

ADC 应用的噪声抑制方法

简介

作者: Rupali Honrao, Microchip Technology Inc.

本应用笔记将说明如何以及何时使用 Microchip tinyAVR[®] 0 和 1 系列以及 megaAVR[®] 0 系列 ADC 上提供的强大噪声抑制功能。在这些 ADC 中,输入信号通过一个采样和保持电路馈送,可确保 ADC 的输入电压在采样期间保持在恒定值。

ADC 支持突发采样,其中可配置数量的转换结果累加到单个 ADC 结果中(采样累加)。此外,可通过配置采样延时来调节与单次突发相关联的 ADC 采样频率。这样做是为了调节采样频率,使其远离采样信号中 ADC 采样频率(突发内)混淆的任何谐波噪声。可以使用自动采样延时变化功能对该延时进行随机化,以 略微改变采样之间的时间。

在这种情况下,建议进行测试和验证设置。本文将介绍如何使用 ADC 硬件采样累加器滤除零均值随机噪声,以及通过经调整的采样延时或自动采样延时变化来抑制谐波噪声。此外还给出了用于生成噪声信号的测试配置建议,以及如何在 Atmel Studio Data Visualizer 中显示结果的说明。

可从 Atmel | START 获取示例代码,以重现本文中所述的结果:

• 通过采样累加、采样延时和自动采样延时功能实现周期性噪声生成和噪声滤波。

有关 ADC 性能和一般配置的更多详细信息,请参见器件数据手册。

特性

- ADC 采样累加(每次转换时最多 64 个采样)
- 使用 AVR 单片机的 PWM 功能生成噪声,然后将噪声添加到输入信号中
- 滤除随机噪声和谐波噪声
- 采样延时
- 自动采样延时
- 在 Data Visualizer 中绘制 ADC 采样波形图

目录

简复	<	1				
特性1						
1.	相关器件 1.1. tinyAVR 0 系列 1.2. tinyAVR 1 系列 1.3. megaAVR 0 系列	3 3 3 4				
2.	概述 2.1. 硬件采样累加器 2.2. 采样延时 2.3. 自动采样延时变化	5 5 5 5				
3.	理论:噪声抑制 3.1. 具有随机噪声的信号 3.2. 具有周期性噪声的信号	3 6 7				
4.	为信号添加噪声1	0				
5.	演示噪声滤波1 5.1. 源代码概述	2 2 5				
6.	从 Atmel START 获取源代码2	5				
7.	附录 A:在 Data Visualizer 中绘图2	6				
8.	版本历史2	9				
Mic	Atmel START 获取源代码					
变更通知客户服务						
客户支持						
Microchip 器件代码保护功能 30						
法律声明						
商标31						
质量	管理体系3	2				
全理	销售及服务网点	3				

1. 相关器件

本章列出了文中涉及的相关器件。

1.1 tinyAVR 0 系列

下图所示为 tinyAVR 0 系列器件,注明了不同的引脚数与存储器大小:

- 在垂直方向上,无需修改代码即可实现移植,因为这些器件的引脚和功能完全兼容。
- 水平向左移植会减少引脚数,进而减少可用的功能。
- 图 1-1. tinyAVR[®] 0 系列概览

1.2 tinyAVR 1 系列

下图所示为 tinyAVR 1 系列器件,注明了不同的引脚数与存储器大小:

- 垂直向上移植无需修改代码,因为这些器件引脚兼容并可提供相同或更多的功能。而向下移植可能需要修改代码,因为某些外设的可用实例数减少。
- 水平向左移植会减少引脚数,进而减少可用的功能。

具有不同闪存大小的器件通常也具有不同的 SRAM 和 EEPROM。

1.3 megaAVR 0 系列

下图所示为 megaAVR 0 系列器件,注明了不同的引脚数与存储器大小:

- 无需修改代码即可实现垂直移植,因为这些器件的引脚和功能完全兼容。
- 水平向左移植会减少引脚数,进而减少可用的功能。

具有不同闪存大小的器件通常也具有不同的 SRAM 和 EEPROM。

2. 概述

Microchip tinyAVR 0 和 1 系列以及 megaAVR 0 系列器件具有逐次逼近型模数转换器(Analog-to-Digital Converter, ADC),最大转换速率为 150 ksps(8 位分辨率)或 115 ksps(10 位分辨率)。ADC 具有灵活的输入多路开关,允许对多个内部和外部输入源进行单端接地参考测量。可以针对选择的内部参考电压(0.55V、1.1V、2.5V 和 4.3V)或直接针对 V_{DD} 进行测量。

ADC 支持的噪声抑制方法包括:

- 硬件采样累加器
- 采样延时
- 自动采样延时变化

2.1 硬件采样累加器

通过写入控制 B(ADC.CTRLB)寄存器中的采样累加数选择(SAMPNUM)位域,可将 ADC 配置为自动 累加一定数量的采样结果后进行单次转换触发。收到转换触发信号后,2^{SAMPNUM} 个采样结果将累加到 ADC 结果寄存器(ADC.RES)中,之后中断标志(ADC.INTFLAGS)寄存器中的结果就绪(RESRDY) 位置 1。ADC 支持累加最多 64 个采样结果。

2.2 采样延时

可通过写入控制 B(ADC.CTRLB)寄存器中的采样延时选择位域(SAMPDLY),在连续的 ADC 转换之间插入多个延时周期。与硬件采样累加一起使用时,SAMPDLY 可用于从采样的模拟信号中存在的谐波噪声频率分量中消除 ADC 突发频率。

2.3 自动采样延时变化

自动采样延时变化(Automatic Sampling Delay Variation, ASDV)结合采样累加可有效抑制具有未知基频的谐波噪声。如果 ADSV 使能, ADC 将遍历支持的采样延时配置,每次转换会使延时延长一个 ADC 时钟 (CLK_ADC)周期。与固定的采样延时相比,变化的采样延时可以在更宽的频率范围内提供噪声衰减,但 代价是衰减因数减小。在谐波噪声频率已知或可测量的情况下,建议调整采样延时来抑制当前的频率分量。可通过写入控制 D(ADC.CTRLD)寄存器的 ADSV 位来使能 ADSV。

3. 理论:噪声抑制

3.1 具有随机噪声的信号

许多 MCU 应用涉及测量模拟信号。在完全无噪声信号的理想情况下,只依靠以固定时间间隔触发的单次 ADC 转换就能实现高质量的数字信号。但实际上,大多数模拟信号都受噪声影响,因此您可使用 Microchip 的现代化 ADC 来提高信噪比。

图 3-1 所示为噪声信号。单次转换的时间间隔相等会导致数字信号中包含噪声。一种可能的解决方案是在 软件中过滤采集的样本,但这需要额外的 CPU 资源。更好的选择是使用 ADC 支持的硬件采样累加器。

图 3-2 展示了单个 ADC 转换触发如何产生最多包含 64 次连续 ADC 转换的突发。每次转换都将累加到硬件中,并且所累加采样的平均值可以通过将累加结果除以突发大小来计算。由于采样噪声具有零均值,因此平均结果将接近实际信号值。

在这种情况下,通过将 ADC 配置为自动累加 m 个采样,可以使用 ADC 的硬件采样累加器功能求平均值。 ADC 采样率受累加采样数的影响。m 个采样的总采样时间等于 m (获取的采样数)乘以单次采样的采样时间。

图 3-1 以混有随机噪声的直流信号为例。

图 3-1. 混有随机噪声的直流信号

放大信号后,就可看到如图 3-2 的"A"部分所示的 ADC 采样。 假设过采样是通过 8 次采样实现的,这意味着单次突发包含 8 次采样。 图 3-2 中的红色标记即单次突发中的 8 次采样。 图 3-2. 噪声信号详图

由于通过多个采样完成过采样,所有采样值的平均结果将近似等于原始直流信号。这意味着它会产生零均 值噪声。增加突发大小(累加更多采样)有助于消除更多峰值信号并实现更明显的噪声抑制效果。

3.2 具有周期性噪声的信号

用于电机或 LED 控制等用途的开关模式稳压器或 PWM 信号可能会出现周期性噪声。

借助硬件采样累加器功能,可以计算累加采样的平均值,方法是用累加的结果除以突发大小(累加的采样数),得出零均值采样噪声。

图 3-3 以混有周期性噪声和多个累加采样(以红色标记显示)的直流信号为例。

放大信号后,就可看到图 3-3 中的 "A" 部分和 "B" 部分所示的 ADC 采样。

当使用硬件采样累加器时, "A"部分中的 ADC 采样的平均结果将 ≅ +Δn。在"B"部分中, ADC 采样的 平均结果将 ≅ -Δn。各个采样的结果不等于零,但具有相同的正负概率。累加的噪声采样结果将接近零, 噪声被成功抑制。

图 3-3. 混有周期性噪声的直流信号:采样累加器

采样延时或自动采样延时变化:

当周期性噪声频率已知时,可通过调节采样率来调整采样频率,使其远离采样信号中 ADC 采样频率(突发内)混淆的任何周期性噪声或谐波噪声。

在周期性噪声频率未知的情况下,可以使用自动采样延时变化功能来对该延时进行随机化,以略微改变采 样之间的时间并实现更好的噪声抑制。在这种情况下,可实现更宽的抑制范围,但会降低噪声衰减。

如果添加采样延时并调节采样频率,实际读取的 ADC 采样就会如图 3-4 中 "A" 部分和 "B" 部分所示。 在这种情况下,批次 "A" 中的采样平均值将接近于零,批次 "B" 中的采样平均值将同样接近零,从而可 抑制噪声信号。

图 3-4. 混有周期性噪声的直流信号:采样延时

AN2551 理论:噪声抑制

通过使用控制 D(ADC.CTRLD)寄存器中的采样延时位域和采样控制(ADC.SAMPCTRL)寄存器中的采 样长度位域,可以调整采样延时和采样长度。这两个位域控制 ADC 的采样时间(用 CLK_ADC 周期表 示)。

总采样时间的计算公式如下:

采样时间 = $\frac{(2 + SAMPDLY + SAMPLEN)}{f_{CLK ADC}}$

在自由运行模式下,采样率 Rs 的计算公式如下:

采样率= $\frac{f_{CLK_ADC}}{(13 + SAMPDLY + SAMPLEN)}$

ADC.CTRLD 寄存器中的采样延时选择位用于定义连续 ADC 采样之间的延时。通过将 ASDV 位置 1,还可 将 SAMPDLY 字段由 1 个采样周期自动修改为其他值。延时用 CLK_ADC 周期表示。当 ASDV 位未使能 时,SAMPDLY 值可配置为 0 至 15 的值。0 表示没有采样延时,1 表示 1 个周期的延时,以此类推。在设 置中,需正确调节此值,以获得所需的结果并抑制当前的频率分量。需要通过试错法配置此值,使得+Δn 或-Δn 接近零。

从上面的图可以看出,正确调节连续采样之间的采样延时(SMPDLY)值时,ADC 采样的平均结果接近无 噪声信号。

随着采样延时或累加采样数量的增加,采样频率会降低。

4. 为信号添加噪声

为了验证 ADC 功能,可以使用各种方法产生人工噪声,然后将其添加到输入信号中。

- 使用 AVR 的 PWM 功能生成周期性噪声,然后将噪声添加到输入信号中。
- 使用 AVR 的 DAC 功能生成随机噪声,然后将噪声添加到输入信号中。

注: 可使用自带 DAC 的任何器件生成伪随机噪声。

生成随机噪声的示例代码:

```
unsigned int i;
unsigned int k;
unsigned char random_buf[512];
for (i=0;i<512;i++) {
    random_buf[i]= rand()%256;
}
dac_init();
while (1)
{
    DAC.DATA = random_buf[k++];
    if (k>512)
    {
        k=0;
    }
}
```

random_buf[512]是一个使用标准函数库 "rand()"的随机数 (0 至 255)数组。

要产生真随机噪声信号,需要足够高的 DAC 转换速率。要确保这一点,在选择产生随机 DAC 噪声的器件时,其 CPU 时钟频率应高于将该噪声用作输入噪声信号的器件的频率。

可使用图 4-1 所示的电路为要测量的信号添加噪声。

图 4-1. 为信号电路添加噪声

注: 可以采取预防措施,使混合信号的电压大小不会高于所选择的 ADC 参考电压。根据器件特性,建议 不要使输入电压信号高于 ADC 参考电压。

可以生成 PWM 信号来作为周期性噪声。为了在测试设置中获得周期性噪声的最坏情况,可以选择接近 ADC 采样频率的 PWM 频率。

© 2019 Microchip Technology Inc.

在示例源代码中,默认 CPU 时钟为 3.33 MHz。ADC 时钟为 3.33 MHz/4 = 832.5 kHz。

在自由运行模式下,采样率 R_S的计算公式如下:

 $采样率 = \frac{f_{CLK_ADC}}{(13 + SAMPDLY + SAMPLEN)}$

因此,R_S为832.5 kHz/13 = 64 kHz。

在示例源代码中, PWM 信号的生成频率为 62 kHz, 接近 ADC 采样频率。

5. 演示噪声滤波

通过使用示例源代码以及在 Atmel Studio 的 Data Visualizer 中绘制 ADC 采样波形图来演示噪声滤波。

示例源代码使用 TCA 定时器生成 PWM 噪声。该 PWM 信号作为噪声添加到"待测信号"中,如图 4-1 所示。来自电位器的 DC 信号用作"待测信号"。混合信号(信号+噪声信号)作为输入信号提供给 ADC。将对此信号进行采样, ADC 结果值将通过 USART 发送到 *Data Visualizer* 的串行终端并在 *Data Visualizer* 中绘制 ADC 采样波形图。

将根据不同的噪声滤波配置绘制不同的波形图,这些配置包括1或64个采样的采样累加、采样延时和自动 采样延时等。从这些图中可以观察到,当使用配置的ADC功能抑制噪声时ADC结果计数范围将如何缩 小。

后续章节将提供详细说明。

5.1 源代码概述

使用 ATmega4809 Xplained Pro 的源代码概述:

- CPU 时钟: (默认) 3.33 MHz。
- 使用的外设:
 - ADC、TCA、USART 和 V_{REF} 。
 - ADC 输入通道为 AIN 5: 引脚 PD5, 10 位 ADC 分辨率。
 - TCA: 在引脚 PA0 上生成 PWM 信号: 62 kHz, 50%占空比。
 - USART: TXD PC0, 波特率: 19200, ADC 结果发送到串行终端。
 - V_{REF}将 ADC 参考电压选为 2.5V。

在 Atmel START 中配置的项目会生成外设驱动程序函数和文件,以及初始化所有驱动程序的"main()" 函数。

- 驱动程序的头文件和源文件分别位于 src 和 include 文件夹中。
- 在 atmel_start.c 文件中, 函数 "atmel_start_init()" 初始化项目中的 MCU、驱动程序和中间件。

使用 ATtiny817 Xplained Pro 的源代码概述:

- CPU 时钟: (默认) 3.33 MHz。
- 使用的外设:
 - ADC、TCA、USART 和 $V_{REF^{\circ}}$
 - ADC 输入通道为 AIN 5: 引脚 PA5, 10 位 ADC 分辨率。
 - TCA: 在引脚 PB0 上生成 PWM 信号: 62 kHz, 50% 占空比。
 - USART: TXD PB2, 波特率: 19200, ADC 结果发送到串行终端。
 - V_{REF}将 ADC 参考电压选为 2.5V。

在 Atmel START 中配置的项目会生成外设驱动程序函数和文件,以及初始化所有驱动程序的"main()" 函数。

- 驱动程序的头文件和源文件分别位于 src 和 include 文件夹中。
- 在 atmel_start.c 文件中,函数 "atmel_start_init()" 初始化项目中的 MCU、驱动程序和中间件。

5.1.1 宏定义

下面是所列 main.c 文件的源代码中的宏定义。

HARMONIC_NOISE

#define HARMONIC_NOISE 1

- 1: 生成 PWM 信号作为周期性噪声。
- 0:不生成 PWM 信号。
- PWM_FRQ

#define PWM_FRQ 62000

PWM 频率的配置,62 kHz。

为了在测试设置中获得周期性噪声的最坏情况,可以选择接近 ADC 采样频率的 PWM 频率。

ADC_64X_ACCUMULATOR_ENABLE

#define ADC_64X_ACCUMULATOR_ENABLE 1

使能连续采样累加的配置。

1:64个连续采样的累加。

0:没有多个采样累加(只有一个 ADC 采样累加)。

请注意,此示例显示的结果图代表的是仅使用 ADC_64X_ACCUMULATOR_ENABLE 宏实现的 1 个或 64 个样本的 ADC 采样累加。

Microchip tinyAVR[®] 1 系列和 megaAVR[®] 0 系列支持 1、2、4、8、16、32 和 64 次采样累加。对于 1 或 64 以外的采样累加,需相应地更改代码。

SAMPLING_DELAY

#define SAMPLING_DELAY 5

0: 单次突发中的多个连续采样之间没有采样延时。

1 至 15: 配置单次突发中多个连续采样之间的采样延时。延时用 CLK_ADC 周期来表示, 1 表示 1 个 周期的延时

注: 在测试设置中,当采样延时值配置为5时,可实现最大噪声滤波,这是通过试错法进行配置的, 目的是正确调节此值,以获得所需的结果并抑制当前的频率分量。它可能因设置而异。

• ENABLE_ASDV

#define ENABLE_ASDV 0

1: 使能单次突发中多个连续采样之间的自动采样延时。

0: 不使能自动采样延时变化。

5.1.2 应用程序流程图

完整的应用程序流程图如图 5-1 所示。

5.2 用图表示结果

将通过在 Atmel StudioData Visualizer 中绘制不同的波形图以及配置高级 ADC 功能来显示结果。以下是跟 剧不同噪声滤波配置绘制的波形图,这些配置包括 1 或 64 个采样的采样累加、采样延时和自动采样延时变 化等。从这些图中可以观察到,当使用配置的 ADC 功能抑制噪声时 ADC 结果计数范围将如何缩小。

注: 有关如何在 *Atmel StudioData Visualizer* 中绘制图的更多详细信息,请参见 7. 附录 A: 在 Data Visualizer 中绘图。

5.2.1 无噪声的信号

任务:使用无噪声的直流信号在 Data Visualizer 中绘图。

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 0
#define ADC_64X_ACCUMULATOR_ENABLE 0
#define SAMPLING_DELAY 0
#define ENABLE ASDV 0
```

当 0.6V 的直流信号连接到 ADC 输入引脚 PD5 时, Data Visualizer 中绘制的波形图如下所示。

注: 尚未向输入信号中添加噪声。

从图中可以看到, ADC 结果值大约为 240, 没有观察到噪声。 如果将图放大,则可以看到 ADC 计数为 244(见图 5-3)。

图 5-3. 放大后的无噪声直流信号

ADC 参考电压为 2.5V, ADC 分辨率为 10 位。

理想情况下,测得的 ADC 计数可能是(1023 x 0.6)/2.5 = 245。

注: 有关完整的设置代码,请参见附录 A: 在 Data Visualizer 中绘图。

5.2.2 具有随机噪声的信号

任务:使用混有随机噪声的 DC 信号在 Data Visualizer 中绘制两个波形图。

- 累加1个采样的波形图。
- 累加 64 个采样的波形图。

测试设置:使用带 DAC 的器件生成随机噪声,然后将此随机噪声添加到待测直流信号中,如图 4-1 所示。图 5-4 给出了具有随机噪声的信号。直流信号的大小为 740 mV,噪声幅值为 640 mV pk-pk。

图 5-4. 具有随机噪声的信号的示波器截图

1.累加1个采样的波形图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 0
#define ADC_64X_ACCUMULATOR_ENABLE 0
#define SAMPLING_DELAY 0
#define ENABLE_ASDV 0
```

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-5 所示:

可以看到,受随机噪声影响,ADC 计数介于 200 到 400 之间。这意味着 ADC 计数在±100 之内变化(400 到 200→300±100 个计数)。

2.累加 64 个采样的波形图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 0
#define ADC_64X_ACCUMULATOR_ENABLE 1
#define ENABLE_SMP_DLY 0
#define ENABLE_AUTOTMATIC_SAMP_DLY 0
```

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-6 所示:

从图中可以看出,通过累加 64 个 ADC 采样完成过采样,ADC 结果计数范围会缩小。如果放大信号,则图 像如图 5-7 所示。

图 5-7. 具有随机噪声的放大后信号: 累加 64 个采样

ADC 结果计数介于 295 到 270 之间。这意味着 ADC 计数在±13 之内变化(295 到 270→282±13 个计数)。

5.2.3 具有周期性噪声的信号

任务:使用混有周期性噪声的直流信号在 Data Visualizer 中绘制四个波形图。

- 累加1个ADC采样的波形图。
- 累加 64 个 ADC 采样的波形图。
- 具有 64 个 ADC 采样和自动采样延时变化的波形图。
- 具有 64 个 ADC 采样和采样延时的波形图。

测试设置:使用外设 TCA 生成 PWM 信号,然后将此 PWM 噪声添加到待测直流信号中,如图 4-1 所示。 图 5-8 给出了具有 PWM 噪声的信号。

图 5-8. 具有 PWM 噪声的信号的示波器截图

1.累加1个采样的波形图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 1
#define ADC 64X ACCUMULATOR_ENABLE 0
#define SAMPLING_DELAY 0
#define ENABLE ASDV 0
```

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-9 所示:

图 5-9. 周期性噪声: 累加 1 个采样

可以看到, ADC 结果计数值介于 100 到 450 之间。

2.累加 64 个采样的波形图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 1
#define ADC_64X_ACCUMULATOR_ENABLE 1
#define SAMPLING_DELAY 0
#define ENABLE_ASDV 0
```

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-10 所示:

图 5-10. 周期性噪声: 累加 64 个采样

如果放大上述信号,则图像如图 5-11 所示。

通过过采样,ADC结果计数范围已缩小,值从255变为315。这意味着ADC结果计数范围约为±30个计数。

3.累加 64 个采样且具有自动采样延时的波形图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 1
#define ADC_64X_ACCUMULATOR_ENABLE 1
#define SAMPLING_DELAY 0
#define ENABLE_ASDV 1
```

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-12 所示:

图 5-12. 周期性噪声: 累加 64 个采样且具有自动采样延时

```
如果放大上述信号,则图像如图 5-13 所示。
```

AN2551 演示噪声滤波

图 5-13. 放大的周期性噪声: 累加 64 个采样且具有自动采样延时

通过过采样和添加自动采样延时, ADC 结果计数范围进一步缩小, 值从 276 变为 287。这意味着 ADC 结果计数范围约为±6 个计数。

4.累加 64 个采样且具有采样延时的图:

在示例代码中, 宏定义的配置如下:

```
#define HARMONIC_NOISE 1
#define ADC_64X_ACCUMULATOR_ENABLE 1
#define SAMPLING_DELAY 5
#define ENABLE ASDV 0
```

在测试设置中,为实现最大噪声滤波,已将采样延时(#define SAMPLING_DELAY)的值配置为5。这 是通过试错法进行配置的,可能因设置而异。

当采样延时配置为5时,得到的 ADC 采样频率为 3.33 MHz/(13+5) = 46 kHz。

下载具有上述宏定义的代码后, Data Visualizer 中的波形图如图 5-14 所示:

AN2551 演示噪声滤波

图 5-14. 周期性噪声: 累加 64 个采样且具有采样延时

如果放大上述信号,则图像如图 5-15 所示。

通过过采样和添加采样延时,ADC结果计数范围进一步缩小,值从281变为287。这意味着ADC结果计数范围为±3个计数,这表明配置的ADC功能可以抑制噪声信号并实现更好的ADC结果。

6. 从 Atmel | START 获取源代码

示例代码可通过 Atmel | START 获得, Atmel | START 是一种基于 Web 的工具,可通过图形用户界面 (Graphical User Interface, GUI) 配置应用程序代码。可以通过下面提供的直接示例代码链接或 Atmel | START 首页上的 *BROWSE EXAMPLES*(浏览示例)按钮,为 Atmel Studio 和 IAR Embedded Workbench[®]下载代码。

Atmel | START 网页: http://start.atmel.com/

示例代码

- ADC 应用的噪声抑制方法
 - http://start.atmel.com/#example/Atmel:noise_countermeasure:
 1.0.0::Application:Noise_Countermeasures_for_ADC_Applications:
- 使用 megaAVR 0 系列的 ADC 应用的噪声抑制方法
 - http://start.atmel.com/#example/Atmel:noise_countermeasure_megaavr:
 1.0.0::Application:Noise_Countermeasures_for_ADC_Applications_with_megaAVR_0-series:

有关详细信息和示例项目的相关信息,请按 Atmel | START 中的 User guide (用户指南)按钮。User guide 按钮可以在该网页中找到,方法是在 Atmel | START 项目配置器中的仪表板视图中单击项目名称。

Atmel Studio

在 Atmel | START 的网页中单击 *DOWNLOAD SELECTED EXAMPLE*(下载所选示例),为 Atmel Studio 下载.atzip 文件形式的代码。要从 Atmel | START 下载文件,请单击 *EXPORT PROJECT*(导出项目),然后单击 *DOWNLOAD PACK*(下载包)。

双击下载的.atzip 文件,项目将导入到 Atmel Studio 7.0。

IAR Embedded Workbench

有关如何在 IAR Embedded Workbench 中导入项目的信息,请打开 Atmel | START 用户指南,选择 Using Atmel Start Output in External Tools(使用外部工具中的 Atmel Start 输出),然后选择 IAR Embedded Workbench。单击 Atmel | START 首页右上角的 About(关于)或项目配置器中右上角的 Help And Support(帮助和支持),均可找到 Atmel | START 用户指南的链接。

7. 附录 A: 在 Data Visualizer 中绘图

注: 有关 Data Visualizer 的详细信息,请参见 Data Visualizer 用户指南。

在示例源代码中,ADC结果值通过 USART 发送到 Data Visualizer 的串行终端,然后将该串行终端数据作为输入进行馈送以绘制波形图。

使用数据流协议将 ADC 结果发送到串行终端。

如何使用数据流协议发送 16 位值:

ADC 已配置为 10 位,此 10 位 ADC 结果需要发送到 8 位 USART。由于一个 ADC 结果值将以两个字节的 形式发送,因此将通过数据流传输协议将 ADC 结果发送到串行终端(如下所示),以便使用一个 16 位值 绘图。

```
USART_0_write(0x03); //START
USART_0_write(adc_data_LSB);
USART_0_write(adc_data_MSB);
USART_0_write(0xFC); //END
```

Data Visualizer 配置:

- 打开 <u>Atmel Studio → Tools → Data Visualizer</u> (Atmel Studio → 工具 → Data Visualizer)。
- 在 Data Visualizer 中,打开 <u>Configuration → External Connection → Serial Port</u>(配置 → 外部连接 → 串行端口)。
- 选择 EDBG Virtual COM port(EDBG 虚拟 COM 端口),然后选择 Connect(连接)。
- 打开 <u>Configuration → Visualization → Data Streamer</u>(配置 → 可视化 → Data Streamer)。
- 在 *Data Stream Control Panel*(数据流控制面板)的 *Configuration*(配置)下,浏览到配置.txt 文件,然后选择 *Load*(加载)。

注:为 Data Streamer 加载的.txt 文件具有如下配置: D, 1, 1, ADC0。

注: 有关 Data Streamer 的更多详细信息,请参见 Data Visualizer User's Guide-Data Stream Protocol。

- 打开 <u>Configuration → Visualization → Graph</u>(配置 → 可视化 → 图)。
- 使用图 7-1 中的红色箭头如图所示拖动连接,以进行绘图。

要调整图中的Y轴,请按以下步骤操作:

- 在 Graph 中的 Configuration 下,取消选中 Automatically Fit Y (自动调整 Y)。
- 单击绘图区域内的某个位置。
- 按住 Ctrl 键的同时滚动鼠标滚轮。

注: 有关 Data Visualizer → Graph 的更多详细信息,请参见 Data Visualizer User's Guide-Graph。

8. 版本历史

文档版本	日期	备注
С	2018年10月	更新了"相关器件"一章中的图 1-1、图 1-2 和图 1-3。修正了语法和标点符 号。
В	2018年2月	增加了对 tinyAVR 0 系列和 megaAVR 0 系列的支持。
А	2017 年 9 月	文档初始版本。

Microchip 网站

Microchip 网站 http://www.microchip.com/为客户提供在线支持。客户可通过该网站方便地获取文件和信息。只要使用常用的互联网浏览器即可访问,网站提供以下信息:

- 产品支持——数据手册和勘误表、应用笔记和示例程序、设计资源、用户指南以及硬件支持文档、最新的软件版本以及归档软件
- 一般技术支持——常见问题(FAQ)、技术支持请求、在线讨论组以及 Microchip 顾问计划成员名单
- Microchip 业务——产品选型和订购指南、最新 Microchip 新闻稿、研讨会和活动安排表、Microchip 销售办事处、代理商以及工厂代表列表

变更通知客户服务

Microchip 的变更通知客户服务有助于客户了解 Microchip 产品的最新信息。注册客户可在他们感兴趣的某个产品系列或开发工具发生变更、更新、发布新版本或勘误表时,收到电子邮件通知。

欲注册,请登录 Microchip 网站 http://www.microchip.com/。在"支持"(Support)下,点击"变更通知 客户"(Customer Change Notification)服务后按照注册说明完成注册。

客户支持

Microchip 产品的用户可通过以下渠道获得帮助:

- 代理商或代表
- 当地销售办事处
- 应用工程师(FAE)
- 技术支持

客户应联系其代理商、代表或应用工程师(FAE)寻求支持。当地销售办事处也可为客户提供帮助。本文 档后附有销售办事处的联系方式。

也可通过以下网站获得技术支持: http://www.microchip.com/support

Microchip 器件代码保护功能

请注意以下有关 Microchip 器件代码保护功能的要点:

- Microchip 的产品均达到 Microchip 数据手册中所述的技术指标。
- Microchip 确信:在正常使用的情况下, Microchip 系列产品是当今市场上同类产品中最安全的产品之一。
- 目前,仍存在着恶意、甚至是非法破坏代码保护功能的行为。就我们所知,所有这些行为都不是以 Microchip 数据手册中规定的操作规范来使用 Microchip 产品的。这样做的人极可能侵犯了知识产权。
- Microchip 愿意与关心代码完整性的客户合作。
- Microchip 或任何其他半导体厂商均无法保证其代码的安全性。代码保护并不意味着我们保证产品是 "牢不可破"的。

代码保护功能处于持续发展中。Microchip 承诺将不断改进产品的代码保护功能。任何试图破坏 Microchip 代码保护功能的行为均可视为违反了《数字器件千年版权法案(Digital Millennium Copyright Act)》。如

果这种行为导致他人在未经授权的情况下,能访问您的软件或其他受版权保护的成果,您有权依据该法案 提起诉讼,从而制止这种行为。

法律声明

提供本文档的中文版本仅为了便于理解。请勿忽视文档中包含的英文部分,因为其中提供了有关 Microchip 产品性能和使用情况的有用信息。Microchip Technology Inc.及其分公司和相关公司、各级主管与员工及事 务代理机构对译文中可能存在的任何差错不承担任何责任。建议参考 Microchip Technology Inc.的英文原 版文档。

本出版物中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应 用符合技术规范,是您自身应负的责任。Microchip 对这些信息不作任何明示或暗示、书面或口头、法定或 其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明 或担保。Microchip 对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将 Microchip 器件用 于生命维持和/或生命安全应用,一切风险由买方自负。买方同意在由此引发任何一切伤害、索赔、诉讼或 费用时,会维护和保障 Microchip 免于承担法律责任,并加以赔偿。除非另外声明,否则在 Microchip 知识 产权保护下,不得暗中或以其他方式转让任何许可证。

商标

Microchip 的名称和徽标组合、Microchip 徽标、Adaptec、AnyRate、AVR、AVR 徽标、AVR Freaks、 BesTime、BitCloud、chipKIT、chipKIT 徽标、CryptoMemory、CryptoRF、dsPIC、FlashFlex、 flexPWR、HELDO、IGLOO、JukeBlox、KeeLoq、Kleer、LANCheck、LinkMD、maXStylus、 maXTouch、MediaLB、megaAVR、Microsemi、Microsemi 徽标、MOST、MOST 徽标、MPLAB、 OptoLyzer、PackeTime、PIC、picoPower、PICSTART、PIC32 徽标、PolarFire、Prochip Designer、 QTouch、SAM-BA、SenGenuity、SpyNIC、SST、SST 徽标、SuperFlash、Symmetricom、 SyncServer、Tachyon、TempTrackr、TimeSource、tinyAVR、UNI/O、Vectron 及 XMEGA 均为 Microchip Technology Inc.在美国和其他国家或地区的注册商标。

APT、ClockWorks、The Embedded Control Solutions Company、EtherSynch、FlashTec、Hyper Speed Control、HyperLight Load、IntelliMOS、Libero、motorBench、mTouch、Powermite 3、 PrecisionEdge、ProASIC、ProASIC Plus、ProASIC Plus 徽标、Quiet-Wire、SmartFusion、 SyncWorld、Temux、TimeCesium、TimeHub、TimePictra、TimeProvider、Vite、WinPath 和 ZL 均为 Microchip Technology Inc.在美国的注册商标。

Adjacent Key Suppression、AKS、Analog-for-the-Digital Age、Any Capacitor、AnyIn、AnyOut、 BlueSky、BodyCom、CodeGuard、CryptoAuthentication、CryptoAutomotive、CryptoCompanion、 CryptoController、dsPICDEM、dsPICDEM.net、Dynamic Average Matching、DAM、ECAN、 EtherGREEN、In-Circuit Serial Programming、ICSP、INICnet、Inter-Chip Connectivity、JitterBlocker、 KleerNet、KleerNet 徽标、memBrain、Mindi、MiWi、MPASM、MPF、MPLAB Certified 徽标、MPLIB、 MPLINK、MultiTRAK、NetDetach、Omniscient Code Generation、PICDEM、PICDEM.net、PICkit、 PICtail、PowerSmart、PureSilicon、QMatrix、REAL ICE、Ripple Blocker、SAM-ICE、Serial Quad I/O、SMART-I.S.、SQI、SuperSwitcher、SuperSwitcher II、Total Endurance、TSHARC、USBCheck、 VariSense、ViewSpan、WiperLock、Wireless DNA 和 ZENA 均为 Microchip Technology Inc.在美国和其 他国家或地区的商标。

SQTP 为 Microchip Technology Incorporated 在美国的服务标记。

Adaptec 徽标、Frequency on Demand、Silicon Storage Technology 和 Symmcom 为 Microchip Technology Inc.在除美国外的国家或地区的注册商标。

GestIC 为 Microchip Technology Inc.的子公司 Microchip Technology Germany II GmbH & Co. & KG 在除 美国外的国家或地区的注册商标。

在此提及的所有其他商标均为各持有公司所有。

© 2019, Microchip Technology Incorporated 版权所有。

ISBN: 978-1-5224-4740-5

质量管理体系

有关 Microchip 质量管理体系的更多信息,请访问 www.microchip.com/quality。

全球销售及服务网点

美洲	亚太地区	亚太地区	欧洲
公司总部	澳大利亚 - 悉尼	印度 - 班加罗尔	奥地利 - 韦尔斯
2355 West Chandler Blvd.	电话: 61-2-9868-6733	电话: 91-80-3090-4444	电话: 43-7242-2244-39
钱德勒, 亚利桑那州 85224-6199	中国 - 北京	印度 - 新德里	传真: 43-7242-2244-393
电话: 480-792-7200	电话: 86-10-8569-7000	电话: 91-11-4160-8631	丹麦 - 哥本哈根
传真: 480-792-7277	中国 - 成都	印度 - 浦那	电话: 45-4450-2828
技术支持:	电话: 86-28-8665-5511	电话: 91-20-4121-0141	传真: 45-4485-2829
http://www.microchip.com/	中国 - 重庆	日本 - 大阪	芬兰 - 埃斯波
support	电话: 86-23-8980-9588	电话: 81-6-6152-7160	电话: 358-9-4520-820
网址:	中国 - 东莞	日本 - 东京	法国 - 巴黎
www.microchip.com	电话: 86-769-8702-9880	电话: 81-3-6880-3770	电话: 33-1-69-53-63-20
亚特兰大	中国 - 广州	韩国 - 大邱	传真: 33-1-69-30-90-79
德卢斯, 佐治亚州	电话: 86-20-8755-8029	电话: 82-53-744-4301	德国 - 加兴
电话: 678-957-9614	中国 - 杭州	韩国 - 首尔	电话: 49-8931-9700
传真: 678-957-1455	电话: 86-571-8792-8115	电话: 82-2-554-7200	德国 - 哈恩
奥斯汀,德克萨斯州	中国 - 香港特别行政区	马来西亚 - 吉隆坡	电话: 49-2129-3766400
电话: 512-257-3370	电话: 852-2943-5100	电话: 60-3-7651-7906	德国 - 海尔布隆
波士顿	中国 - 南京	马来西亚 - 槟榔屿	电话: 49-7131-72400
韦斯特伯鲁,马萨诸塞州	电话: 86-25-8473-2460	电话: 60-4-227-8870	德国 - 卡尔斯鲁厄
电话: 774-760-0087	中国 - 青岛	菲律宾 - 马尼拉	电话: 49-721-625370
传真: 774-760-0088	电话: 86-532-8502-7355	电话: 63-2-634-9065	德国 - 慕尼黑
芝加哥	中国 - 上海	新加坡	电话: 49-89-627-144-0
艾塔斯卡,伊利诺伊州	电话: 86-21-3326-8000	电话: 65-6334-8870	传真: 49-89-627-144-44
电话: 630-285-0071	中国 - 沈阳	台湾地区 - 新竹	德国 - 罗森海姆
传真: 630-285-0075	电话: 86-24-2334-2829	电话: 886-3-577-8366	电话: 49-8031-354-560
达拉斯	中国 - 深圳	台湾地区 - 高雄	以色列 - 若那那市
阿迪森,德克萨斯州	电话: 86-755-8864-2200	电话: 886-7-213-7830	电话: 972-9-744-7705
电话: 972-818-7423	中国 - 苏州	台湾地区 - 台北	意大利 - 米兰
传真: 972-818-2924	电话: 86-186-6233-1526	电话: 886-2-2508-8600	电话: 39-0331-742611
底特律	中国 - 武汉	泰国 - 曼谷	传真: 39-0331-466781
诺维,密歇根州	电话: 86-27-5980-5300	电话: 66-2-694-1351	意大利 - 帕多瓦
电话: 248-848-4000	中国 - 西安	越南 - 胡志明市	电话: 39-049-7625286
休斯顿,德克萨斯州	电话: 86-29-8833-7252	电话: 84-28-5448-2100	荷兰 - 德卢内市
电话: 281-894-5983	中国 - 厦门		电话: 31-416-690399
印第安纳波利斯	电话: 86-592-2388138		传真: 31-416-690340
诺布尔斯维尔,印第安纳州	中国-珠海		挪威 - 特隆赫姆
电话: 317-773-8323	电话: 86-756-3210040		电话: 47-72884388
传真: 317-773-5453			波兰 - 华沙
电话: 317-536-2380			电话: 48-22-3325737
洛杉矶			罗马尼亚 - 布加勒斯特
米慎维荷,加利福尼亚州			电话: 40-21-407-87-50
电话: 949-462-9523			西班牙-马德里
传真: 949-462-9608			电话: 34-91-708-08-90
电话: 951-273-7800			传真: 34-91-708-08-91
罗利,北卡罗来纳州			瑞典 - 哥德堡
电话: 919-844-7510			电话: 46-31-704-60-40
组约,纽约州			瑞典-斯德哥尔摩
电话: 631-435-6000			电话: 46-8-5090-4654
圣何塞,加利福尼亚州			英国 - 沃金厄姆
电话: 408-735-9110			电话: 44-118-921-5800
电话: 408-436-4270			传直,44-118-921-5820
加拿大 - 多伦多			
电话: 905-695-1980			
传真: 905-695-2078			