
	Stopping the Trigger
	Using Auto Re-Trigger
	Viewing Trigger and Capture Status
	Partial Buffer Capture
	Basic Trigger Mode Trigger and Capture Status
	Advanced Trigger Mode Trigger and Capture Status

	Writing ILA Probes Information
	Reading ILA Probes Information
	Viewing Captured Data from the ILA Core in the Waveform Viewer
	Using Waveform ILA Trigger and Export Features
	Saving and Restoring Captured Data from the ILA Core
	Saving Captured ILA Data to a File
	Probe Data Radix
	Listing data samples associated with a single probe

	Restoring Captured ILA Data from a File

	Enumeration of Probe Values
	Add/Edit Enumerations
	Define new Enumerations using the Hardware Manager
	Editing Enumeration Associated with a Debug Probe in the Trigger Setup Window

	Add Enumerations Using Tcl Commands
	Delete Enumerations using Tcl commands
	Access Enumeration
	Using Enumerations in Trigger Setup window
	Using Enumerations in Capture Setup window
	Advanced Trigger
	Using Enumerations in the Waveform window

	Debugging AXI Interfaces in the Hardware Manager
	Waveform and AXI Interfaces
	AXI Transactions in the Waveform Viewer
	AXI Interface Events
	AXI Transactions
	AXI Channel Events
	Read Address (AR) Channel Events
	Read Address Channel Signal Group
	Read Data Channel Events
	Read Data Channel Signal Group
	Write Address Channel Events
	Write Address Channel Signal Group
	Write Data Channel Events
	Write Data Channel Signal Group
	Write Response Channel Events
	Write Response Channel Signal Group

	Triggering on AXI Address Command and Data Beats

	Setting Up the VIO Core to Take a Measurement
	Viewing the VIO Core Status
	Viewing VIO Cores in the Debug Probes Window
	Using the VIO Dashboard
	Interacting with VIO Core Input Probes
	Reading VIO Inputs Using the VIO Cores View
	Setting the VIO Input Display Type and Radix
	Observing and Controlling VIO Input Activity

	Interacting with VIO Core Output Probes
	Writing VIO Outputs Using the VIO Cores View
	Setting the VIO Output Display Type and Radix
	Resetting the VIO Core Output Values
	Synchronizing the VIO Core Output Values to the Vivado IDE

	Hardware System Communication Using the JTAG-to-AXI Master Debug Core
	Interacting with the JTAG-to-AXI Master Debug Core in Hardware
	Resetting the JTAG-to-AXI Master Debug Core
	Creating and Running a Read Transaction
	Creating and Running a Write Transaction

	Using Vivado Logic Analyzer in a Lab Environment
	Connecting to a Remote hw_server Running on a Lab Machine

	Description of Hardware Manager Tcl Objects and Commands
	Description of hw_server Tcl Commands
	Description of hw_target Tcl Commands
	Description of hw_device Tcl Commands
	Description of hw_ila Tcl Commands
	Description of hw_ila_data Tcl Commands
	Description of hw_probe Tcl Commands
	Description of hw_vio Tcl Commands
	Description of hw_axi and hw_axi_txn Tcl Commands
	Description of hw_sysmon Tcl Commands

	Using Tcl Commands to Interact with a JTAG-to-AXI Master Core
	Example Tcl Command Script

	Using Tcl Commands to Take an ILA Measurement
	Example Tcl Command Script

	Trigger At Startup
	Memory Calibration Debug
	Memory Calibration Debug GUI Usage
	Memory Calibration Debug Tcl Usage

	Debugging Partial Reconfigurable Designs in Vivado Hardware Manager
	High Bandwidth Memory (HBM) Monitor
	HBM Monitor GUI Usage
	HBM Monitor Tcl Usage

	Ch. 12: Viewing ILA Probe Data in the Waveform Viewer
	ILA Data and Waveform Relationship
	Waveform Viewer Layout
	Waveform Viewer Operation
	Removing Probes from the Waveform
	Adding Probes to the Waveform
	Using Waveform ILA Trigger and Export Features
	Using the Zoom Features
	Waveform Settings
	Customizing the Configuration
	Cursors
	Markers
	Trigger Markers
	Dividers
	Using Groups
	Using Virtual Buses

	Renaming Objects
	Radixes
	Using the Floating Ruler
	Bus Bit Order

	Bus Radixes
	Viewing Analog Waveforms
	Bus Plot Viewer
	Creating a Bus Plot
	Example of Bus Plot Creation

	Zoom Gestures

	Ch. 13: Debugging Designs Post Implementation
	Using Vivado ECO Flow to Replace Existing Debug Probes
	Replacing Debug Probes on a Placed and Routed Design Checkpoint
	Vivado ECO TCL Flow to Replace Existing Debug Probes
	Incremental Compile with Debug Core (ILA) Modifications
	Incremental Compile Flow Designs
	Reference Design
	Current Design

	Using Incremental Compile
	Using Incremental Compile in Non-Project Mode
	Using Incremental Compile in Project Mode

	Examining the Similarity Between the Reference Design and the Current Design

	Ch. 14: Serial I/O Hardware Debugging Flows
	Serial I/O Hardware Debugging Flows
	Generating an IBERT Core using the Vivado IP Catalog
	Generating and Implementing the IBERT Example Design
	In-System IBERT System Serial I/O Design Debugging Flows
	Generating an In-System IBERT Core Using the Vivado IP Catalog
	Instantiating the IP and integrating In-System IBERT IP in the User Design

	Ch. 15: Debugging the Serial I/O Design in Hardware
	Using Vivado Serial I/O Analyzer to Debug the Design
	Connecting to the Hardware Target and Programming the Device
	Creating Links and Link Groups
	Viewing and Changing Links Settings Using the Links Window
	Creating and Running Link Scans
	Creating and Running Link Sweeps
	Displaying and Navigating the Scan Plots
	Writing the Scan Results to a File
	Properties Window
	Description of Serial I/O Analyzer Tcl Objects and Commands
	Description of Tcl Commands to Access Hardware
	Description of hw_sio_link Tcl Commands
	Description of hw_sio_linkgroup Tcl Commands
	Description of hw_sio_scan Tcl Commands
	Description of Tcl Commands to Get Objects

	Using Tcl Commands to Take an IBERT Measurement
	Example Tcl Command Script

	Viewing Slicer Eye, Histogram, and Signal-to-Noise Ratio (GTM Transceivers Only)

	Appx. A: Device Configuration Bitstream Settings
	7 Series Bitstream Settings
	Zynq-7000 Bitstream Settings
	UltraScale Bitstream Settings
	Virtex and Kintex UltraScale+ Bitstream Settings
	Zynq UltraScale+ MPSoC Bitstream Settings

	Appx. B: Trigger State Machine Language Description
	States
	Goto Action
	Conditional Branching
	Counters
	Flags
	Conditional Statements
	Debug Probe Conditions
	Counter Conditions
	Combined Debug Probe and Counter Conditions
	Trigger State Machine Language Grammar

	Appx. C: Low Level SVF JTAG Commands
	Header Data Register (HDR), Header Instruction Register (HIR)
	Syntax
	Purpose
	General Information

	TDR, TIR (Trailer Data Register, Trailer Instruction Register)
	Syntax
	Purpose
	General Information
	Example

	scan_ir_hw
	Syntax
	General Information
	Example

	scan_dr_hw
	Syntax
	General Information
	Example

	Multi Chain SVF Operation
	Multi Chain SVF Operation with Configuration Memory Attached to First Device
	Multi Chain SVF Operation with Configuration Memory Attached to Second Device in Chain
	Multi Chain SVF Operation with Configuration Memory Attached to Third Device in Chain

	Appx. D: JTAG Cables and Devices Supported by hw_server
	Appx. E: Configuration Memory Support
	Artix-7 Configuration Memory Devices
	Kintex-7 Configuration Memory Devices
	Spartan-7 Configuration Memory Devices
	Virtex-7 Configuration Memory Devices
	Kintex UltraScale Configuration Memory Devices
	Kintex UltraScale+ Configuration Memory Devices
	Virtex UltraScale Configuration Memory Devices
	Virtex UltraScale+ Configuration Memory Devices
	Zynq-7000 Configuration Memory Devices
	Zynq UltraScale+ MPSoC Configuration Memory Devices
	Zynq UltraScale+ RFSoC Configuration Memory Devices

	Appx. F: Command Line Options for hw_server
	Standard hw_server Options
	Advanced Options

	Appx. G: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Courses
	Please Read: Important Legal Notices

