
Vitis AI Library User Guide

UG1354 (v1.0) December 2, 2019

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
12/02/2019 Version 1.0

Entire document Updated the content for Vitis™ AI v1.0.
Removed support for the Ultra96 board.

08/13/2019 Version 2.0

Entire document Updated framework figure.
Added “About this document” and “Release Notes” in
Chapter 1.
Updated Installation in Chapter 2.
Added Programming Examples chapter.
Added Application demos chapter.
Added Resnet18, face landmark and ReID model.
Updated Performance data for ZCU102, ZCU104,Ultra96.
Removed the original Chapter 3: Installation.
Removed the original Chapter 4: Cross-Compiling
Removed the original Chapter 6: Libraries Advanced
Application.
Removed Roadline_deephi Model.

05/31/2019 Version 1.2

Chapter 3: Libraries and Samples Added Inception_V4, YOLOV2, Roadline_deephi model.
Removed RefineDet_640x480 model.

Chapter 7: Performance Updated Performance data for ZCU102, ZCU104, Ultra96.

05/24/2019 Version 1.1

Entire document Editorial updates.

04/29/2019 Version 1.0

Initial release. N/A

Revision History

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5
About this Document..5
Overview...6
Block Diagram..7
Features..8
Vitis AI Library 1.0 Release Notes.. 9

Chapter 2: Installation...13
Downloading the Vitis AI Library...13
Setting Up the Host...13
Setting Up the Target..15
Running Vitis AI Library Examples.. 17
Support... 19

Chapter 3: Libraries and Samples..20
Model Library...21
Model Samples.. 32

Chapter 4: Programming Examples... 34
Developing With Vitis AI API_0...35
Developing with User Model and AI Library API_2..37
How to Customize Pre-Processing.. 39
How to Use the Configuration File.. 40
How to Implement User Post-Processing Code.. 44
How to Use the AI Library's Post-Processing Library... 45

Chapter 5: Application Demos...48
Demo Overview... 48
Demo Platform and Setup..48
Demo 1: Multi-Task Segmentation + Car Detection and Road Line Detection.................. 50
Demo 2: Multi-Task Segmentation+Car Detection and Pose Detection.............................51

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=3

Chapter 6: Programming APIs...53

Chapter 7: Performance..54
ZCU102 Performance..54
ZCU104 Performance..56

Appendix A: Additional Resources and Legal Notices............................. 58
Xilinx Resources...58
Documentation Navigator and Design Hubs...58
Please Read: Important Legal Notices... 59

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=4

Chapter 1

Introduction

About this Document
Related Version

The following AI Library version is related to this document.

Table 1: Vitis AI Library Packet List

No Packet Name Version
1 vitis_ai_library_r1.0_video.tar.gz r1.0

2 vitis_ai_library_2019.2-r1.0.deb r1.0

3 vitis_ai_model_ZCU102_2019.2-r1.0.deb r1.0

4 vitis_ai_model_ZCU104_2019.2-r1.0.deb r1.0

Intended Audience

The users of Vitis AI libraries are as follows:

• Users who want to use Xilinx’s models to quickly build applications.

• Users who use their own models that are retrained by their own data under the Vitis AI library
support network list.

• Users who have custom models, similar to the model supported by the Vitis AI libraries, and
use the Vitis AI’s post processing library.

Note: If the users have custom models that are completely different from the model supported by the AI
Library or has a special post-processing part, they can also use our samples and libraries implementation
for reference.

Document Navigation

This document describes how to install, use, and develop with the AI Library.

• Chapter 1 is an introduction to the AI Library. This chapter provides a clear understanding of
the AI Library in general, its framework, supported networks, supported hardware platforms
and so on.

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=5

• Chapter 2 describes how to install the AI Library and run the example. The information in this
chapter will help quickly set up the host and target environments, compile and execute the AI
Library related examples.

• Chapter 3 describes, in detail, each model library supported by the AI Library. This chapter
provides an understanding of the model libraries supported by the AI Library, the purpose of
each library, how to test the library with images or videos, and how to test the performance of
the library.

• Chapter 4 describes, in detail, how to develop applications with AI Library. This chapter
provides an understanding of the following:

○ Development using Vitis API

○ Development using your models

○ Customizing pre-processing

○ Using the configuration file as pre-processing and post-processing parameters

○ Using the post-processing library in AI Library

○ Implementing your post-processing code

• Chapter 5 describes how to set up a test environment and run the application demos. There
are two application demos provided with the Vitis AI Library.

• Chapter 6 describes how to find the programming APIs.

• Chapter 7 describes, in detail, the performance of the Vitis AI library on different boards.

Overview
The Vitis AI Library is a set of high-level libraries and APIs built for efficient AI inference with
Deep-Learning Processor Unit (DPU). It is built based on the Vitis AI Runtime with unified APIs,
and it fully supports XRT 2019.2.

The Vitis AI Library provides an easy-to-use and unified interface by encapsulating many efficient
and high-quality neural networks. This simplifies the use of deep-learning neural networks, even
for users without knowledge of deep-learning or FPGAs. The Vitis AI Library allows users to
focus more on the development of their applications, rather than the underlying hardware.

For the intended audience for the AI Library, please refer to the About this Document section.

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=6

Block Diagram
The Vitis AI Library contains four parts: the base libraries, the model libraries, the library test
samples, and the application demos.

The base libraries provide the operation interface with the DPU and the post-processing module
of each model. dpbase is the interface library for DPU operations. xnnpp is the post-processing
library of each model, with build-in modules such as optimization and acceleration.

Note: The xnnpp library is a closed source.

The model libraries implement most of the neural network deployment which are open source.
They include common types of networks, such as classification, detection, segmentation, and so
on. These libraries provide an easy-to-use and fast development method with a unified interface,
which are applicable to the Xilinx models or custom models. The library test samples are used to
quickly test and evaluate the model libraries. The application demos show users how to use AI
Library to develop applications. The Vitis AI Library block diagram is shown in the following
figure.

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=7

Figure 1: Vitis AI Library Block Diagram

Features
The Vitis AI Library features include:

• A full-stack application solution from top to buttom

• Optimized pre- and post-processing functions/libraries

• Open-source model libraries

• Unified operation interface with the DPU and the pre-processing and post-processing
interface of the model

• Practical, application-based model libraries, pre-processing and post-processing libraries, and
application examples

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=8

Vitis AI Library 1.0 Release Notes
This section contains information regarding the features and updates of the Vitis AI Library 1.0
release. This release is the successor of last Xilinx AI SDK v2.0 release.

The Vitis AI Library is a set of high-level libraries and APIs built for efficient AI inference with
Deep-Learning Processor Unit (DPU). It provides an easy-to-use and unified interface by
encapsulating many efficient and high-quality neural networks.

Key Features And Enhancements

This AI Library release includes the following key features and enhancements.

• Support for new Vitis AI Runtime: Vitis AI Library is updated to be based on the new Vitis AI
Runtime with unified APIs. It also fully supports XRT 2019.2.

• New DPU support: Besides DPUv2 for edge devices, new AI Library will support new cloud
based DPU IPs using same codes (runtime and models for cloud DPU will not be included in
this release).

• New Tensorflow model support: There are up to 21 tensorflow models supported, which are
from official Tensorflow repository. The pre-compiled models for edge devices are included,
while original models are released by updated Model Zoo.

• New Libraries and Demos: There are two new libraries libdpmultitask and libdptfssd
which supports multi-task models and SSD models from official tensor repository.

There is an updated classification demo that shows how to uses unified APIs in Vitis AI
runtime.

• New Open Source Library: The libdpbase library is open source in this release, which
shows how to use unified APIs in Vitis AI runtime to construct high-level libraries.

• New Installation Method: The host side environment adopts docker image installation, which
simplifies and unifies the installation process.

Compatibility

• Vitis AI Library 1.0 has been tested with the following images.

○ xilinx-zcu102-dpu-v2019.2.img

○ xilinx-zcu104-dpu-v2019.2.img

• For existing Xilinx AI SDK v2.0 users, the library interface remains consistent and the
application can be directly ported to the new Vitis AI Library.

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=9

Model Support

The following models are supported by this version of the Vitis AI Library.

Table 2: Model Supported by the AI Library

No. Neural Network Application
1 inception_resnet_v2_tf Image Classification

2 inception_v1_tf

3 inception_v3_tf

4 inception_v4_2016_09_09_tf

5 mobilenet_v1_0_25_128_tf

6 mobilenet_v1_0_5_160_tf

7 mobilenet_v1_1_0_224_tf

8 mobilenet_v2_1_0_224_tf

9 mobilenet_v2_1_4_224_tf

10 resnet_v1_101_tf

11 resnet_v1_152_tf

12 resnet_v1_50_tf

13 vgg_16_tf

14 vgg_19_tf

15 ssd_mobilenet_v1_coco_tf Object Detection

16 ssd_mobilenet_v2_coco_tf

17 ssd_resnet_50_fpn_coco_tf

18 yolov3_voc_tf

19 mlperf_ssd_resnet34_tf

20 resnet50 Image Classification

21 resnet18

22 inception_v1

23 inception_v2

24 inception_v3

25 inception_v4

26 mobilenet_v2

27 squeezenet

28 ssd_pedestrain_pruned_0_97 ADAS Pedestrian Detection

29 ssd_traffic_pruned_0_9 Traffic Detection

30 ssd_adas_pruned_0_95 ADAS Vehicle Detection

31 ssd_mobilenet_v2 Object Detection

32 refinedet_pruned_0_8

33 refinedet_pruned_0_92

34 refinedet_pruned_0_96

35 vpgnet_pruned_0_99 ADAS Lane Detection

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=10

Table 2: Model Supported by the AI Library (cont'd)

No. Neural Network Application
36 fpn ADAS Segmentation

37 sp_net Pose Estimation

38 openpose_pruned_0_3

39 densebox_320_320 Face Detection

40 densebox_640_360

41 face_landmark Face Detection and Recognition

42 reid Object tracking

43 multi_task ADAS

44 yolov3_adas_pruned_0_9 Object Detection

45 yolov3_voc

46 yolov3_bdd

47 yolov2_voc

48 yolov2_voc_pruned_0_66

49 yolov2_voc_pruned_0_71

50 yolov2_voc_pruned_0_77

Notes:
1. No1-No19 neural network models are trained based on the Tensorflow framework.
2. No20-No50 neural network models are trained based on the Caffe framework.

Device Support

The following platforms and EVBs are supported by the Vitis AI Library1.0.

Table 3: Device Support

Platform EVB Version
Zynq UltraScale+ MPSoC ZU9EG Xilinx ZCU102 V1.1

Zynq® UltraScale+™ MPSoC ZU7EV Xilinx ZCU104 V1.0

Limitations

Because of the complicated configuration for SSD models from the official Tensorflow repository,
there is a new libdptfssd library that is different from the original libdpssd library for caffe
models. These two libraries may be merged in future releases.

Deprecated Features

The following features are deprecated in Vitis AI Library 1.0.

• Removed demos.

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=11

The squeezenet and SSD demos have been removed. Because we highly encourage customers
to use high-level APIs from AI Library for applications and solutions, we only provide one
classification demo in this release to show how to use low-level unified APIs in Vitis AI
runtime.

• Removed pre-compiled models.

We removed six Tensorflow models in this release but provided in the previous Xilinx AI v2.0
release, to keep sync with updated Model Zoo. Models that are removed can be replaced by
similar models in updated Model Zoo which come from Tensorflow slim models. The models
are:

• resnet_50_tf

• inception_v1_tf

• resnet_18_tf

• mobilenet_v1_tf

• mobilenet_v2_tf

• ssd_voc_tf

Chapter 1: Introduction

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=12

Chapter 2

Installation

Downloading the Vitis AI Library
The Vitis AI Library package can be freely downloaded after registration on the Xilinx website.

Xilinx recommends that you use a Vitis AI Library-supported evaluation board to allow you to
become familiar with the product. Refer to https://www.xilinx.com/products/design-tools/ai-
inference/ai-developer-hub.html#edge for more details about the Vitis AI Library-supported
evaluation boards.

The evaluation boards supported for this release are:

• Xilinx ZCU102

• Xilinx ZCU104

Setting Up the Host
The host side development environment is setting up by docker image.

1. Download the vitis-ai-docker-runtime image from https://www.xilinx.com/products/
design-tools/vitis/vitis-ai.html

2. Set up the docker runtime system according to the docker installation document.

$sh docker_run.sh

After the docker image is installed, the cross compiler tools are stored in /opt/vitis_ai/
petalinux_sdk/.

Note: A workspace folder will be created by the docker runtime system. And it will be mounted in /
workspace of the docker runtime system.

3. Place the program, data and other files to be developed in the workspace folder. After the
docker system starts, you will find them in the /workspace of the docker system.

Do not put the files in any other path of the docker system. They will be lost after you exit
the docker system.

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 13Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=13

4. Using Git, clone the corresponding AI Library from https://github.com/Xilinx/Vitis-AI.

$cd /workspace
$git clone https://github.com/Xilinx/Vitis-AI.git

5. Cross compile the demo in the AI Library, using yolov3 as example,

$cd /workspace/Vitis-AI/Vitis-AI-Library/demo/demo_yolov3
$sh -x build.sh

If you don’t want to print information during compilation, execute the following command.

$sh build.sh

If the compilation process does not report any error and the executable file demo_yolov3 is
generated, the host environment is installed correctly.

6. To compile the library sample in the AI Library, take classification for example, execute
the following command.

$cd /workspace/Vitis-AI/Vitis-AI-Library/samples/classification
$sh -x build.sh

The executable program is now produced.

7. To modify the library source code, view and modify them under /workspace/Vitis-AI/
Vitis-AI-Library/libsrc.

If you want to recompile the library, take libdpclassification for example, execute the
following command:

$cd /workspace/Vitis-AI/Vitis-AI-Library/libsrc/libdpclassification
$sh -x build.sh

The libdpclassification.so, the library’s test program and the library’s example
programs are now generated. If you want to change the compilation rules, check and change
the CMakeLists.txt in the library’s directory.

Note: All the source code, samples, demos, and head files can be found in /workspace/Vitis-AI/
Vitis-AI-Library.

AI Library File Locations
The following table shows the AI Library file location after the installation is complete.

Table 4: AI Library File Location List

Files Location
Sour code of the libraries /workspace/Vitis-AI/Vitis-AI-Library/libsrc

Library files /opt/vitis_ai/petalinux_sdk/sysroots/aarch64-xilinx-linux/usr/lib

Header files /opt/vitis_ai/petalinux_sdk/sysroots/aarch64-xilinx-linux/usr/
include/xilinx/ai

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 14Send Feedback

https://github.com/Xilinx/Vitis-AI
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=14

Table 4: AI Library File Location List (cont'd)

Files Location
Samples /workspace/Vitis-AI/Vitis-AI-Library/samples

Demos /workspace/Vitis-AI/Vitis-AI-Library/demo

Test /workspace/Vitis-AI/Vitis-AI-Library/libsrc/[model]/test

Notes:
The following symbols/abbreviations are used.
• /workspace/ is the path to extract the AI Library compressed package in the docker system.

• /opt/vitis_ai is the docker system's path.

• “Samples” is used for rapid application construction and evaluation, and it is for users.
• “Demos” provides more practical examples for user development, and it is for users.
• “Test” is a test example for each model library which is for library developers.

Setting Up the Target
To set up the target, you should follow three steps. The first step is to install the board image,the
second step is to install the AI model packet, and the third step is to install the AI Library packet.

Note: The version of the board image should be 2019.2 or above.

Step 1: Installing a Board Image
1. Download the SD card system image files from https://www.xilinx.com/products/design-

tools/ai-inference/ai-developer-hub.html#edge (such as ZCU102 or ZCU104).

2. Use Win32DiskImager (free opensource software) to burn the image file onto the SD card.

3. Insert the SD card with the image into the destination board.

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 15Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=15

4. Plug in the power and boot the board using the serial port to operate on the system.

5. Set up the IP information of the board using the serial port.

You can now operate on the board using SSH.

Step 2: Installing AI Model Package
1. Download the vitis_ai_model_ZCU102_2019.2-r1.0.deb packet.

2. Copy the downloaded file to the board using scp with the following command.

$scp vitis_ai_model_ZCU102_2019.2-r1.0.deb root@IP_OF_BOARD:~/

Note: The deb package can be taken as a normal archive, and you can extract the contents on the host
side if you only need part of the models. The operation command is as follows.

$mkdir extract
$dpkg -X vitis_ai_model_ZCU102_2019.2-r1.0.deb extract

3. Log in to the board (usong ssh or serial port) and install the model package.

4. Run the following command.

#dpkg -i vitis_ai_model_ZCU102_2019.2-r1.0.deb

After the installation is complete, the model files are stored in /usr/share/
vitis_ai_library/models on the target side.

Step 3: Installing AI Library Package
1. Download the vitis_ai_library_2019.2-r1.0.deb packet.

2. Copy the downloaded file to the board using scp with the following command.

$scp vitis_ai_library_2019.2-r1.0.deb root@IP_OF_BOARD:~/

Note: You can take the deb package as a normal archive, and extract the contents on the host side, if
you only need some of the libraries. Only model libraries can be separated dependently, while the
others are common libraries. The operation command is as follows.

$mkdir extract
$dpkg -X vitis_ai_library_2019.2-r1.0.deb extract

3. Log in to the board using ssh.

You can also use the serial port to login.

4. Install the Vitis AI Library.

Execute the following command.

#dpkg -i vitis_ai_library_2019.2-r1.0.deb

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=16

After the installation is complete, the directories are as follows.

• Library files are stored in /usr/lib

• The header files are stored in /usr/include/xilinx/ai

• Samples are stored in /usr/share/vitis_ai_library/samples

• Demos are stored in /usr/share/vitis_ai_library/demo

Running Vitis AI Library Examples
There are two ways to compile a program. One is to cross-compile the program through the host
and the other is to compile the program directly on the target board. Both methods have
advantages and disadvantages. In this section, we compile and run the examples directly on the
target machine.

1. Enter the extracted directory of example in target board and then compile each of the
examples.

#cd /usr/share/vitis_ai_library/samples/facedetect

2. Run the example.

#./test_jpeg_facedetect densebox_640_360 sample_facedetect.jpg

If the above executable program does not exist, run the following command to compile and
generate the corresponding executable program.

#sh -x build.sh

3. View the running results.

There are two ways to view the results. One is to view the results by printing information,
while the other is to view images by downloading the sample_facedetect_result.jpg
image as shown in the following image.

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=17

Figure 2: Face Detection Example

4. To run the video example, run the following command:

#./test_video_facedetect densebox_640_360 video_input.mp4 -t 8
Video_input.mp4: The video file's name for input.The user needs to
prepare the videofile.
-t: <num_of_threads>

5. To test the program with a USB camera as input, run the following command:

#./test_video_facedetect densebox_640_360 0 -t 8
0: The first USB camera device node. If you have multiple
 USB camera, the value might be 1,2,3 etc.
-t: <num_of_threads>

IMPORTANT! Enable X11 forwarding with the following command (suppose in this example that the host
machine IP address is 192.168.0.10) when logging in to the board using an SSH terminal because all the video
examples require a Linux windows system to work properly.

#export DISPLAY=192.168.0.10:0.0

6. To test the performance of model, run the following command:

#./test_performance_facedetect densebox_640_360
test_performance_facedetect.list -t 8 -s 60

-t: <num_of_threads>

-s: <num_of_seconds>

For more parameter information, enter -h for viewing. The following image shows the result
of performance testing in 8 threads.

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=18

Figure 3: Face Detection Performance Test Result

7. To check the version of Vitis AI Library, run the following command:

#vitis_ai

8. To run the demo, refer to Chapter 5: Application Demos.

Support
You can visit the Vitis AI Library community forum on the Xilinx website https://https://
forums.xilinx.com/t5/Machine-Learning/bd-p/Deephi for topic discussions, knowledge sharing,
FAQs, and requests for technical support.

Chapter 2: Installation

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 19Send Feedback

https://forums.xilinx.com/xxxxxxxxxx
https://forums.xilinx.com/t5/Machine-Learning/bd-p/Deephi
https://forums.xilinx.com/t5/Machine-Learning/bd-p/Deephi
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=19

Chapter 3

Libraries and Samples
The Vitis AI Library contains the following types of neural network libraries based on Caffe
framework:

• Classification

• Face detection

• SSD detection

• Pose detection

• Semantic segmentation

• Road line detection

• YOLOV3 detection

• YOLOV2 detection

• Openpose detection

• RefineDet detection

• ReID detection

• Multitask

Also, the Vitis AI Library contains the following types of neural network libraries based on
Tensorflow framework:

• Classification

• SSD detection

• YOLOv3 detection

The related libraries are open source and can be modified as needed. The open source codes are
stored in the /workspace/Vitis-AI/Vitis-AI-Library/libsrc directory in the docker
system.

The Vitis AI Library provides image test samples and video test samples for all the above
networks. In addition, the kit provides the corresponding performance test program. For video
based testing, we recommend to use raw video for evaluation. Because decoding by software
libraries on Arm® CPU may have inconsistent decoding time, which may affect the accuracy of
evaluation.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=20

Note: All the sample programs can only run on the target side, but all the sample programs can be cross
compiled on the host side or compiled on the target side.

Model Library
After the model packet is installed on the target, all the models are stored under /usr/share/
vitis_ai_library/models/. Each model is stored in a separate folder, which is composed
of the following files by default.

• [model_name].elf

• [model_name].prototxt

• meta.json

Take the "inception_v1" model as an example. "inception_v1.elf" is the model data.
"inception_v1.prototxt" is the parameter of the model. meta.json is the configuration file of
the model. The application will get the model info through this configuration file. The following
table is detail description of meta.json.

Table 5: The content of the "meta.json"

Element Instruction
target The type of DPU, such as DPUv2 and DPUv3E

lib The driver of DPU, such as "libvart_dpu.so"

filename The name of model file

kernel The kernel name of the model

config_file The parameter file name of the model

Note that the meta.json file should be under the same directory with the model file and the
name of the model directory should be the same with the model name.

Model Type

Classification

This library is used to classify images. Such neural networks are trained on ImageNet for ILSVRC
and they can identify the objects from its 1000 classification. The AI Library r1.0 integrated
Resnet18, Resnet50, Inception_v1, Inception_v2, Inception_v3, Inception_v4, Vgg, mobilenet_v1,
mobilenet_v2 and Squeezenet into our library. The input is a picture with an object and the
output is the top-K most probable category.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=21

Figure 4: Classification Example

The following table shows the classification model supported by the AI Library.

Table 6: The Classification Model List

No Model Name Framework
1 inception_resnet_v2_tf Tensorflow

2 inception_v1_tf

3 inception_v3_tf

4 inception_v4_2016_09_09_tf

5 mobilenet_v1_0_25_128_tf

6 mobilenet_v1_0_5_160_tf

7 mobilenet_v1_1_0_224_tf

8 mobilenet_v2_1_0_224_tf

9 mobilenet_v2_1_4_224_tf

10 resnet_v1_101_tf

11 resnet_v1_152_tf

12 resnet_v1_50_tf

13 vgg_16_tf

14 vgg_19_tf

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=22

Table 6: The Classification Model List (cont'd)

No Model Name Framework
15 resnet50 Caffe

16 resnet18

17 inception_v1

18 inception_v2

19 inception_v3

20 inception_v4

21 mobilenet_v2

22 squeezenet

Face Detection

This library uses DenseBox neuron network to detect human face. Input is a picture with some
faces you would like to detect. Output is a vector of the result structure containing each box’s
information.

The following image show the result of face detection.

Figure 5: Face Detection Example

The following table shows the face detection model supported by the AI Library.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=23

Table 7: The face detection model list

No Model Name Framework
1 densebox_320_320 Caffe

2 densebox_640_360

Face Landmark Detection

The Face Landmark Network is used to detect five key points of a face. The five points include
the left eye, the right eye, nose, left lip of mouth, right lip of mouth. This network is used to
correct face direction before face feature extraction. The input image should be a face which is
detected by the face detection network. The outputs of the network are 5 key points. The 5 key
points are normalized. The following image show the result of face detection.

Figure 6: Face Landmark Detection Example

The following table shows the face landmark model supported by the AI Library.

Table 8: The face landmark model list

No Model Name Framework
1 face_landmark Caffe

SSD Detection

This library is in common use to SSD neuron network. SSD is a neural network which is used to
detect objects. Input is a picture with some objects you’d like to detect. Output is a vector of the
result structure containing each box’s information. The following image shows the result of SSD
detection.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=24

Figure 7: SSD Detection Example

The following table shows the SSD detection model supported by the AI Library.

Table 9: The SSD Model List

No Model Name Framework
1 ssd_mobilenet_v1_coco_tf Tensorflow

2 ssd_mobilenet_v2_coco_tf

3 ssd_resnet_50_fpn_coco_tf

4 mlperf_ssd_resnet34_tf

5 ssd_pedestrain_pruned_0_97 Caffe

6 ssd_traffic_pruned_0_9

7 ssd_adas_pruned_0_95

8 ssd_mobilenet_v2

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=25

Pose Detection

This library is used to detect posture of the human body. This library includes a neural network
which can mark 14 key points of the human body (you can use our SSD detection library). The
input is a picture that is detected by the pedestrian detection neural network. The output is a
structure containing coordinates of each point .

The following image shows the result of pose detection.

Figure 8: Pose Detection Example

The following table shows the pose detection model supported by the AI Library.

Table 10: The pose detection model list

No Model Name Framework
1 sp_net Caffe

Note: If the input image is arbitrary and the user does not know the exact location of the person, we must
perform the SSD detection first. See the test_jpeg_posedetect_with_ssd.cpp file. If the input
picture is the picture of the person who has been cut out, you can only perform pose detection. See the
test_jpeg_posedetect.cpp file.

Semantic Segmentation

The semantic segmentation of image is to assign a semantic category to each pixel in the input
image, so as to obtain the pixelated intensive classification. Libsegmentation is a segmentation lib
which can be used in ADAS field. It offers simple interfaces for developer to deploy segmentation
task on Xilinx FPGA.

The following is an example of semantic segmentation, where the goal is to predict class labels
for each pixel in the image.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=26

Figure 9: Semantic Segmentation Example

The following table shows the semantic segmentation model supported by the AI Library.

Table 11: The semantic segmentation model list

No Model Name Framework
1 fpn Caffe

Road Line Detection

The library is used to draw lane lines in the adas library and each lane line is represented by a
number type representing the category and a vector<Point> used to draw the lane line. In the
test code, color map is used. Different types of lane lines are represented by different colors. The
point is stored in the container vector, and the polygon interface cv::polylines() of OpenCv is used
to draw the lane line. The following image show the result of road line detection.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=27

Figure 10: Road Line Detection Example

The following table shows the road line detection model supported by the AI Library.

Table 12: The road line detection model list

No Model Name Framework
1 vpgnet_pruned_0_99 Caffe

Note: The input of the image is fixed at 480x640 and images of other sizes need to be resized.

YOLOV3 Detection

This lib is in common use to YOLO neuron network. YOLO is a neural network which is used to
detect objects. Now its version is v3. Input is a picture with one or more objects. Output is a
vector of the result struct which is composed of the detected information. The following image
shows the result of YOLOv3 detection.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=28

Figure 11: YOLOv3 Detection Example

The following table shows the YOLOv3 detection model supported by the AI Library.

Table 13: The YOLOv3 detection model list

No Model Name Framework
1 yolov3_voc_tf Tensorflow

2 yolov3_adas_pruned_0_9 Caffe

3 yolov3_voc

4 yolov3_bdd

YOLOV2 Detection

YOLOV2 does the same thing as YOLOV3, which is an upgraded version of YOLOV2. The
following table shows the YOLOv2 detection model supported by the AI Library.

Table 14: The YOLOv2 detection model list

No Model Name Framework
1 yolov2_voc Caffe

2 yolov2_voc_pruned_0_66

3 yolov2_voc_pruned_0_71

4 yolov2_voc_pruned_0_77

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=29

Openpose Detection

The library is used to draw the person's posture. It is represented by the line between the point
and the point, with points stored as pairs. Every pair represents a connection and the result is the
set of pairs, stored as vectors. The following image show the result of openpose detection.

Figure 12: Openpose Detection Example

The following table shows the Openpose detection model supported by the AI Library.

Table 15: The Openpose detection model list

No Model Name Framework
1 openpose_pruned_0_3 Caffe

RefineDet Detection

This library is commonly used to RefineDet neuron network. RefineDet is a neural network that is
used to detect human bodies. The input is a picture with some individuals that you would like to
detect. The output is a vector of the result structure that contain each box’s information.

The following image shows the result of RefineDet detection:

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=30

Figure 13: RefineDet Detection Example

The following table shows the RefineDet detection model supported by the AI Library.

Table 16: The RefineDet detection model list

No Model Name Framework
1 refinedet_pruned_0_8 Caffe

2 refinedet_pruned_0_92

3 refinedet_pruned_0_96

ReID Detection

The task of person re-identification is to identify a person of interest at another time or place.
This is done by extracting the image feature and comparing the features. Images of same identity
ought to have similar features and get small feature distance, while images of different identities
have large feature distance. With a queried image and a pile of candidate images given, the image
that has the smallest distance is identified as the same person as the queried image. The
following table shows the ReID detection model supported by the AI Library.

Table 17: The ReID detection model list

No Model Name Framework
1 reid Caffe

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=31

Multi-task

The multi-task library is appropriate for a model that has multiple sub-tasks. The Multi-task
model in AI Library has two sub-tasks. One is Semantic Segmentation and the other is SSD
Detection. The following table shows the Multi-task model supported by the AI Library.

Table 18: The Multi-task model list

No Model Name Framework
1 multi_task Caffe

Model Samples
There are up to 13 model samples that are loacated in /usr/share/vitis_ai_library/
samples. Each sample has the following four kinds of test samples.

• test_jpeg_[model type]

• test_video_[model type]

• test_performance_[model type]

• test_accuracy_[model type]

Take yolov3 as an example.

1. Before you run the yolov3 detection example, you can choose one of the following yolov3
model to run.

a. yolov3_bdd

b. yolov3_voc

c. yolov3_voc_tf

2. Ensure that the following test program exists.

a. test_jpeg_yolov3

b. test_video_yolov3

c. test_performance_yolov3

d. test_accuracy_yolov3

If the executable program does not exist, it can be compiled and generated as follows:

 #sh -x build.sh

3. To test the image data, execute the following command.

 #./test_jpeg_yolov3 yolov3_bdd sample_yolov3.jpg

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=32

You will see the printing result on the terminal. Also, you can view the output image:
sample_yolov3_result.jpg.

4. To test the video data, execute the following command.

 #./test_video_yolov3 yolov3_bdd video_input.mp4 -t 8

5. To test the model performance, execute the following command.

 #./test_performance_yolov3 yolov3_bdd test_performance_yolov3.list -
t 8

You will see the printing result on the terminal.

6. To test the model accurary, users need to prepare their own image dataset, image list file and
the ground truth of the images. Then execute the following command.

 #./test_accuracy_yolov3 yolov3_bdd [image_list_file] [output_file]

After the output_file is generate, a script file is needed to automatically compare the results.
Finally, the accuracy result can be obtained.

Chapter 3: Libraries and Samples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=33

Chapter 4

Programming Examples
In practice, users have many different application requirements, but it basically falls into three
categories. The first is to use the ready-made models provided by Vitis AI Library to quickly build
their own applications, and the second is to use users’ own custom models which are similar to
the models in the AI Library and the last is to use new models that are totally different from the
models in the AI Library. This chapter describes the detailed development steps for the first two
cases. For the third case, users can also use the AI Library’s samples and libraries implementation
for reference. Therefore, this chapter describes the following contents:

• How to customize pre-processing

• How to use the configuration file as pre-processing and post-processing parameter

• How to use the AI Library's post-processing library

• How to implement user post-processing code

The following figure shows the relationships of the various AI Library APIs and their
corresponding example. And there are three kinds of APIs in this release.

• Vitis AI API_0

• AI Library API_1

• AI Library API_2

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=34

Figure 14: The Diagram of AI Library API

Developing With Vitis AI API_0
1. Install the vitis-ai-docker-runtime image on the host side, refer to Chapter 2:

Installation.

2. After the setting up the docker system, the libraries can be found in the /opt/vitis_ai/
petalinux_sdk/sysroots/aarch64-xilinx-linux/usr/lib directory.

3. Download the vitis_ai_model_ZCU102_2019.2-r1.0.deb packet, and copy it to the
board via scp.

4. Install the Xilinx Model Package on the target side.

#dpkg -i vitis_ai_model_ZCU102_2019.2-r1.0.deb

After the installation, the models can be found in the /usr/share/vitis_ai_library/
models directory on the target side.

Note that users do not need to install the Xilinx model packet if they want to use their own
model.

5. Git clone the corresponding AI Library from https://github.com/Xilinx/Vitis-AI.

6. Create a folder under your workspace, using classification as an example.

$mkdir classification

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 35Send Feedback

https://github.com/Xilinx/Vitis-AI
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=35

7. Create the demo_classification.cpp source file. The main flow is shown below. See /
workspace/Vitis-AI/Vitis-AI-Library/demo/classification/
demo_classification.cpp for a complete code example.

Figure 15: Main program Flow Chart

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=36

8. Create a build.sh file as shown below, or copy one from the AI Library's demo and modify
it.

#/bin/sh
CXX=${CXX:-g++}
$CXX -std=c++11 -O3 -I. -o demo_classification demo_classification.cpp -
lopencv_core -lopencv_video -lopencv_videoio -lopencv_imgproc -
lopencv_imgcodecs -lopencv_highgui -lglog -ldpbase -ldpproto -lvitis_dpu

9. Cross compile the program.

$sh -x build.sh

10. Copy the executable program to the target board via scp.

$scp demo_classification root@IP_OF_BOARD:~/

11. Execute the program on the target board. Before running the program, make sure the target
board has the AI Library installed, and prepare the images you want to test.

#./demo_classification resnet50 input_image.jpg

Note:

• demo_classification.cpp uses user-defined pre-processing parameter as input.

• demo_classification.cpp uses user post-processing code. And if you want to use the AI Library's
post-processing library, please check How to Use the AI Library's Post-Processing Library

For more details about the demo, refer to /workspace/Vitis-AI/Vitis-AI-Library/demo in the
docker runtime system.

Developing with User Model and AI Library
API_2

When users use their own models, it is important to note that the user's model framework
should be within the scope supported by the Vitis AI Library. The following is an introduction of
how to deploy a retrained YOLOv3 Caffe model to ZCU102 platform based on Vitis AI Library
step by step.

1. Download the corresponding vitis-ai-docker-tools and vitis-ai-docker-
runtime images from https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.

2. Start the vitis-ai-docker-tools system.

3. Create a folder and place the float model under it on the host side, then use AI Quantizer
tool to do the quantization. Please refer to UG1414-vitis-ai-user-guide.pdf for the details.

4. Use AI Compiler tool to do the model compiling to get the elf file, such as
yolov3_custom.elf. For more information, see Vitis AI User Guide (UG1414).

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 37Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=37

5. Create the meta.json file, as shown in the following

{
 "target": "DPUv2",
 "lib": "libvart_dpu.so",
 "filename": "yolov3_custom.elf",
 "kernel": ["yolov3_custom"],
 "config_file": "yolov3_custom.prototxt"
}

6. Create the yolov3_custom.prototxt, as shown in the following.

model {
 name: "yolov3_custom"
 kernel {
 name: "yolov3_custom"
 mean: 0.0
 mean: 0.0
 mean: 0.0
 scale: 0.00390625
 scale: 0.00390625
 scale: 0.00390625
 }
 model_type : YOLOv3
 yolo_v3_param {
 num_classes: 20
 anchorCnt: 3
 conf_threshold: 0.3
 nms_threshold: 0.45
 biases: 10
 biases: 13
 biases: 16
 biases: 30
 biases: 33
 biases: 23
 biases: 30
 biases: 61
 biases: 62
 biases: 45
 biases: 59
 biases: 119
 biases: 116
 biases: 90
 biases: 156
 biases: 198
 biases: 373
 biases: 326
 test_mAP: false
 }
}

Note: The <model_name>.prototxt only take effect when you use AI Library API_1.

When you use AI Library API_2, the parameter of the model needs to be loaded and read
manually by the program. Refer to /workspace/Vitis-AI/Vitis-AI-Library/demo/
yolov3/demo_yolov3.cpp for details.

7. Create the demo_yolov3.cpp file. See /workspace/Vitis-AI/Vitis-AI-Library/
demo/yolov3/demo_yolov3.cpp for reference.

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=38

8. Create a build.sh file as shown below, or copy one from the AI Library demo and modify it.

#/bin/sh
CXX=${CXX:-g++}
$CXX -std=c++11 -O3 -I. -o demo_yolov3 demo_yolov3.cpp -lopencv_core -
lopencv_video -lopencv_videoio -lopencv_imgproc -lopencv_imgcodecs -
lopencv_highgui -lglog -lxnnpp -ldpproto -lprotobuf -ldpbase

9. Exit the docker tool system and start the docker runtime system.

10. Cross compile the program, generate executable file demo_yolov3.

$sh -x build.sh

11. Create model folder under /usr/share/vitis_ai_library/models on the target side.

#mkdir yolov3_custom /usr/share/vitis_ai_library/models

Note that /usr/share/vitis_ai_library/models is the default location for the
program to read the model. You can also place the model folder in the same directory as the
executable program.

12. Copy the yolov3_custom.elf, yolov3_custom.prototxt and meta.json to the
target and put them under /usr/share/vitis_ai_library/models/
yolov3_custom.

$scp yolov3_custom.elf yolov3_custom.prototxt meta.json
root@IP_OF_BOARD:/usr/share/vitis_ai_library/models/yolov3_custom

13. Copy the executable program to the target board using scp.

$scp demo_yolov3 root@IP_OF_BOARD:~/

14. Execute the program on the target board and get the following results. Before running the
program, make sure the target board has the AI Library installed, and prepare the images you
want to test.

#./demo_yolov3 yolov3_custom sample.jpg

How to Customize Pre-Processing
Before convolution neural network processing, image data generally needs to be preprocessed.
The basics of some pre-processing techniques that can be applied to any kind of data are as
follows:

• Mean subtraction

• Normalization

• PCA and Whitening

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=39

User calls the setMeanScaleBGR function to implement the Mean subtraction and normalization,
as shown in the figure below. See /workspace/Vitis-AI/Vitis-AI-Library/include/
Xilinx/ai/dpu_task.hpp for details in the docker runtime system.

Figure 16: setMeanScaleBGR Example

User calls the cv::resize function to scale the image, as shown in the following figure.

Figure 17: cv::resize Example

How to Use the Configuration File
Vitis AI Library provides a way to read model parameters by reading the configuration file. It
facilitates uniform configuration management of model parameters. The configuration file is
located in /usr/share/vitis_ai_library/models/[model_name]/
[model_name].prototxt.

Note that if you are developing on the host side, the configuration files are installed in /opt/
vitis_ai/petalinux_sdk/sysroots/aarch64-xilinx-linux/usr/share/
vitis_ai_library/models/[model_name]/[model_name].prototxt in the docker
runtime system.

model
{
 name: "yolov3_voc"
 kernel {
 name: "yolov3_voc"
 mean: 0.0
 mean: 0.0
 mean: 0.0
 scale: 0.00390625
 scale: 0.00390625
 scale: 0.00390625

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=40

 }
 model_type : YOLOv3
 yolo_v3_param {
 …
 }
 is_tf: false
}

Table 19: Compiling Model and Kernel Parameters

Model/Kernel Parameter Type Description
model name This name should be same as the ${MODEL_NAME}.

model_type This type should depend on which type of model you used.

kernel name This name should be filled as the result of your DNNC
compile. Sometimes, its name may have an extra postfix
“_0”, here need fill the name with such postfix.
(For example: inception_v1_0)

mean Normally there are three lines, each of them corresponding
to the mean-value of “BRG” which are pre-defined in the
model.

scale Normally there are three lines. Each of them is corresponds
to the RGB-normalized scale. If the model had no scale in
training stage, here should fill with one.

is_tf Bool type, if your model is trained by tensorflow, please add
this and set with “true”. It could be blank in the prototxt or
set as “false” when the model is caffe.

yolo_v3_param

 model_type : YOLOv3
 yolo_v3_param {
 num_classes: 20
 anchorCnt: 3
 conf_threshold: 0.3
 nms_threshold: 0.45
 biases: 10
 biases: 13
 biases: 16
 biases: 30
 biases: 33
 biases: 23
 biases: 30
 biases: 61
 biases: 62
 biases: 45
 biases: 59
 biases: 119
 biases: 116
 biases: 90
 biases: 156
 biases: 198
 biases: 373
 biases: 326
 test_mAP: false
 }

Below are the YOLOv3 model’s parameters. You can modify them as your model requires.

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=41

Table 20: YOLOv3 Model Parameters

Parameter Type Description
num_classes The actual number of the model’s detection categories

anchorCnt The number of this model’s anchor

conf_threshold The threshold of the boxes’ confidence, which could be
modified to fit your practical application

nms_threshold The threshold of NMS

biases These parameters are same as the model’s. Each bias need
writes in a sperate line. (Biases amount) = anchorCnt *
(output-node amount) * 2. set correct lines in the prototxt.

test_mAP If your model was trained with letterbox and you want to
test its mAP, set this as “true”. Normally it is “false” for
executing much faster.

SSD_param

model_type : SSD
ssd_param :
{
 num_classes : 4
 nms_threshold : 0.4
 conf_threshold : 0.0
 conf_threshold : 0.6
 conf_threshold : 0.4
 conf_threshold : 0.3
 keep_top_k : 200
 top_k : 400
 prior_box_param {
 layer_width : 60,
 layer_height: 45,
 variances: 0.1
 variances: 0.1
 variances: 0.2
 variances: 0.2
 min_sizes: 21.0
 max_sizes: 45.0
 aspect_ratios: 2.0
 offset: 0.5
 step_width: 8.0
 step_height: 8.0
 flip: true
 clip: false
 }
}

Below are the SSD parameters. The parameters of SSD-model include all kinds of threshold and
PriorBox requirements. You can reference your SSD deploy.prototxt to fill them.

Table 21: SSD Model Parameters

Parameter Type Description
num_classes The actual number of the model’s detection categories

anchorCnt The number of this model’s anchor

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=42

Table 21: SSD Model Parameters (cont'd)

Parameter Type Description
conf_threshold The threshold of the boxes’ confidence. Each category could have a different

threshold, but its amount must be equal to num_classes.

nms_threshold The threshold of NMS

biases These parameters are same as the model’s. Each bias need writes in a separate
line. (Biases amount) = anchorCnt * (output-node amount) * 2. Set correct lines
in the prototxt.

test_mAP If your model was trained with letterbox and you want to test its mAP, set this as
“true”. Normally it is “false” for executing much faster

keep_top_k Each category of detection objects’ top K boxes

top_k All the detection object’s top K boxes, except the background (the first category)

prior_box_param There is more than one PriorBox, which could be found in the original model
(deploy.prototxt) for corresponding each different scale. These PriorBoxes
should oppose each other.
(see the following table for Prior Box Parameters)

Table 22: PriorBox Parameters

Parameter Type Description
layer_width/layer_height The input width/height of this layer. Such numbers could be computed from the

net structure.

ariances These numbers are used for boxes regression, just only to fill them as original
model. There should be four variances.

min_sizes/max_size Filled as the “deploy.prototxt”, but each number should be written in a separate
line.

aspect_ratios The ratio’s number (each one should be written in a separate line). Default has
1.0 as its first ratio. If you set a new number here, there will be two ratios created
when the opposite is true. One is a filled number; another is its reciprocal. For
example, this parameter has only one set element, “ratios: 2.0”. The ratio vector
has three numbers: 1.0, 2.0. 0.5

offset Normally, the PriorBox is created by each central point of the feature map, so
that offset is 0.5.

step_width/step_height Copy from the original file. If there are no such numbers there, you can use the
following formula to compute them:
step_width = img_width ÷ layer_width
step_height = img_height ÷ layer_height

offset Normally, PriorBox is created by each central point of the feature map, so that
the offset is 0.5.

flip Control whether rotate the PriorBox and change the ratio of length/width.

clip Set as false. If true, it will let the detection boxes’ coordinates keep at [0, 1].

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=43

Example Code

The following is the example code.

Mat img = cv::imread(argv[1]);
auto yolo = xilinx::ai::YOLOv3::create("yolov3_voc", true);
auto results = yolo->run(img);
for(auto &box : results.bboxes){
 int label = box.label;
 float xmin = box.x * img.cols + 1;
 float ymin = box.y * img.rows + 1;
 float xmax = xmin + box.width * img.cols;
 float ymax = ymin + box.height * img.rows;
 if(xmin < 0.) xmin = 1.;
 if(ymin < 0.) ymin = 1.;
 if(xmax > img.cols) xmax = img.cols;
 if(ymax > img.rows) ymax = img.rows;
 float confidence = box.score;
 cout << "RESULT: " << label << "\t" << xmin << "\t" << ymin <<
"\t"
 << xmax << "\t" << ymax << "\t" << confidence << "\n";
 rectangle(img, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 255, 0),
1, 1, 0);
}
imshow("", img);
waitKey(0);

You should use the “create” to create the YOLOv3 object.

static std::unique_ptr<YOLOv3> create(const std::string& model_name, bool
need_mean_scale_process = true);

Note: The model_name is same as the prototxt’s. For more details about the example, refer to /
workspace/Vitis-AI/Vitis-AI-Library/libsrc/libdpyolov3/test/test_yolov3.cpp.

How to Implement User Post-Processing Code
Users can also call their own post-processing functions on their own request. Take
demo_yolov3.cpp and demo_classification.cpp as an example. Use
xilinx::ai::DpuTask::create or vitis::ai::DpuRunner::create_dpu_runner
to create the task, and after DPU processing is complete, the user’s post-processing function can
be invoked. The post_process function in the following figure is a user post-processing code.

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=44

Figure 18: User Post-Processing Code Example

For the definition of OutputTensor. See the /opt/vitis_ai/petalinux_sdk/sysroots/
aarch64-xilinx-linux/usr/include/xilinx/ai/tensor.hpp header file for details
in the docker runtime system.

Refer to /workspace/vitis_ai_library/demo/classification/
demo_classification.cpp for more details in the docker runtime system.

How to Use the AI Library's Post-Processing
Library

Post-processing is an important step in the whole process. Each neural network has different
post-processing methods. The libxnnpp.so post-processing library is provided in AI Library to
facilitate user calls. It’s a closed source library. It supports the following neural network post-
processing.

• Classification

• Face detection

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=45

• Face landmark detection

• SSD detection

• Pose detection

• Semantic segmentation

• Road line detection

• YOLOV3 detection

• YOLOV2 detection

• Openpose detection

• RefineDet detection

• ReId detection

• Multi-task

There are two ways to call xnnpp.

• One is automatic call, through xilinx::ai::<model>::create create the task, such as
xilinx::ai::YOLOv3::create("yolov3_bdd", true). After <model>->run finished,
xnnpp will be automatically processed, users can modify the parameters through the model
configuration file.

• One is manual call, through xilinx::ai::DpuTask::create to create the task. Then,
create the object of the post-process and run the post-process. Take SSD post-processing as
an example, the specific steps are as follows.

1. Create a config and set the correlating data to control post-process.

using DPU_conf = xilinx::ai::proto::DpuModelParam;
DPU_conf config;

2. If it is a caffemodel, set the "is_tf" false.

config.set_is_tf(false);

3. Fill other parameters.

fillconfig(config);

4. Create an object of SSDPostProcess.

auto input_tensor = task->getInputTensor();
auto output_tensor = task->getOutputTensor();
auto ssd = xilinx::ai::SSDPostProcess::create(input_tensor,
output_tensor,config);

5. Run the post-process.

auto results = ssd->ssd_post_process();

Note:

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=46

• The header files of the libxnnpp.so are stored in /opt/vitis_ai/petalinux_sdk/sysroots/
aarch64-xilinx-linux/usr/include/xilinx/ai/nnpp/ in the docker runtime syetem.

• The libxnnpp.so is stored in /opt/vitis_ai/petalinux_sdk/sysroots/aarch64-xilinx-
linux/usr/lib in the docker runtime syetem.

• For more details about the post processing examples, refer to /workspace/vitis_ai_library/
demo/yolov3/yolov3.cpp and /workspace/vitis_ai_library/libsrc/libdpyolov3/
test/test_yolov3.cpp in the docker runtime syetem.

Chapter 4: Programming Examples

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=47

Chapter 5

Application Demos
This chapter describes how to set up a test environment and to run the application demos. There
are two application demos provided within the VitisAI Library. Here, we take ZCU102 board as
the test platform.

Demo Overview
There are two application demos provided within the Vitis AI Libray. They use the AI Library to
build their applications. The codes and video files are stored in /workspace/Vitis-AI/
Vitis-AI-Library/demo/segs_and_roadline_detect and /workspace/Vitis-AI/
Vitis-AI-Library/demo/seg_and_pose_detect in the docker system.

segs_and_roadline_detect is a demo that includes multi-task segmentation network
processing, vehicle detection and road line detection. It simultaneously performs 4-channel
segmentation and vehicle detection and 1-channel road lane detection.

seg_and_pose_detect is a demo that includes multi-task segmentation network processing
and pose detection. It simultaneously performs 1-channel segmentation process and 1-channel
pose detection.

Note: To achieve the best performance, the demos use the DRM (Direct Render Manager) for video display.
Please Log in the board using ssh or serial port and run the demo remotely. If you do not want to use
DRM for video display, set “USE_DRM=0” in the compile option.

Demo Platform and Setup
Demo Platform

• HW:

• 1 x ZCU102 Prod Silicon https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-
g.html

• 1 x Win7/10 laptop

• 1 x 16GB SD card

Chapter 5: Application Demos

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 48Send Feedback

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=48

• 1 x Ethernet cables

• 1 x DP 1080P compatible monitor

• 1 x DP cable

• SW:

• ZCU102 board imagehttps://www.xilinx.com/products/design-tools/ai-inference/ai-
developer-hub.html#edge

• Vitis-AI-Library

• Images and video files

• Terminal software like MobaXterm, Putty

DPU Configuration & Dev Tool Used

• 3xB4096 @281MHz

• Vivado 2019.2, AI Library r1.0

Demo Setup Illustration

Figure 19: Demo Setup

Chapter 5: Application Demos

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 49Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=49

Demo 1: Multi-Task Segmentation + Car
Detection and Road Line Detection

Target Application

• ADAS/AD

AI Model & Performance & Power

• FPN

○ 512x288, 4ch, 20fps

• VPGNET

○ 640x480, 1ch, 56fps

• 20W @ ZU9EG

Build and Run the Demo

#cd /usr/share/vitis_ai_library/demo/segs_and_roadline_detect
#sh -x build.sh

To use OpenCV display, run the following command.

#./segs_and_roadline_detect_x seg_512_288.avi seg_512_288.avi
seg_512_288.aviseg_512_288.avi lane_640_480.avi -t 2 -t 2 -t 2 -t 2 -t 3
>/dev/null 2>&1

If you want to use DRM display, please connect to the board using SSH and run the following
command.

#/etc/init.d/weston stop
#./segs_and_roadline_detect_drm seg_512_288.avi seg_512_288.avi
seg_512_288.avi
seg_512_288.avi lane_640_480.avi -t 2 -t 2 -t 2 -t 2 -t 3 >/dev/null 2>&1

Note that the video files are in the vitis_ai_library_r1.0_video.tar.gz. Please
download the package from https://www.xilinx.com/products/design-tools/ai-inference/
aideveloper-hub.html#edge .

Chapter 5: Application Demos

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 50Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=50

Demo Picture

Figure 20: Segmentation and Roadline Detection Demo Picture

Demo 2: Multi-Task Segmentation+Car
Detection and Pose Detection

Target Application

• ADAS/AD

• Smartcity

AI Model & Performance & Power

• FPN

○ 960x540, 1ch, 30fps

• Openpose

○ 960x540, 1ch, 30fps

• 20W @ ZU9EG

Chapter 5: Application Demos

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=51

Build and Run the Demo

#cd /usr/share/vitis_ai_library/demo/seg_and_pose_detect
#sh -x build.sh

To use OpenCV display, run the following command.

#./seg_and_pose_detect_x seg_960_540.avi pose_960_540.avi -t 4 -t 4 >/dev/
null 2>&1

If you want to use DRM display, please connect to the board via SSH. And run the following
command.

#/etc/init.d/weston stop
#./seg_and_pose_detect_drm seg_960_540.avi pose_960_540.avi -t 4 -t 4 >/dev/
null 2>&1

Note that the video files are in the vitis_ai_library_r1.0_video.tar.gz. Please
download the package from https://www.xilinx.com/products/design-tools/ai-inference/
aideveloper-hub.html#edge .

Demo Picture

Figure 21: Segmentation and Pose Detection Demo Picture

Chapter 5: Application Demos

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 52Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=52

Chapter 6

Programming APIs
For details about the Programming APIs, refer to Vitis AI Library Programming Guide (UG1355). You
can download it from the Xilinx websitehttps://www.xilinx.com/products/design-tools/ai-
inference/aideveloper-hub.html#edge.

Also, for the Vitis AI APIs, refer to the Vitis AI User Guide (UG1414). You can download it from the
Xilinx website https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 53Send Feedback

https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com/products/design-tools/ai-inference/aideveloper-hub.html#edge
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=53

Chapter 7

Performance
This chapter describes in detail the performance of the Vitis AI Library on the following different
boards.

• ZCU102 (0432055-05)

• ZCU104

ZCU102 Performance
The ZCU102 evaluation board uses the mid-range ZU9 UltraScale+ device. There are two
different hardware versions of ZCU102 board, one with the serial number 0432055-04 as the
header and the other with the serial number 0432055-05 as the header. The performance of the
Vitis AI Library varies between the two hardware versions (because of different DDR
performance). Since 0432055-04 version of ZCU102 has been discontinued, the following table
only shows the performance of ZCU102 (0432055-05). In ZCU102 board, triple B4096F DPU
cores are implemented in program logic.

Refer to the following table for throughput performance (in frames/sec or fps) for various neural
network samples on ZCU102 (0432055-05) with DPU running at 281 MHz.

Table 23: ZCU102 (0432055-05) Performance

No Neural Network Input Size GOPS
Performance
(fps) (Single

thread)

Performance
(fps) (Multiple

thread)
1 inception_resnet_v2_tf 299x299 26.4 22.9 49.1

2 inception_v1_tf 224x224 3.0 167.2 434.8

3 inception_v3_tf 299x299 11.5 54.7 129.7

4 inception_v4_2016_09_09_tf 299x299 24.6 27.7 67.5

5 mobilenet_v1_0_25_128_tf 128x128 0.027 836.1 2270.7

6 mobilenet_v1_0_5_160_tf 160x160 0.15 566.7 1816.9

7 mobilenet_v1_1_0_224_tf 224x224 1.1 256.1 763.7

8 mobilenet_v2_1_0_224_tf 224x224 0.60 213.6 575.2

9 mobilenet_v2_1_4_224_tf 224x224 1.2 158.7 395.4

10 resnet_v1_101_tf 224x224 14.4 42.5 90.7

Chapter 7: Performance

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=54

Table 23: ZCU102 (0432055-05) Performance (cont'd)

No Neural Network Input Size GOPS
Performance
(fps) (Single

thread)

Performance
(fps) (Multiple

thread)
11 resnet_v1_152_tf 224x224 21.8 29.3 63.3

12 resnet_v1_50_tf 224x224 7.0 76.4 159.4

13 vgg_16_tf 224x224 31.0 19 41.8

14 vgg_19_tf 224x224 39.3 16.5 37.8

15 ssd_mobilenet_v1_coco_tf 300x300 2.5 90 320.6

16 ssd_mobilenet_v2_coco_tf 300x300 3.8 61.8 196.6

17 ssd_resnet_50_fpn_coco_tf 640x640 178.4 1.3 5.9

18 yolov3_voc_tf 416x416 65.6 13.4 37.8

19 mlperf_ssd_resnet34_tf 1200x1200 433 1.9 7.7

20 resnet50 224x224 7.7 71.1 150.2

21 resnet18 224x224 3.7 171.1 437.6

22 inception_v1 224x224 3.2 162.2 422.4

23 inception_v2 224x224 4.0 133 321.4

24 inception_v3 299x299 11.4 54.8 131.2

25 inception_v4 299x299 24.5 27.7 67.4

26 mobilenet_v2 224x224 0.6 210.1 557.4

27 squeezenet 227x227 0.76 264.5 1121.6

28 ssd_pedestrain_pruned_0_97 360x360 5.9 76 306.1

29 ssd_traffic_pruned_0_9 360x480 11.6 55.4 214.2

30 ssd_adas_pruned_0_95 360x480 6.3 82.6 299

31 ssd_mobilenet_v2 360x480 6.6 38.7 117.8

32 refinedet_pruned_0_8 360x480 25 31.6 106

33 refinedet_pruned_0_92 360x480 10.1 59.6 206.2

34 refinedet_pruned_0_96 360x480 5.1 82.3 292.6

35 vpgnet_pruned_0_99 480x640 2.5 101.8 401.1

36 fpn 256x512 8.9 58.6 186.7

37 sp_net 128x224 0.55 511.6 1386.4

38 openpose_pruned_0_3 368x368 49.9 3.5 15.6

39 densebox_320_320 320x320 0.49 383 1363.7

40 densebox_640_360 360x640 1.1 190.7 637.8

41 face_landmark 96x72 0.14 779.6 1348

42 reid 80x160 0.95 343.3 659.4

43 multi_task 288x512 14.8 35.5 133.2

44 yolov3_adas_pruned_0_9 256x512 5.5 82 227.3

45 yolov3_voc 416x416 65.4 13.5 38.2

46 yolov3_bdd 288x512 53.7 12.9 37.5

47 yolov2_voc 448x448 34 24.7 76.2

Chapter 7: Performance

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=55

Table 23: ZCU102 (0432055-05) Performance (cont'd)

No Neural Network Input Size GOPS
Performance
(fps) (Single

thread)

Performance
(fps) (Multiple

thread)
48 yolov2_voc_pruned_0_66 448x448 11.6 53.1 203.7

49 yolov2_voc_pruned_0_71 448x448 9.9 59.7 235.9

50 yolov2_voc_pruned_0_77 448x448 7.8 67.8 281.6

ZCU104 Performance
The ZCU104 evaluation board uses the mid-range ZU7ev UltraScale+ device. Dual B4096F DPU
cores are implemented in program logic and delivers 2.4 TOPS INT8 peak performance for deep
learning inference acceleration.

Refer to the following table for the throughput performance (in frames/sec or fps) for various
neural network samples on ZCU104 with DPU running at 300 MHz.

Table 24: ZCU104 Performance

No Neural Network Input Size GOPS
Performance
(fps) (Single

thread)

Performance
(fps) (Multiple

thread)
1 inception_resnet_v2_tf 299x299 26.4 25.1 45.4

2 inception_v1_tf 224x224 3.0 192.5 383.8

3 inception_v3_tf 299x299 11.5 59.3 112.7

4 inception_v4_2016_09_09_tf 299x299 24.6 29.9 57.7

5 mobilenet_v1_0_25_128_tf 128x128 0.027 1233 3863.9

6 mobilenet_v1_0_5_160_tf 160x160 0.15 739.9 1929.3

7 mobilenet_v1_1_0_224_tf 224x224 1.1 304.4 672.3

8 mobilenet_v2_1_0_224_tf 224x224 0.60 245.3 519.3

9 mobilenet_v2_1_4_224_tf 224x224 1.2 180.8 369.1

10 resnet_v1_101_tf 224x224 14.4 46.8 85.6

11 resnet_v1_152_tf 224x224 21.8 32.2 59.2

12 resnet_v1_50_tf 224x224 7.0 84.9 152.2

13 vgg_16_tf 224x224 31.0 20.8 37.1

14 vgg_19_tf 224x224 39.3 18.1 33

15 ssd_mobilenet_v1_coco_tf 300x300 2.5 92.8 315.8

16 ssd_mobilenet_v2_coco_tf 300x300 3.8 65.3 177.6

17 ssd_resnet_50_fpn_coco_tf 640x640 178.4 1.4 6.1

18 yolov3_voc_tf 416x416 65.6 14.1 29.3

19 mlperf_ssd_resnet34_tf 1200x1200 433 1.9 5.6

Chapter 7: Performance

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=56

Table 24: ZCU104 Performance (cont'd)

No Neural Network Input Size GOPS
Performance
(fps) (Single

thread)

Performance
(fps) (Multiple

thread)
20 resnet50 224x224 7.7 79.1 142.7

21 resnet18 224x224 3.7 193 382.1

22 inception_v1 224x224 3.2 184.7 371.4

23 inception_v2 224x224 4.0 149.7 285

24 inception_v3 299x299 11.4 59.5 113.6

25 inception_v4 299x299 24.5 29.9 57.6

26 mobilenet_v2 224x224 0.6 244.2 510.5

27 squeezenet 227x227 0.76 270.6 1060.4

28 ssd_pedestrain_pruned_0_97 360x360 5.9 78.1 192.8

29 ssd_traffic_pruned_0_9 360x480 11.6 57.2 133.1

30 ssd_adas_pruned_0_95 360x480 6.3 84.5 197.5

31 ssd_mobilenet_v2 360x480 6.6 25.3 108.4

32 refinedet_pruned_0_8 360x480 25 32.4 75

33 refinedet_pruned_0_92 360x480 10.1 60.9 137.8

34 refinedet_pruned_0_96 360x480 5.1 83.1 193.2

35 vpgnet_pruned_0_99 480x640 2.5 104.9 351.3

36 fpn 256x512 8.9 61 162.7

37 sp_net 128x224 0.55 534.9 1147.4

38 openpose_pruned_0_3 368x368 49.9 3.7 11.1

39 densebox_320_320 320x320 0.49 389.5 1342.9

40 densebox_640_360 360x640 1.1 196.7 661.5

41 face_landmark 96x72 0.14 837.2 1171.7

42 reid 80x160 0.95 365.3 619.2

43 multi_task 288x512 14.8 36 107.3

44 yolov3_adas_pruned_0_9 256x512 5.5 83.2 208.8

45 yolov3_voc 416x416 65.4 14.2 29.6

46 yolov3_bdd 288x512 53.7 13.5 28.7

47 yolov2_voc 448x448 34 26.1 58.5

48 yolov2_voc_pruned_0_66 448x448 11.6 55.4 144.2

49 yolov2_voc_pruned_0_71 448x448 9.9 62.3 169.3

50 yolov2_voc_pruned_0_77 448x448 7.8 70.4 208.7

Chapter 7: Performance

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=57

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix A: Additional Resources and Legal Notices

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 58Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=58

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1354 (v1.0) December 2, 2019 www.xilinx.com
Vitis AI Library User Guide 59Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1354&Title=Vitis%20AI%20Library%20User%20Guide&releaseVersion=1.0&docPage=59

	Vitis AI Library User Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	About this Document
	Overview
	Block Diagram
	Features
	Vitis AI Library 1.0 Release Notes

	Ch. 2: Installation
	Downloading the Vitis AI Library
	Setting Up the Host
	AI Library File Locations

	Setting Up the Target
	Step 1: Installing a Board Image
	Step 2: Installing AI Model Package
	Step 3: Installing AI Library Package

	Running Vitis AI Library Examples
	Support

	Ch. 3: Libraries and Samples
	Model Library
	Model Type
	Classification
	Face Detection
	Face Landmark Detection
	SSD Detection
	Pose Detection
	Semantic Segmentation
	Road Line Detection
	YOLOV3 Detection
	YOLOV2 Detection
	Openpose Detection
	RefineDet Detection
	ReID Detection
	Multi-task

	Model Samples

	Ch. 4: Programming Examples
	Developing With Vitis AI API_0
	Developing with User Model and AI Library API_2
	How to Customize Pre-Processing
	How to Use the Configuration File
	How to Implement User Post-Processing Code
	How to Use the AI Library's Post-Processing Library

	Ch. 5: Application Demos
	Demo Overview
	Demo Platform and Setup
	Demo 1: Multi-Task Segmentation + Car Detection and Road Line Detection
	Demo 2: Multi-Task Segmentation+Car Detection and Pose Detection

	Ch. 6: Programming APIs
	Ch. 7: Performance
	ZCU102 Performance
	ZCU104 Performance

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

