
Vivado Isolation
Verifier

User Guide

UG1291 (v1.1) July 27, 2020

Vivado Isolation Verifier 2
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Date Version Revision
07/27/2020 1.1 Added Table 1. Added a note in the Introduction section. Added three (3) notes in the

Definitions section. Added links for XAPP1335 and XAPP1336 in the References
section.

08/10/2018 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=2

Vivado Isolation Verifier 3
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Table of Contents
Revision History . 2
Introduction . 4
Supported Devices . 5
VIV History . 5
Definitions . 5
FPGA Architecture . 9
The FPGA Development Flow with Isolation Analysis. 10
IDF Design Rule Checks . 12
Installation . 16
Usage . 18
Invoking VIV DRCs . 19
Application Notes. 23
Xilinx Resources . 24
Solution Centers. 24
Documentation Navigator and Design Hubs . 24
References . 24
Please Read: Important Legal Notices . 25

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=3

Vivado Isolation Verifier

Introduction
Proof of correctness is required for sUG1291 (v1.1) July 27, 2020afety, security, and other
high-reliability applications. The Xilinx® Isolation Design Flow (IDF) includes a set of design
rule checks (DRCs) implemented by the Vivado® Isolation Verifier (VIV) that verifies the
user and Vivado® software have fulfilled the requirements of IDF design methodology (See
XAPP1335) [Ref 11].

The user needs to enable this feature explicitly (see Installation, page 16) since VIV is
included with Vivado. When enabled, six additional DRCs appear under the Isolation
category. The user invokes these DRCs, using the Vivado DRC interface just like any other
built-in DRCs. Results are provided in tabular form in the GUI with hyperlinks to design
elements related to potential isolation violations. The VIV DRCs also contribute to the
text-based output of the Vivado DRC reporting system.

VIV aids in board development by checking that I/O pin assignments, I/O bank assignments,
and floorplanning range constraints do not violate IDF rules. This is in addition to offering
proof of isolation. The intent of these design constraint checks spares the designer from
costly printed circuit board redesigns.

VIV is composed of six DRCs that perform checks related to a single aspect of isolation. The
user can run all the IDF DRCs or any subset thereof.

• IDF_VIV2-1 provides provenance for VIV DRC results.
• IDF_VIV2-2, IDF_VIV2-3, and IDF_VIV2-4 checks the design constraints (pblocks, pads,

pins, and banks).
• IDF_VIV2-5 and IDF_VIV2-6 checks the placement and routing of the implemented

design.
Note: Although this document uses FPGA terminology, VIV applies equally to the Programmable
Logic (PL) portion of Xilinx Zynq® devices, including the Zynq® UltraScale+™ MPSoC.
Vivado Isolation Verifier 4
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=4

Supported Devices
Supported Devices

VIV History
Initially VIV was launched as a Tcl-based script (viv.tcl) and was not a part of the Vivado
Design Suite which is distributed separately as an encrypted Tcl file. To use viv.tcl IDF
DRCs, users need to source the viv.tcl script to load DRCs into Vivado. Refer to UG1290
[Ref 3] for complete details. VIV has been integrated with Vivado Design Suite starting with
the 2018.2 release to improve its performance. This new version of VIV is also referred to as
VIV2 in this document. To use VIV, users need to enable it by setting the hd.enableIDFDRC
parameter to True.

Definitions
Many of the terms in this document are used in a specialized sense. The following glossary
helps readers who are not well versed with Xilinx terminology related to FGPA architecture
and configuration, or search algorithms.

area range – list of rectangular regions identifying a subset of the device resources in an
FPGA. It is defined as a list of resource pairs in an XDC file. Each pair defines two opposite
corners of an included rectangular region.

Table 1: Supported Devices
Xilinx Device VIV Support Status

Zynq® UltraScale+™ MPSoC devices Supported
Zynq® UltraScale+™ RFSoCs Not Supported
Kintex® UltraScale+™ FPGA devices Supported
Virtex® UltraScale+™ FPGA devices Supported
Virtex® UltraScale+™ HBM FPGAs Not Supported
Virtex UltraScale+ 58G PAM4 FPGAs Not Supported
UltraScale FPGA family Not Supported
Zynq®-7000 SoC family Supported
Spartan-7 FPGA Only XC7S50 part is supported
Artix-7 FPGAs All parts are supported except XC7A12T and

XC7A25T
Kintex-7 FPGAs Supported
Virtex-7 FPGAs Supported
Vivado Isolation Verifier 5
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=5

Definitions
bitstream – contiguous sequence of bits that represents a stream of data.

FPGA bitstream – file that contains the programming information for an FPGA. A Xilinx
FPGA device must be programmed using a specific bitstream in order for it to behave as an
embedded hardware platform. This bitstream is typically provided by the hardware designer
who creates the embedded platform.

Programming an FPGA is the process of loading a bitstream into the FPGA. During the
development phase, the FPGA device is programmed using utilities such as Vivado® or
using menu options in SDK. These tools transfer the bitstream to the FPGA on board. The
bitstream is usually placed in non-volatile memory in the production hardware which is
configured to program the FPGA when powered on.

device model – data and data structures that describe the potential programming of a
specific model of an FPGA. The device model specifies the capacity of the device and all of
the features that can be configured to realize an FPGA design. The device model is highly
abstracted from the FPGA hardware schematics. Only aspects of the FPGA hardware that are
programmable are represented. Although it is theoretically possible that a programmable
feature of an FPGA might not be represented in the device model (for example, if testing
shows the feature to be unreliable), in practice this is not applicable because it would make
it impossible to perform the tests that would validate or invalidate the feature.

programmable unit (PU) – set of logical tiles such as CLEs, BRAMs, DSPs along with their
shared interconnect tiles (one block RAM, five CLEs, and five interconnect tiles shared
between block RAM and CLEs are one PU). When reserving resources during floorplanning
it is strongly recommended to take the whole PU in the pblock. See (XAPP1335) [Ref 11] for
more details on PU.

fence tile / PU– un-programmed tiles or PU, free of routing or logic, which is used to
separate two or more tiles or PUs containing logic or routing from distinct isolated modules.

Note: Refer to (XAPP1335) [Ref 11] for fencing rules with respect to UltraScale+ architecture, and
(XAPP1222) [Ref 8] for fencing rules with respect to 7 series FPGAs.

function module– collection of logic that performs a specific operation, for example an
encryption circuit.

interconnect tile – common hard IP block providing a programmable switching matrix
connecting programmable logic elements of virtually all types to routing resources. The
interconnect blocks are collectively referred to as the Global Switching Matrix in the end
user documentation. Typically, individual interconnect blocks are not referred to in the
documentation, but might occasionally be referred to as switch boxes.

inter-region signal – non-isolated net with one source and one load typically connects one
isolated function/module to another, though sometimes connects one port of an isolated
module to another port of the same isolated module or to top-level logic. An inter-region
signal is not permitted to use routing resources containing programmable interconnect
points (PIPs) in fence.
Vivado Isolation Verifier 6
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=6

Definitions
isolation – free from unintended influence. For the case of routing, the degree isolation is
measured by the number of switch failures required to establish an unintended signal path
between isolated circuits. For the case of floorplanning, isolation is determined by the
presence of a “fence” of tiles/PUs free of isolated logic and routing between isolated
portions of the design.

isolated function, isolated module – portion of the user design that is intended to be
isolated.

isolated region, isolated – collection of tiles defined by area range constraints that can be
used when implementing an isolated module.

I/O buffer, IOB – circuit in an FPGA that controls the behavior of the input/output pins on
the FPGA package. An I/O buffer controls various communication-related settings, such as
whether an associated pin is connected internally to an input circuit or an output circuit, or
selects the voltage level expected by the pin.

I/O bank – collection of I/O buffers in an FPGA for settings and signals, common to the
collection.

logic - circuits that implement a specific function; a flip-flop, look up table, and random
access memory.

net – named collection of routing resources that creates signal paths among a collection of
logic elements. A net may span levels in the design hierarchy.

node – indivisible unit of programmable routing. Note that a node may branch out to
connect more than two points.

package pin – conductor on the outside of an FPGA package that powers or interfaces with
the FPGA. It is shaped like a short wire protruding perpendicularly from the chip package, or
shaped like a bump.

partition – collection of logic defined by the user that isolates one piece of hierarchy from
another.

placement – assignment of a logical function to specific hardware resources.

derived range – derived range is the pblock boundary after considering all the tiles of the
Programable Units (PU) in that pblock. When Snapping Mode property of a pblock is set to
OFF, then both derived and XDC range compute the same pblock boundary. When Snapping
Mode property of a pblock is set to FINE_GRAINED, the derived range might be different
than the user-specified XDC range. If Snapping Mode is set to FINE_GRAINED, and if some
of the tiles of a PU are left off in the XDC range, then all of the tiles in that PU are excluded
from the pblock boundary in the derived range.

Note: IDF requires FINE_GRAINED as the Snapping Mode property of pblocks. See (XAPP1335)
[Ref 11] for more details.
Vivado Isolation Verifier 7
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=7

Definitions
Note: Programmable Unit and Derived Range concepts are applicable with respect to
UltraScale+ architecture.

route – path that a signal follows within an FPGA as represented by a collection of nodes
connected to one another by programmable interconnect points (PIPs).

site – physical location in the FPGA tile array that can be referenced in the floorplanning
constraints, such as a SLICE, or RAMB16, etc.

switch matrix, global switch matrix, GSM – aggregate term for a programmable routing.
The GSM is primarily composed of interconnect blocks.

trusted routing – connects isolated functions using routing resources with no
programmable interconnection points within fence tiles. Trusted Routing is generated
automatically without manual placement. Refer to (XAPP1335) [Ref 11] for more details.

Xilinx Design Constraints, XDC – SDC-based constraints in Tcl notation describing aspects
of the design that includes floorplanning, pin assignments, electrical properties of I/O
signals, and timing characteristics, but not the logic of the design.

wire – conductive path in a chip along which signals or power flow. A wire is the hardware
that implements the node abstraction. The term wire also describes the software device
model for a portion of a node that occupies exactly one tile.
Vivado Isolation Verifier 8
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=8

FPGA Architecture
FPGA Architecture
A field programmable gate array (FPGA) contains logic elements and routing. Both are
controlled by configuration memory programmed by the user. Logic elements range in
complexity from simple combinatorial logic functions up to complete embedded
processors. Logic elements and routing are arrayed in a grid of tiles. The structure of an
FPGA is extremely regular. Each tile contains one of a small variety of VLSI circuits dedicated
to logic or routing.

Logic tiles include:

• Configurable logic blocks (CLBs) contains a small amount of programmable logic and
memory.

• Input/output block circuitry (IOBs)
• Clock Management Tiles (CMTs)
• Other specialized circuitry that includes block RAMs, digital signal processors (DSPs),

processors, etc.

Typically, Xilinx FPGA will have thousands of tiles, but only dozens of tile types. Common to
all tiles is their association to a Global Switch Matrix (GSM). The GSM is composed of many
interconnect tiles and interface tiles. Some logic tiles such as CLBs are associated with one
interconnect tile, whereas other tiles such as block RAMs and DSPs are associated with
multiple interconnect tiles. Interface tiles are used to adapt the various types of logic tiles to
the common interconnect tile design.

In 7 series architectures, each user tile has a dedicated interconnect tile but UltraScale+™
architecture is different, as user tiles share interconnect tiles. In UltraScale+ devices two
CLEs share one interconnect tile or one block RAM shares five interconnects with five CLEs,
thus introducing the Programmable Unit (PU). The PU is a set of tiles that shares
interconnect tiles. For example, two CLEs that share one interconnect tile is one PU. It is the
same as one block RAM with five CLEs that share five interconnect tiles, and constitutes one
PU. See (XAPP1335) [Ref 11] for more details on PU and UltraScale+ Architecture specific
IDF concepts.

An FPGA is configured for a particular purpose by loading configuration memory with a
particular bitstream. The bitstream specifies the exact function of each and every tile in the
device. Whether used or not, logic tiles are configured to perform a specific function and
the GSM is configured to provide the required routing between the logic tiles.

Note: Although the IDF focuses on FPGAs, the same methodology applies to the Programmable
Logic (PL) portion of a Xilinx Zynq® UltraScale+ MPSoC.
Vivado Isolation Verifier 9
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=9

The FPGA Development Flow with Isolation Analysis
The FPGA Development Flow with Isolation
Analysis
To facilitate isolation analysis, the usual FPGA flow has a new set of constraints to control
routing and additional floorplanning requirements. Firstly, the design is manually
floorplanned. Secondly, constraints are applied to isolated regions of the floorplan to follow
strict rules. Finally, VIV is used to demonstrate to ensure that the design is correctly
implemented.

Figure 1 shows where isolation analysis fits in to the usual FPGA development flow. VIV is
useful at two levels:

• VIV helps to avoid costly circuit board layout mistakes during floorplanning (shown on
the right side blue boxes) and helps document the floorplan, a key part of the isolation
approach of the design.

• VIV proves that the design is isolated per IDF rules when the design is complete (shown
on the lower right green boxes).

The flowchart notation is as follows:

• Boxes represent processes
• Parallelograms represent data
• Trapezoids (quadrilaterals with one pair of parallel sides) represent manual input
• Shapes with curved bottoms represent output
• Arrows represent information flow
• Color is used specifically for grouping and emphasis
Vivado Isolation Verifier 10
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=10

The FPGA Development Flow with Isolation Analysis
X-Ref Target - Figure 1-1

Figure 1: Vivado Isolation Design Flow Relative to a Typical FPGA Design Flow

IP Integrator

RTL
Elaboration

Synthesis
Design

Floorplan
Design

Verilog,
VHDL

High Level
Synthesis

3rd Party IP
Custom IP

C, C++,
Open CL

Vivado
Settings

Final
Design
Check
Point

Configuration
Bitstream

Generation

Hierarchical
Partitioning

Logical
Partitioning

Floorplanning
Constraints

VIV on Final
Design

VIV on
Floorplan

Device View
Floorplan

DRC Report

Device View
Routed Design

DRC Report

FPGA Development Flow (Vivado) IDF Extras

Implement Design

Optimize
Design

Place
Design

Physical
Optimization

Route
Design
Vivado Isolation Verifier 11
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=11

IDF Design Rule Checks
IDF Design Rule Checks
VIV2 is available with Vivado framework in the form of built-in DRCs. This allows violations
to be highlighted directly in the Vivado graphical user interface. The DRCs that apply to the
pin assignments and floorplanning constraints are intended to aid board design. The DRCs
that apply to the implemented placement and routing are intended to provide proof that
isolation was achieved.

Constraint Checking (VIV – Constraints)
VIV checks the following on the pin constraints and floorplan:

• Pins from different isolation pblocks are not co-located in an I/O bank. This is checked
in IDF_VIV2-2.
Note: While VIV does report I/O bank sharing as a violation, this is a security precaution. - not
mandated by analysis. The majority of applications allow for sharing of banks. Designers need to
decide on a case-by-case basis if their design allows I/O bank sharing.

• Pins from different isolation pblocks are not physically adjacent on the package. Pins are
considered adjacent if they share an edge or corner with no fence tile (unconstrained
package pin) between them. This is checked in IDF_VIV2-3.

• The pblock constraints in the XDC file are defined such that a minimum of a one tile/PU
wide fence exists between isolated regions. This is checked in IDF_VIV2-4.
Note: For UltraScale+ architecture, fence is unprogrammed PUs and for 7 series FPGAs, fence is
unprogrammed tile.
Note: Refer to (XAPP1335) [Ref 11] for UltraScale+ architecture, and (XAPP1222) [Ref 8] for 7
series FPGA.

Because placement information is not used, VIV assumes 100% utilization of all constrained
resources so that whatever resources are used in the implemented design, an isolation
violation will not occur.

Final Isolation Verification (VIV – Implementation)
After the design is complete (placed and routed), VIV verifies that the required isolation is
achieved in the design. VIV checks the placement and routing as follows:

• Tiles containing isolated logic must be separated by fence tiles. A fence tile cannot
contain any logic (checked in IDF_VIV2-5) and cannot contain any routing (checked in
IDF_VIV2-6) that could lead to an isolation violation with a single fault.

• Fence tiles cannot contain PIPs (checked in IDF_VIV2-6).

The six VIV DRCs are described in detail in the following sections.
Vivado Isolation Verifier 12
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=12

IDF Design Rule Checks
IDF_VIV2-1 - Provenance
IDF_VIV2-1 is an advisory DRC documenting the circumstances of the run. It also validates
that the design has at least two pblocks marked as isolated (using the HD.ISOLATED
property). Nets driven by cells marked HD.ISOLATED_EXEMPT are exempt from inter-region
isolation rules and are listed in the IDF_VIV2-1 output.

Here is an example of IDF_VIV2-1 output:

Vivado Isolation Verifier v2.0 (20180514)
Copyright (C) 2013-2018 Xilinx, Inc. All rights reserved.
Date(GMT): Tue May 15 12:50:38 2018
Top-level: design_1_wrapper
Isolated Partitions: pblock_uram_top_0 pblock_uram_top_1 pblock_uram_top_2
Part: xcvu13p-flga2577-1-i
Directory: c:/xilinx_design/implementation/idflab
User: <username>
Vivado Version: 2018.2
Platform: lnx64
Host: <hostname>

Top Level nets: CE_0, CE_1, CE_2, SCLR_0, SCLR_1, SCLR_2, clka_0, ena_0, clka_1,
clka_2, ena_1, ena_2, regcea_0, regcea_1, regcea_2 (the first 15 of 210 listed)

HD.ISOLATED_EXEMPT nets:
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK0,
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK1 and
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK2.

Inter-region nets:
design_1_i/keccak_0_ISO_Wrapper/buffer_data_reg[0]_0_ISOBUF_pblock_keccakCompare_0_
NewDrv,
M
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK0,
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK1,
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_CLK2,
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_RESET0_N and
design_1_i/ps7_ISO_Wrapper/processing_system7_0/inst/FCLK_RESET1_N.

Note: For UltraScale+ architecture, IDF_VIV2-1 gives an error if there are any pblocks with Snapping
Mode property not set to FINE_GRAINED.

IDF_VIV2-2 - I/O Bank Violation
IDF_VIV2-2 checks that each I/O bank is used by I/O pins of at most one isolation pblock. A
violation of IDF_VIV2-2 is reported as:

Bank: <bank number> has pins from multiple isolated partitions: <partition name>

IDF_VIV2-3 - Package Pin Violation
IDF_VIV2-3 checks that no package pins from distinct isolation pblock are adjacent. A
violation of IDF_VIV2-3 is reported as:
Vivado Isolation Verifier 13
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=13

IDF Design Rule Checks
Package pin adjacency violation: site: <site name> pin: <pin name> vs site: <site name> pin:
<pin name>.

IDF_VIV2-4 - Floorplan Violation
Isolated pblocks must be separated by a valid fence. The definition of a valid fence is
detailed in the Isolation Design Flow documentation. Users must follow the documented
rules for the appropriate technology. Refer to the applicable reference documents identified in
References, page 24. See (XAPP1335) [Ref 11] for additional details on fencing rules and see
(XAPP1222) [Ref 8]) for 7 series fencing rules.

IDF_VIV2-4 checks that floorplan area ranges from distinct isolation pblocks have an
appropriate gap between them. IDF_VIV2-4 checks Derived Range information, not the XDC
Range, i.e. when the user gives in the XDC Range, Vivado computes internally the Derived
Range by taking into account the Programmable Units and the Snapping Mode property of
pblock.

IMPORTANT: IDF requires that users create designs with Snapping mode FINE_GRAINED. Refer to
(XAPP1335) [Ref 11] for detailed rules.

Note: From 2019.2 onwards default value of SNAPPING_MODE for Isolated s is FINE_GRAINED.
Note: PU and Snapping Mode concept needs to be taken into account only for UltraScale+
architecture and not 7 Series.
The following example shows all of the constraints present in an XDC file that are needed to
create a floorplan of an isolated function, into a specific region of the device (using
pblocks).

create_pblock pblock_zup_ISO_Wrapper
add_cells_to_pblock [get_pblocks pblock_zup_ISO_Wrapper] [get_cells -quiet [list
design_1_i/zup_ISO_Wrapper]]
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {SLICE_X14Y150:SLICE_X15Y179
SLICE_X13Y125:SLICE_X13Y179 SLICE_X13Y35:SLICE_X13Y54 SLICE_X0Y0:SLICE_X12Y179}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{BUFCE_LEAF_X64Y8:BUFCE_LEAF_X87Y11 BUFCE_LEAF_X0Y0:BUFCE_LEAF_X63Y11}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{BUFCE_ROW_FSR_X12Y2:BUFCE_ROW_FSR_X16Y2 BUFCE_ROW_FSR_X0Y0:BUFCE_ROW_FSR_X11Y2}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{BUFGCE_HDIO_X0Y4:BUFGCE_HDIO_X1Y5}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {BUFG_PS_X0Y0:BUFG_PS_X0Y71}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {DSP48E2_X0Y0:DSP48E2_X0Y71}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{HARD_SYNC_X2Y4:HARD_SYNC_X3Y5 HARD_SYNC_X0Y0:HARD_SYNC_X1Y5}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{HDIOBDIFFINBUF_X0Y30:HDIOBDIFFINBUF_X0Y35}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{HDIOLOGIC_M_X0Y30:HDIOLOGIC_M_X0Y35}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{HDIOLOGIC_S_X0Y30:HDIOLOGIC_S_X0Y35}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add
{HDIO_BIAS_X0Y2:HDIO_BIAS_X0Y2}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {IOB_X0Y130:IOB_X0Y141}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {PS8_X0Y0:PS8_X0Y0}
Vivado Isolation Verifier 14
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=14

IDF Design Rule Checks
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {RAMB18_X1Y50:RAMB18_X1Y71
RAMB18_X1Y14:RAMB18_X1Y21 RAMB18_X0Y0:RAMB18_X0Y71}
resize_pblock [get_pblocks pblock_zup_ISO_Wrapper] -add {RAMB36_X1Y25:RAMB36_X1Y35
RAMB36_X1Y7:RAMB36_X1Y10 RAMB36_X0Y0:RAMB36_X0Y35}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks pblock_zup_ISO_Wrapper]
set_property HD.ISOLATED true [get_cells */zup_ISO_Wrapper]
set_property HD.ISOLATED_EXEMPT true [get_cells -hierarchical -filter {
PRIMITIVE_TYPE == CLOCK.BUFFER.BUFGCE }]
set_property HD.ISOLATED_EXEMPT true [get_cells -hierarchical -filter
{PRIMITIVE_TYPE =~ CLOCK.BUFFER.BUFG_PS}]
set_property HD.ISOLATED_EXEMPT true [get_cells -hierarchical -filter {
PRIMITIVE_TYPE == CLOCK.BUFFER.BUFGCE }]

A violation of IDF_VIV2-4 takes two forms:

Tile adjacency violation: pblock: <pblock name> tile: <tile name> vs pblock: <pblock
name> tile: <tile name>. Sites: <site name list>.

and

Tile occupancy violation: tile: <tile name> is in multiple isolated pblocks: <pblock
name list>. Sites: <site name list>.

IDF_VIV2-5 - Placement Violation
In contrast to IDF_VIV2-4 which checks XDC information, IDF_VIV2-5 checks placement of
logic as actually implemented. Two simultaneous checks are performed. Firstly, a search for
adjacent logic from distinct isolation modules is performed. In this context, logic is
considered adjacent if the separation between the PUs/tiles containing logic of distinct
isolated modules is not composed of a valid fence. Secondly, a check is performed to ensure
top-level logic does not contain a potential path from one isolation group to another.

A violation of IDF_VIV2-5 takes two forms:

Tile adjacency violation: partition: <partition name> tile: <tile name> vs partition:
<partition name> tile: <tile name>. Sites: <site name list>.

and

Tile occupancy violation: tile: <tile name> is in multiple isolated partitions:
<partition name list>. Sites: <site name list>.

Note: Because IDF_VIV2-5 checks the implemented placement of logic, the results of running
IDF_VIV2-5 are only useful if the design has been implemented. Prior to implementation there is
nothing for IDF_VIV2-5 to check, and therefore no possibility a violation will be found.

IDF_VIV2-6 - Routing Violation
Isolated routing must be separated by an adequate fence and trusted routing must satisfy
the following:

• Inter-region routes have loads in exactly one isolation group.
Vivado Isolation Verifier 15
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=15

Installation
• No routing switches (PIPs) are used in the fence.
• Inter-region routes cannot share a tile unless source regions match and load regions

match.
• An intra-region route cannot enter a fence tile or an isolated tile of another isolation

group unless it is driven by a cell marked with the HD.ISOLATED_EXEMPT property.

Note: It might be useful to enable Routing Resources mode under View > Routing Resources in the
menu or using the icon in the Device window.
Note: Because IDF_VIV2-6 checks the implemented routing, the results of running IDF_VIV2-6 are
only useful if the design has been routed. Prior to implementation, there is nothing for IDF_VIV2-6 to
check, and therefore no possibility a violation will be found.

Installation
Although VIV2.0 is being made available with Vivado since the 2018.2 Vivado release, it is
disabled by default. Customers interested in IDF can enable it if they wish and thus VIV DRCs
do not affect the normal development flow. Thus, the user must enable VIV explicitly by
setting the hd.enableIDFDRC parameter to true by following any one of the following
methods:

• Go to the Vivado Tcl Console, and enter the following command at the lower portion of
the window (see Figure 2):
set_param hd.enableIDFDRC true
Vivado Isolation Verifier 16
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=16

Installation
The hd.enableIDFDRC parameter value will not be saved to project or DCP. Hence, user
needs to set the parameter whenever they launch Vivado session to enable VIV DRCs, or
alternately, add the set param command in the Vivado_init.tcl file to enable IDF DRCs
permanently. This is helpful for customers always involved in IDF designs. The init file is
under the ~/.Xilinx/Vivado/2018.2 directory. If you do not see the file under that
directory, you need to create the file and add the following command to the init file:

set_param hd.enableIDFDRC true

X-Ref Target - Figure 1-1

Figure 2: Enable IDF DRCs by Setting the hd.enableIDFDRC Parameter
Vivado Isolation Verifier 17
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=17

Usage
Usage
When VIV is enabled by setting hd.enableIDFDRC to true, the Report DRC window will
contain the six additional IDF DRCs under the category heading Isolation as shown in
Figure 3. Note that the option under Isolation is not related to IDF and need not be
checked.

X-Ref Target - Figure 3

Figure 3: IDF DRCs Selected in the Report DRC Dialog Box
Vivado Isolation Verifier 18
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=18

Invoking VIV DRCs
Invoking VIV DRCs
Users invoke these DRCs using the Vivado DRC interface just like built-in DRCs. Results are
provided in tabular form in the GUI with hyperlinks to design elements related to potential
isolation violations. The VIV DRCs also contribute to the text-based output of the Vivado
DRC reporting system.

Each line can be selected for additional detail in the Design Rule Properties window.
Design objects associated with the DRC are automatically highlighted in the Device and
Package windows.

Note: Specific DRCs can also be invoked using the following Tcl command:

report_drc -verbose -checks {IDF_VIV2-1 IDF_VIV2-2 IDF_VIV2-3
IDF_VIV2-4 IDF_VIV2-5 IDF_VIV2-6}

DRCs can be invoked at several stages of the flow. Some IDF DRCs can be run on the design
constraints. IDF DRCs (for the implemented design) can be run after the design is
implemented.

• IDF_VIV2-1 is a provenance DRC and can be run at any time in the flow.
• IDF_VIV2-2, IDF_VIV2-3 & IDF_VIV2-4 can be run once synthesis has been performed.
• IDF_VIV2-5 and IDF_VIV2-6 examine the implementation, thus the Implementation step

must be completed for IDF_VIV2-5 and IDF_VIV2-6 to have something to check.

An example DRC report in the Vivado GUI is shown in Figure 4.
Vivado Isolation Verifier 19
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=19

Invoking VIV DRCs
X-Ref Target - Figure 4

Figure 4: IDF DRC Violations from Example Design
Vivado Isolation Verifier 20
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=20

Invoking VIV DRCs
Note that the highlighted DRC (IDF_VIV2 #1) in Figure 4 refers to a package pin adjacency
violation. When this line is highlighted, the corresponding I/O buffers are selected in the
Device window as shown in Figure 5.

X-Ref Target - Figure 5

Figure 5: Tile Adjacency Violations Highlighted in Device Window
Vivado Isolation Verifier 21
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=21

Invoking VIV DRCs
The text of the violation is displayed in two places in the GUI. The first line of the text is
displayed in the DRC report table as shown in Figure 4. The complete text along with links
to the sites associated with the violation, are displayed in the Details pane of the Violation
Properties window as shown in Figure 6.

IMPORTANT: In case of IDF violations with a large number of violating sites, by default all of those sites
are not listed in the IDF violation text. The site list is truncated. You can enable VIV to list all the
violating sites by setting drc.maxReportedNames to maximum value. Run the following command
before running the VIV DRCs. This option is available in Vivado 2020.1 and later versions only:
set_param drc.maxReportedNames 9999

IMPORTANT: If DRC output is captured into a text file then the long violations will be displayed in
multiple lines when above option is used. You can display the entire violation in a single line by setting
maximum characters per line with the following parameter setting:
set_param drc.maxReportedChars 9999

X-Ref Target - Figure 6

Figure 6: Details Pane of the Violation Properties Window

Vivado Isolation Verifier 22
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=22

Application Notes
Application Notes
Table 2 lists the documentation available and upcoming through the Isolation Design Flow
(IDF) website.

Table 2: Isolation Design Flow Development Application Notes
FPGA Family Vivado Version Application Note Comments

7 series and Zynq-7000 Vivado 2015.2 XAPP1222 IDF Rules and Guidelines

7 series and Zynq-7000 Vivado 2015.2 XAPP1256 IDF Lab Tutorial App Note

UltraScale+ Vivado 2018.2 XAPP1335 IDF Rules and Guidelines for
UltraScale+

UltraScale+ Vivado 2018.2 XAPP1336 IDF Lab Tutorial App Note for
UltraScale+
Vivado Isolation Verifier 23
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=23

Xilinx Resources
Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx®Documentation Navigator (DocNav) provides access to Xilinx documents, videos,
and support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado®IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In DocNav, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx
website.

References
1. Isolation Design Flow website www.xilinx.com/idf
2. Vivado Isolation Verifier User Guide (Tcl Based) (UG1290)
3. The Xilinx Isolation Design Flow for Fault-Tolerant Systems (WP412)
4. Vivado Design Suite Tcl Command Reference Guide (UG835)
Vivado Isolation Verifier 24
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/applications/isolation-design-flow.html
https://www.xilinx.com/support/documentation/white_papers/wp412_IDF_for_Fault_Tolerant_Sys.pdf

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp412_IDF_for_Fault_Tolerant_Sys.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1290-viv-tcl.pdff
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1290-viv-tcl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=24

Please Read: Important Legal Notices
5. Vivado Design Suite User Guide - Using Constraints (UG903)
6. Vivado Design Suite User Guide - Hierarchical Design (UG905)
7. Vivado Design Suite Tutorial - Hierarchical Design (UG946)
8. Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000 SoCs (Vivado Tools)

(XAPP1222)
9. Zynq-7000 SoCs or 7 Series FPGAs Isolation Design Flow Lab (Vivado Design Suite)

(XAPP1256)
10. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
11. Isolation Design Flow for UltraScale+ Devices and the Zynq UltraScale+ MPSoC

(XAPP1335)
12. Isolation Design Example for the Zynq UltraScale+ MPSoC (XAPP1336)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2018 - 2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. PCI,
PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective
owners.
Vivado Isolation Verifier 25
UG1291 (v1.1) July 27, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1335-isolation-design-flow-mpsoc.pdf

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1336-isolation-design-flow-example-mpsoc.pd

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;d=ug905-vivado-hierarchical-design.pd

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1256-idf-for-zynq-vivado.pdf

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1222-idf-for-7s-or-zynq-vivado.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug903-vivado-using-constraints.pdf

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug946-vivado-hierarchical-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.2;d=ug946-vivado-hierarchical-design-tutorial.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1256-idf-for-zynq-vivado.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1336-isolation-design-flow-example-mpsoc.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1291&Title=Vivado%20Isolation%20Verifier&releaseVersion=1.1&docPage=25

	Vivado Isolation Verifier
	Revision History
	Table of Contents
	Vivado Isolation Verifier
	Introduction
	Supported Devices
	VIV History
	Definitions
	FPGA Architecture
	The FPGA Development Flow with Isolation Analysis
	IDF Design Rule Checks
	Constraint Checking (VIV – Constraints)
	Final Isolation Verification (VIV – Implementation)
	IDF_VIV2-1 - Provenance
	IDF_VIV2-2 - I/O Bank Violation
	IDF_VIV2-3 - Package Pin Violation
	IDF_VIV2-4 - Floorplan Violation
	IDF_VIV2-5 - Placement Violation
	IDF_VIV2-6 - Routing Violation

	Installation
	Usage
	Invoking VIV DRCs
	Application Notes
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

